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1 Introduction
Recently, much attention has been paid to the study of fractional differential equations due
to the fact that they have been proved to be valuable tools in the mathematical modeling
of many phenomena in physics, biology, mechanics, etc. (see [–]).

Impulsive differential equations of integer order have found extensive applications in
realistic mathematical modeling of a wide variety of practical situations, such as biolog-
ical phenomena involving thresholds, bursting rhythm models in medicine and biology,
optimal control models in economics, and frequency modulated systems. For the general
theory and relevant developments of impulsive differential equations, please see [–]
and the references therein. Usually the impulses of the evolution process described by
impulsive differential equations are assumed to be abrupt and instantaneous. That is to
say, the perturbations (impulses) start abruptly and the duration of them is negligible in
comparison with the duration of the process.

However, in [], the authors introduced a new class of abstract impulsive differential
equations for which the impulses are not instantaneous. Specifically, they studied the ex-
istence of solutions for the following impulsive problem:

⎧
⎪⎨

⎪⎩

u′(t) = Au(t) + f (t, u(t)), t ∈ (si, ti+], i = , , , . . . , N ,
u(t) = gi(t, u(t)), t ∈ (ti, si], i = , , . . . , N ,
u() = x,

where A : D(A) ⊂ X → X is the generator of a C-semigroup of bounded linear operators
{T(t)}t≥ defined on a Banach space (X,‖ · ‖), x ∈ X,  = t = s < t ≤ s < t ≤ s < · · · <
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tN ≤ sN < tN+ = a are pre-fixed numbers, gi ∈ C((ti, si] × X; X) for i = , , . . . , N and f :
[, a] × X → X is a suitable function. The impulses start abruptly at the points ti and their
action continues on the interval [ti, si]. As a motivation for the study of such systems, see
[], where an example of the hemodynamical equilibrium of a person was given.

Impulsive differential equations of fractional order have been studied by some authors,
for example [–]. As for the study of impulsive fractional evolution equations, to the
best of our knowledge, there are few papers [–] on this topic.

Motivated by [], in this paper we consider a class of impulsive fractional evolution
equations of the form

⎧
⎪⎨

⎪⎩

cDαx(t) = Ax(t) + f (t, x(t)), t ∈ (si, ti+], i = , , , . . . , m,
x(t) = Ii(x(ti)) + gi(t, x(t)), t ∈ (ti, si], i = , , . . . , m,
x() = x,

()

where cDα is the Caputo fractional derivative of order α ∈ (, ) with the lower limit
zero, A : D(A) ⊂ X → X is the generator of a C-semigroup of bounded linear operators
{T(t)}t≥ on a Banach space (X,‖ · ‖), x ∈ X,  = t = s < t ≤ s < t ≤ s < · · · < tm ≤
sm < tm+ = T are fixed numbers, gi ∈ C((ti, si] × X; X), Ii : X → X for i = , , . . . , m and
f : [, T] × X → X is a nonlinear function.

The impulses in problem () start abruptly at the points ti and their action continues on
the interval [ti, si]. To be precise, the function x takes an abrupt impulse at ti and follows
different rules in the two subintervals (ti, si] and (si, ti+] of the interval (ti, ti+]. At the point
si, the function x is continuous. The term Ii(x(ti)) means that the impulses are also related
to the value of x(ti) = x(t–

i ).
From the results obtained in the papers [–], we know that the definition of mild

solutions for fractional evolution equations is more involved than integer order evolution
equations. Moreover, to construct solutions for impulsive fractional differential equations,
we should properly handle the fractional derivative and impulsive conditions due to the
memory property of fractional calculus (see [–]).

We remark that if ti = si and the second equation of () takes the form of �x(ti) =
Ii(x(ti)) = x(t+

i ) – x(t–
i ) with x(t+

i ) = limε→+ x(ti + ε), x(t–
i ) = limε→– x(ti + ε) representing

the right and left limits of x(t) at t = ti, problem () reduces to the case considered in []
(with the fixed impulses).

We also study the nonlocal Cauchy problems for impulsive fractional evolution equa-
tions

⎧
⎪⎨

⎪⎩

cDαx(t) = Ax(t) + f (t, x(t)), t ∈ (si, ti+], i = , , , . . . , m,
x(t) = Ii(x(ti)) + gi(t, x(t)), t ∈ (ti, si], i = , , . . . , m,
x() = x + b(x),

()

where A, f , Ii, gi are the same as above, b is a given function; this constitutes a nonlocal
Cauchy problem. It is well known that the nonlocal condition has a better effect on the
solution and is more precise for physical measurements than the classical initial condition
alone.

The rest of the paper is organized as follows. In Section  we present the notations, def-
initions and preliminary results needed in the following sections. In Section , a suitable
concept of PC-mild solutions for our problems is introduced. Section  is concerned with
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the existence results of problems () and (). An example is given in Section  to illustrate
the results.

2 Preliminaries
Let us set J = [, T], J = [, t], J = (t, t], . . . , Jm– = (tm–, tm], Jm = (tm, tm+] and introduce
the space PC(J , X) := {u : J → X|u ∈ C(Jk , X), k = , , , . . . , m, and there exist u(t+

k ) and
u(t–

k ), k = , , . . . , m, with u(t–
k ) = u(tk)}. It is clear that PC(J , X) is a Banach space with the

norm ‖u‖PC = sup{‖u(t)‖ : t ∈ J}.

Lemma . (Theorem . in []) Suppose W ⊆ PC(J , X). If the following conditions are
satisfied:

() W is a uniformly bounded subset of PC(J , X);
() W is equicontinuous in (ti, ti+), i = , , , . . . , m, where t = , tm+ = T ;
() W (t) = {u(t) : u ∈ W , t ∈ J\{t, t, . . . , tm}}, W (t+

i ) = {u(t+
i ) : u ∈ W } and

W (t–
i ) = {u(t–

i ) : u ∈ W }, i = , , . . . , m, are relatively compact subsets of X .
Then W is a relatively compact subset of PC(J , X).

Let us recall the following well-known definitions.

Definition . ([]) The Riemann-Liouville fractional integral of order q with the lower
limit zero for a function f is defined as

Iqf (t) =


�(q)

∫ t


(t – s)q–f (s) ds, q > ,

provided the integral exists, where �(·) is the gamma function.

Definition . ([]) The Riemann-Liouville derivative of order q with the lower limit zero
for a function f : [,∞) →R can be written as

LDqf (t) =


�(n – q)
dn

dtn

∫ t


(t – s)n–q–f (s) ds, n –  < q < n, t > .

Definition . ([]) The Caputo derivative of order q for a function f : [,∞) → R can
be written as

cDqf (t) = LDq

(

f (t) –
n–∑

k=

tk

k!
f (k)()

)

, n –  < q < n, t > .

Remark .
(a) If f ∈ Cn[,∞), then, for n –  < q < n,

cDqf (t) =


�(n – q)

∫ t


(t – s)n–q–f (n)(s) ds = In–qf (n)(t), t > .

(b) If f is an abstract function with values in X , then the integrals in Definitions .
and . are taken in Bochner’s sense.

Let us recall the following definition of mild solutions for fractional evolution equations
involving the Caputo fractional derivative.
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Definition . ([, ]) A function x ∈ C(J , X) is said to be a mild solution of the follow-
ing problem:

{
cDαx(t) = Ax(t) + y(t), t ∈ (, T],
x() = x,

if it satisfies the integral equation

x(t) = Pα(t)x +
∫ t


(t – s)α–Qα(t – s)y(s) ds.

Here

Pα(t) =
∫ ∞


ξα(θ )T

(
tαθ

)
dθ , Qα(t) = α

∫ ∞


θξα(θ )T

(
tαθ

)
dθ , ()

ξα(θ ) =

α

θ–– 
α �α

(
θ– 

α
) ≥ ,

�α(θ ) =

π

∞∑

n=

(–)n–θ–nα– �(nα + )
n!

sin(nπα), θ ∈ (,∞), ()

and ξα is a probability density function defined on (,∞) [], that is,

ξα(θ ) ≥ , θ ∈ (,∞),
∫ ∞


ξα(θ ) dθ = .

It is not difficult to verify that

∫ ∞


θξα(θ ) dθ =


�( + α)

. ()

Remark . By applying the Laplace transform and probability density functions, Zhou
and Jiao [, ] introduced the above definition of mild solutions for fractional evolution
equations. For pioneering work on Caputo fractional evolution equations, we refer the
readers to [, ].

We make the following assumption on A in the whole paper.

H(A): The operator A generators a strongly continuous semigroup {T(t) : t ≥ } in X , and
there is a constant MA ≥  such that supt∈[,∞) ‖T(t)‖L(X) ≤ MA. For any t > , T(t)
is compact.

Lemma . (see [, ]) Let H(A) hold, then the operators Pα and Qα have the following
properties:

() For any fixed t ≥ , Pα(t) and Qα(t) are linear and bounded operators, and for any
x ∈ X ,

∥
∥Pα(t)x

∥
∥ ≤ MA‖x‖,

∥
∥Qα(t)x

∥
∥ ≤ αMA

�( + α)
‖x‖;

() {Pα(t), t ≥ } and {Qα(t), t ≥ } are strongly continuous;
() for every t > , Pα(t) and Qα(t) are compact operators.
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Finally we recall a fixed point theorem which will be needed in the sequel.

Theorem . (Krasnoselskii fixed point theorem) Let M be a closed, convex, and non-
empty subset of a Banach space X. Let A, B be the operators such that: (a) Ax + By ∈ M for
all x, y ∈ M, (b) A is compact and continuous, (c) B is a contraction. Then there exists a
x ∈ M such that x = Ax + Bx.

3 The construction of mild solutions
Let y ∈ PC(J , X). We first consider the following fractional impulsive problem:

⎧
⎪⎨

⎪⎩

cDαx(t) = Ax(t) + y(t), t ∈ (si, ti+], i = , , , . . . , m,
x(t) = Ii(x(ti)) + gi(t, x(t)), t ∈ (ti, si], i = , , . . . , m,
x() = x.

()

From the property of the Caputo derivative, a general solution of problem () can be writ-
ten as

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 
�(α)

∫ t
 (t – s)α–(Ax(s) + y(s)) ds, t ∈ [, t),

I(x(t)) + g(t, x(t)), t ∈ (t, s],
d + 

�(α)
∫ t

 (t – s)α–(Ax(s) + y(s)) ds, t ∈ (s, t),
. . . ,
Ii(x(ti)) + gi(t, x(t)), t ∈ (ti, si], i = , , . . . , m,
di + 

�(α)
∫ t

 (t – s)α–(Ax(s) + y(s)) ds, t ∈ (si, ti+),

()

where di, i = , , . . . , m, are elements of X. By () and the function x is continuous at the
points si, we have, for i = , , , . . . , m,

x(t) = diχ[si ,ti+)(t) +


�(α)

∫ t


(t – s)α–(Ax(s) + y(s)

)
ds, t ∈ [si, ti+), ()

with d = x and χ[si ,ti+)(t) is the characteristic function of [si, ti+), i.e.

χ[si ,ti+)(t) =

{
, t ∈ [si, ti+),
, otherwise.

Now we follow the idea used in the papers [, ] and apply the Laplace transformation
for () to obtain

u(λ) =
e–λsi – e–λti+

λ
di +


λα

Au(λ) + +

λα

v(λ),

where u(λ) =
∫ ∞

 e–λsx(s) ds and v(λ) =
∫ ∞

 e–λsy(s) ds, λ > . Then

u(λ) = λα–(λαI – A
)–e–λsi di – λα–(λαI – A

)–e–λti+ di +
(
λαI – A

)–v(λ),

where I is the identity operator defined on X. Note that the Laplace transform of �α(θ )
defined by () is given by

∫ ∞


e–λθ�α(θ ) dθ = e–λα .
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Then by the same computations in [, ] and the properties of Laplace transform (trans-
lation theorem and linearity of the inverse Laplace transform), we obtain

x(t) = χ[si ,∞)Pα(t – si)di – χ[ti+,∞)Pα(t – ti+)di +
∫ t


(t – s)α–Qα(t – s)y(s) ds.

Here Pα and Qα are given by (). Hence we get

x(t) = Pα(t – si)di +
∫ t


(t – s)α–Qα(t – s)y(s) ds, t ∈ [si, ti+).

Now it is time to determine the values of di, i = , , . . . , m. Using the fact that x is contin-
uous at the points si, we have

Ii
(
x(ti)

)
+ gi

(
si, x(si)

)
= di +

∫ si


(si – s)α–Qα(si – s)y(s) ds.

So we obtain

di = Ii
(
x(ti)

)
+ gi

(
si, x(si)

)
–

∫ si


(si – s)α–Qα(si – s)y(s) ds. ()

Therefore, a mild solution of problem () is given by

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pα(t)x +
∫ t

 (t – s)α–Qα(t – s)y(s) ds, t ∈ [, t],
I(x(t)) + g(t, x(t)), t ∈ (t, s],
Pα(t – s)d +

∫ t
 (t – s)α–Qα(t – s)y(s) ds, t ∈ (s, t],

. . . ,
Ii(x(ti)) + gi(t, x(t)), t ∈ (ti, si], i = , , . . . , m,
Pα(t – si)di +

∫ t
 (t – s)α–Qα(t – s)y(s) ds, t ∈ (si, ti+],

where, for i = , , . . . , m,

di = Ii
(
x(ti)

)
+ gi

(
si, x(si)

)
–

∫ si


(si – s)α–Qα(si – s)y(s) ds.

Next, by using the above results, we introduce the following definition of the mild solu-
tion for problem ().

Definition . A function x ∈ PC(J , X) is said to be a PC-mild solution of problem () if
it satisfies the following relation:

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pα(t)x +
∫ t

 (t – s)α–Qα(t – s)f (s, x(s)) ds, t ∈ [, t],
I(x(t)) + g(t, x(t)), t ∈ (t, s],
Pα(t – s)d +

∫ t
 (t – s)α–Qα(t – s)f (s, x(s)) ds, t ∈ [s, t],

. . . ,
Ii(x(ti)) + gi(t, x(t)), t ∈ (ti, si], i = , , . . . , m,
Pα(t – si)di +

∫ t
 (t – s)α–Qα(t – s)f (s, x(s)) ds, t ∈ [si, ti+],
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where, for i = , , . . . , m,

di = Ii
(
x(ti)

)
+ gi

(
si, x(si)

)
–

∫ si


(si – s)α–Qα(si – s)f

(
s, x(s)

)
ds. ()

Remark . For treating the mild solutions for abstract fractional differential equations,
we can also refer to [].

4 Existence results
This section deals with the existence results for problems () and ().

From Definition ., we define an operator S : PC(J , X) → PC(J , X) as

(Sx)(t) =

⎧
⎪⎨

⎪⎩

Pα(t)x +
∫ t

 (t – s)α–Qα(t – s)f (s, x(s)) ds, t ∈ [, t],
Ii(x(ti)) + gi(t, x(t)), t ∈ (ti, si],
Pα(t – si)di +

∫ t
 (t – s)α–Qα(t – s)f (s, x(s)) ds, t ∈ [si, ti+]

with di, i = , , . . . , m, defined by ().
To prove our first existence result we introduce the following assumptions.

H(f ): The function f ∈ C(J ×X; X) and there exists Lf ∈ L 
τ (J ,R+) with τ ∈ (,α) such that

‖f (t, x) – f (t, y)‖ ≤ Lf (t)‖x – y‖ for all x, y ∈ X and every t ∈ J .
H(I): For i = , , . . . , m, Ii ∈ C(X, X) and there is a constant LI >  such that ‖Ii(x)– Ii(y)‖ ≤

LI‖x – y‖ for all x, y ∈ X .
H(g): For i = , , . . . , m, the functions gi ∈ C([ti, si] × X; X) and there exists Lg ∈ C(J ,R+)

such that ‖gi(t, x) – gi(t, y)‖ ≤ Lg(t)‖x – y‖ for all x, y ∈ X and t ∈ [ti, si].

Theorem . Assume H(f), H(I), and H(g) are satisfied and

MA
(
LI + ‖Lg‖C(J)

)
+ ( + MA)

αMA

�(α + )

(
 – τ

α – τ

)–τ

Tα–τ‖Lf ‖L

τ (J)

< . ()

Then there exists a unique PC-mild solution of problem ().

Proof From the assumptions it is easy to show that the operator S is well defined on
PC(J , X).

Let x, y ∈ PC(J , X). For t ∈ [, t], from Lemma ., we have

∥
∥(Sx)(t) – (Sy)(t)

∥
∥ ≤

∫ t


(t – s)α–∥∥Qα(t – s)

(
f
(
s, x(s)

)
– f

(
s, y(s)

))∥
∥ds

≤ αMA

�(α + )

(
 – τ

α – τ

)–τ

tα–τ
 ‖Lf ‖L


τ ([,t])

‖x – y‖PC .

Similarly, we have, for t ∈ (ti, si], i = , , . . . , m,

∥
∥(Sx)(t) – (Sy)(t)

∥
∥ ≤ ∥

∥Ii
(
x(ti)

)
– Ii

(
y(ti)

)∥
∥

+
∥
∥gi

(
t, x(t)

)
– gi

(
t, y(t)

)∥
∥

≤ (
LI + ‖Lg‖C(J)

)‖x – y‖PC ,
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and, for t ∈ [si, ti+], i = , , . . . , m,
∥
∥(Sx)(t) – (Sy)(t)

∥
∥

≤
∥
∥
∥
∥Pα(t – si)

[

Ii
(
x(ti)

)
– Ii

(
y(ti)

)
+ gi

(
si, x(si)

)
– gi

(
si, y(si)

)

–
∫ si


(si – s)α–Qα(si – s)

(
f
(
s, x(s)

)
– f

(
s, y(s)

))
ds

]∥
∥
∥
∥

+
∫ t


(t – s)α–∥∥Qα(t – s)

(
f
(
s, x(s)

)
– f

(
s, y(s)

))∥
∥ds

≤ MA

(

LI + ‖Lg‖C(J) +
αMA

�(α + )

(
 – τ

α – τ

)–τ

sα–τ
i ‖Lf ‖L


τ ([,si])

)

‖x – y‖PC

+
αMA

�(α + )

(
 – τ

α – τ

)–τ

tα–τ
i+ ‖Lf ‖L


τ ([,ti+])

‖x – y‖PC .

From the above we can deduce that (since MA ≥ )
∥
∥(Sx)(t) – (Sy)(t)

∥
∥

PC

≤
[

MA
(
LI + ‖Lg‖C(J)

)
+ ( + MA)

× αMA

�(α + )

(
 – τ

α – τ

)–τ

Tα–τ‖Lf ‖L

τ (J)

]

‖x – y‖PC .

Then it follows from condition () that S is a contraction on the space PC(J , X). Hence by
the Banach contraction mapping principle, S has a unique fixed point x ∈ PC(J , X) which
is just the unique PC-mild solution of problem (). The proof is now complete. �

The next result is based on the Krasnoselskii fixed point theorem.

H(f ): For any x ∈ X , the map t → f (t, x) is strongly measurable on J . For a.e. t ∈ J , the
map x → f (t, x) is continuous. There exist mf ∈ L 

τ (J ,R+) with τ ∈ (,α) and ϕf ∈
C([,∞),R+) nondecreasing such that ‖f (t, x)‖ ≤ mf (t)ϕf (‖x‖) for all x ∈ X and
t ∈ J .

H(Ig): There exist mg ∈ C(J ,R+) and ϕI ,ϕg ∈ C([,∞),R+) nondecreasing such that, for
all x ∈ X , i = , , . . . , m,

∥
∥Ii(x)

∥
∥ ≤ ϕI

(‖x‖),
∥
∥gi(t, x)

∥
∥ ≤ mg(t)ϕg

(‖x‖), t ∈ (ti, si].

Theorem . Let H(f), H(I), H(g), and H(Ig) hold. Assume that

MA
(
LI + ‖Lg‖C(J)

)
<  ()

and there exists a constant r >  such that

MA
[
ϕI(r) + ‖mg‖C(J)ϕg(r) + ‖x‖

]

+ ( + MA)
αMAϕf (r)
�(α + )

(
 – τ

α – τ

)–τ

Tα–τ‖mf ‖L

τ (J)

≤ r. ()

Then there exists a PC-mild solution of problem ().
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Proof We define two operators S, S : PC(J , X) → PC(J , X) as

(Sx)(t) =

⎧
⎪⎨

⎪⎩

Pα(t)x, t ∈ [, t],
Ii(x(ti)) + gi(t, x(t)), t ∈ (ti, si],
Pα(t – si)(Ii(x(ti)) + gi(si, x(si))), t ∈ [si, ti+],

(Sx)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ t
 (t – s)α–Qα(t – s)f (s, x(s)) ds, t ∈ [, t],

, t ∈ (ti, si],
∫ t

 (t – s)α–Qα(t – s)f (s, x(s)) ds
– Pα(t – si)

∫ si
 (si – s)α–Qα(si – s)f (s, x(s)) ds, t ∈ [si, ti+]

for i = , , . . . , m. Since Pα() = I , it is easy to verify that for any x ∈ PC(J , X), Sx, Sx ∈
PC(J , X), hence they are well defined. We have Sx = Sx + Sx.

Let r >  satisfy condition (). We set

M =
{

u ∈ PC(J , X) : ‖u‖PC ≤ r
}

.

Then M is a closed, convex, and nonempty subset of the Banach space PC(J , X).
Next we will show that the operators S, S satisfy the requirements of Theorem ., i.e.

S is a contraction, S is compact and continuous and Sx + Sy ∈ M for all x, y ∈ M.
Step : Sx + Sy ∈ M for all x, y ∈ M. For any x, y ∈ M. We have, for t ∈ [, t],

∥
∥(Sx)(t) + (Sy)(t)

∥
∥ ≤ MA‖x‖ +

αMAϕf (r)
�(α + )

∫ t


(t – s)α–mf (s) ds

≤ MA‖x‖ +
αMAϕf (r)
�(α + )

(
 – τ

α – τ

)–τ

tα–τ
 ‖mf ‖L


τ (J)

for t ∈ (ti, si], i = , , . . . , m,

∥
∥(Sx)(t) + (Sy)(t)

∥
∥ ≤ ∥

∥Ii
(
x(ti)

)∥
∥ +

∥
∥gi

(
t, x(t)

)∥
∥

≤ ϕI(r) + ‖mg‖C(J)ϕg(r),

and for t ∈ [si, ti+], i = , , . . . , m,

∥
∥(Sx)(t) + (Sy)(t)

∥
∥ ≤

∥
∥
∥
∥Pα(t – si)

[

Ii
(
x(ti)

)
+ gi

(
si, x(si)

)

–
∫ si


(si – s)α–Qα(si – s)f

(
s, y(s)

)
ds

]∥
∥
∥
∥

+
∫ t


(t – s)α–∥∥Qα(t – s)f

(
s, y(s)

)∥
∥ds

≤ MA
[
ϕI(r) + ‖mg‖C(J)ϕg(r)

]

+ MA
αMAϕf (r)
�(α + )

(
 – τ

α – τ

)–τ

sα–τ
i ‖mf ‖L


τ (J)

+
αMAϕf (r)
�(α + )

(
 – τ

α – τ

)–τ

tα–τ
i+ ‖mf ‖L


τ (J)

.



Fu et al. Advances in Difference Equations  (2015) 2015:227 Page 10 of 16

Then we get

‖Sx + Sy‖PC ≤ MA
[
ϕI(r) + ‖mg‖C(J)ϕg(r) + ‖x‖

]

+ ( + MA)
αMAϕf (r)
�(α + )

(
 – τ

α – τ

)–τ

Tα–τ‖mf ‖L

τ (J)

.

It follows from () that Sx + Sy ∈ M for all x, y ∈ M.
Step : S is a contraction. Let x, y ∈ PC(J , X). From H(I), H(g), and Lemma ., we have,

for t ∈ [, t],

(Sx)(t) – (Sy)(t) = 

for t ∈ (ti, si], i = , , . . . , m,

∥
∥(Sx)(t) – (Sy)(t)

∥
∥ ≤ (

LI + ‖Lg‖C(J)
)‖x – y‖PC ,

and for t ∈ [si, ti+], i = , , . . . , m,

∥
∥(Sx)(t) – (Sy)(t)

∥
∥ ≤ MA

(
LI + ‖Lg‖C(J)

)‖x – y‖PC .

Therefore we deduce that

‖Sx – Sy‖PC ≤ MA
(
LI + ‖Lg‖C(J)

)‖x – y‖PC .

In view of (), the operator S is a contraction on PC(J , X).
Step : S is compact and continuous. Firstly, we will prove that S is continuous. Let

xn → x in PC(J , X) as n → ∞. We can assume without any loss of generality that ‖xn‖PC ≤
R for some R >  and n ≥ . By H(f ), we have

f
(
t, xn(t)

) → f
(
t, x(t)

)
a.e. t ∈ J , ()

∥
∥f

(
t, xn(t)

)∥
∥ ≤ mf (t)ϕf (R) for t ∈ J , n ≥ . ()

Since, for t ∈ [, t],

∥
∥(Sxn)(t) – (Sx)(t)

∥
∥ ≤ αMA

�(α + )

∫ t


(t – s)α–∥∥f

(
s, xn(s)

)
– f

(
s, x(s)

)∥
∥ds

for t ∈ (ti, si], i = , , . . . , m,

∥
∥(Sxn)(t) – (Sx)(t)

∥
∥ = ,

and, for t ∈ [si, ti+], i = , , . . . , m,

∥
∥(Sxn)(t) – (Sx)(t)

∥
∥ ≤ αMA

�(α + )

∫ t


(t – s)α–∥∥f

(
s, xn(s)

)
– f

(
s, x(s)

)∥
∥ds

+ MA
αMA

�(α + )

∫ si


(si – s)α–∥∥f

(
s, xn(s)

)
– f

(
s, x(s)

)∥
∥ds.
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Then from (), (), and by means of the Lebesgue dominated convergence theorem, we
obtain

‖Sxn – Sx‖PC →  as n → ∞.

This means that S is continuous.
Next we shall show that S maps bounded set into relatively compact set in PC(J , X).

Let B be any bounded subset of PC(J , X) such that for x ∈ B, ‖x‖PC ≤ R for some R > ,
it suffices to show that the set of functions S(B) = {Sx : x ∈ B} satisfies the conditions of
Lemma ..

For the same reasons as in Step , the set S(B) is uniformly bounded.
For any x ∈ B, if  ≤ t′ < t′′ ≤ t, we have

∥
∥(Sx)

(
t′′) – (Sx)

(
t′)∥∥ =

∥
∥
∥
∥

∫ t′′



(
t′′ – s

)α–Qα

(
t′′ – s

)
f
(
s, x(s)

)
ds

–
∫ t′



(
t′ – s

)α–Qα

(
t′ – s

)
f
(
s, x(s)

)
ds

∥
∥
∥
∥

≤ I + I + I,

where

I =
∥
∥
∥
∥

∫ t′′

t′

(
t′′ – s

)α–Qα

(
t′′ – s

)
f
(
s, x(s)

)
ds

∥
∥
∥
∥,

I =
∥
∥
∥
∥

∫ t′



(
t′ – s

)α–(Qα

(
t′′ – s

)
– Qα

(
t′ – s

))
f
(
s, x(s)

)
ds

∥
∥
∥
∥,

I =
∥
∥
∥
∥

∫ t′



((
t′′ – s

)α– –
(
t′ – s

)α–)Qα

(
t′′ – s

)
f
(
s, x(s)

)
ds

∥
∥
∥
∥.

Repeating the discussion in [] (see p. of it), we find that I, I, I tend to zero as
t′′ → t′ independently of x ∈ B. If ti < t′ < t′′ ≤ ti+, i = , , . . . , m, we have the following.

Case : ti < t′ < t′′ ≤ si,
∥
∥(Sx)

(
t′′) – (Sx)

(
t′)∥∥ = .

Case : si ≤ t′ < t′′ ≤ ti+,
∥
∥(Sx)

(
t′′) – (Sx)

(
t′)∥∥ ≤ I + I + I +

∥
∥
(
Pα

(
t′ – si

)
– Pα

(
t′′ – si

))
�

∥
∥, ()

where � =
∫ si

 (si – s)α–Qα(si – s)f (s, x(s)) ds. Since H(A) and the proof of Lemma . in []
imply that the continuity of Pα(t) and Qα(t) (t > ) in t is in the uniform operator topology,
we deduce that the right-hand side of () tends to zero independently of x ∈ B, as t′′ → t′.

Case : ti < t′ < si < t′′ ≤ ti+,
∥
∥(Sx)

(
t′′) – (Sx)

(
t′)∥∥

=
∥
∥
∥
∥

∫ t′′



(
t′′ – s

)α–Qα

(
t′′ – s

)
f
(
s, x(s)

)
ds

– Pα

(
t′′ – si

)
∫ si


(si – s)α–Qα(si – s)f

(
s, x(s)

)
ds

∥
∥
∥
∥ → 
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independently of x ∈ B, as t′′ → t′ (we have t′′ → si). Hence S(B) is equicontinuous in
(ti, ti+), i = , , , . . . , m.

Finally, let S(B)(t) denote the set {(Sx)(t) : x ∈ B}, t ∈ J , we shall prove that S(B)(t) is
relatively compact in X. Clearly, S(B)() = {} is compact.

Case ′:  < t ≤ t. For each h ∈ (, t) and δ > , we define a set

Sh,δ
 (B)(t) =

{
(Mh,δx)(t) : x ∈ B

}

with

(Mh,δx)(t) = α

∫ t–h



∫ ∞

δ

θ (t – s)α–ξα(θ )T
(
(t – s)αθ

)
f
(
s, x(s)

)
dθ ds

= α

∫ t–h



∫ ∞

δ

θ (t – s)α–ξα(θ )
[
T

(
hαδ

)
T

(
(t – s)αθ – hαδ

)]
f
(
s, x(s)

)
dθ ds

= αT
(
hαδ

)
∫ t–h



∫ ∞

δ

θ (t – s)α–ξα(θ )T
(
(t – s)αθ – hαδ

)
f
(
s, x(s)

)
dθ ds.

(Observe that θ ≥ δ and t – h ≥ s, hence (t – s)αθ – hαδ ≥ .) Since the operator T(hαδ)
(hαδ > ) is compact, the set Sh,δ

 (B)(t) is relatively compact in X. Moreover, for every x ∈ B,
we have

∥
∥(Sx)(t) – (Mh,δx)(t)

∥
∥

= α

∥
∥
∥
∥

∫ t



∫ δ


θ (t – s)α–ξα(θ )T

(
(t – s)αθ

)
f
(
s, x(s)

)
dθ ds

+
∫ t



∫ ∞

δ

θ (t – s)α–ξα(θ )T
(
(t – s)αθ

)
f
(
s, x(s)

)
dθ ds

–
∫ t–h



∫ ∞

δ

θ (t – s)α–ξα(θ )T
(
(t – s)αθ

)
f
(
s, x(s)

)
dθ ds

∥
∥
∥
∥

≤ α

∥
∥
∥
∥

∫ t



∫ δ


θ (t – s)α–ξα(θ )T

(
(t – s)αθ

)
f
(
s, x(s)

)
dθ ds

∥
∥
∥
∥ (denoted by G)

+ α

∥
∥
∥
∥

∫ t

t–h

∫ ∞

δ

θ (t – s)α–ξα(θ )T
(
(t – s)αθ

)
f
(
s, x(s)

)
dθ ds

∥
∥
∥
∥ (denoted by G).

By the Hölder inequality and H(f ), we get

G ≤ αMA

∫ t


(t – s)α–∥∥f

(
s, x(s)

)∥
∥ds

∫ δ


θξα(θ ) dθ

≤ αMAϕf (R)
(

 – τ

α – τ

)–τ

tα–τ
 ‖mf ‖L


τ (J)

∫ δ


θξα(θ ) dθ

and

G ≤ αMA

∫ t

t–h
(t – s)α–∥∥f

(
s, x(s)

)∥
∥ds

∫ ∞

δ

θξα(θ ) dθ

≤ αMAϕf (R)
(

 – τ

α – τ

)–τ

hα–τ‖mf ‖L

τ (J)

∫ ∞


θξα(θ ) dθ .
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Therefore from the property of the probability density function ξα and (), we obtain

∥
∥(Sx)(t) – (Mh,δx)(t)

∥
∥ →  as h → , δ → .

This means that there are relatively compact sets arbitrarily close to the set S(B)(t). Hence
the set S(B)(t) is also relatively compact in X.

Case ′: ti < t ≤ si, i = , , . . . , m. In such a case,

S(B)(t) = {} is compact.

Case ′: si < t ≤ ti+, i = , , . . . , m,

S(B)(t) =
{∫ t


(t – s)α–Qα(t – s)f

(
s, x(s)

)
ds

– Pα(t – si)
∫ si


(si – s)α–Qα(si – s)f

(
s, x(s)

)
ds : x ∈ B

}

.

By the same argument as in Case ′ and Pα(t – si) is a compact operator (see Lemma .),
we know S(B)(t) is relatively compact.

Therefore it follows from Lemma . that S is compact and continuous.
As a consequence of Steps -, we know that S + S satisfies all conditions of Krasnosel-

skii fixed point theorem (Theorem .). Hence the operator S has a fixed point in PC(J , X)
which is a PC-mild solution of problem (). The proof is complete. �

Finally in this section, we extend the results obtained above to nonlocal problems for
impulsive fractional evolution equations. Specifically, we show study the existence and
uniqueness of the mild solutions for problem (). Here we only state the existence results
for problem () without proofs since these are similar to the ones obtained for problem ()
above.

Definition . A function x ∈ PC(J , X) is said to be a PC-mild solution of problem () if
it satisfies the following relation:

x(t) =

⎧
⎪⎨

⎪⎩

Pα(t)(x + b(x)) +
∫ t

 (t – s)α–Qα(t – s)f (s, x(s)) ds, t ∈ [, t],
Ii(x(ti)) + gi(t, x(t)), t ∈ (ti, si], i = , , . . . , m,
Pα(t – si)di +

∫ t
 (t – s)α–Qα(t – s)f (s, x(s)) ds, t ∈ [si, ti+],

with di, i = , , . . . , m, defined by ().

H(b): b : PC(J , X) → X and there exist a constant Lb >  and ϕb ∈ C([,∞),R+) nonde-
creasing such that, for x, y ∈ PC(J , X),

∥
∥b(x) – b(y)

∥
∥ ≤ Lb‖x – y‖PC ,

∥
∥b(x)

∥
∥ ≤ ϕb

(‖x‖PC
)
.

Theorem . Assume H(f), H(I), H(g), and H(b) are satisfied and

MA
(
LI + ‖Lg‖C(J) + Lb

)
+ ( + MA)

αMA

�(α + )

(
 – τ

α – τ

)–τ

Tα–τ‖Lf ‖L

τ (J)

< .

Then there exists a unique PC-mild solution of problem ().
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Theorem . Let H(f), H(I), H(g), H(Ig), and H(b) hold. Assume that

MA
(
Lb + LI + ‖Lg‖C(J)

)
<  ()

and there exists a constant r >  such that

MA
[
ϕI(r) + ‖mg‖C(J)ϕg(r) + ϕb(r) + ‖x‖

]

+( + MA)
αMAϕf (r)
�(α + )

(
 – τ

α – τ

)–τ

Tα–τ‖mf ‖L

τ (J)

≤ r. ()

Then there exists a PC-mild solution of problem ().

5 Examples
A simple example is given in this section to illustrate the results.

Let X = L([,π ]). Define an operator A : D(A) ⊆ X → X by Ax = x′′ with D(A) = {x ∈
X : x′′ ∈ X, x() = x(π ) = }. It is well known that A is the infinitesimal generator of a
strongly continuous semigroup {T(t) : t ≥ } in X. Moreover, T(t) is compact for t > 
and ‖T(t)‖L(X) ≤ e–t ≤  = MA, t ≥ .

Consider the following impulsive problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cD


t u(t, y) = ∂

∂y u(t, y) + f (t, u(t, y)), t ∈ [, 
 ] ∪ ( 

 , ], y ∈ [,π ],
u(t, y) = I(u(t 


, y)) + g(t, u(t, y)), t ∈ ( 

 , 
 ], y ∈ [,π ],

u(t, y) = u(y), y ∈ [,π ],
u(t, ) = u(t,π ) = , t ∈ [, ].

()

Here cD


t means that the Caputo fractional derivative is taken for the time variable t with

the lower limit zero.

Assumption  Let

f
(
t, u(t, y)

)
=

cos t
(t + )

(
u(t, y) + arctan u(t, y)

)
,

I
(
u(t, y)

)
=

|u(t, y)|
 + |u(t, y)| , g

(
t, u(t, y)

)
=




sin u(t, y) + et .

Define x(t)(y) = u(t, y), (t, y) ∈ [, ] × [,π ]. Then f , I , and g can be rewritten as

f
(
t, x(t)

)
=

cos t
(t + )

(
x(t) + arctan x(t)

)
,

I
(
x(t)

)
=

|x(t)|
 + |x(t)| , g

(
t, x(t)

)
=




sin x(t) + et .

We can verify that H(f ), H(I), and H(g) hold by putting Lf (t) =  cos t
(t+) , LI = 

 , and Lg(t) ≡ 
 .

Moreover, since α = 
 , let τ = 

 , we have

MA
(
LI + ‖Lg‖C(J)

)
+ ( + MA)

αMA

�(α + )

(
 – τ

α – τ

)–τ

Tα–τ‖Lf ‖L

τ (J)

≤ 


+



+  × . × . × 


= . < .
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Therefore by Theorem ., we deduce that problem () has a unique PC-mild solution
on [, ].

Assumption  Let

f
(
t, u(t, y)

)
= e–|u(t,y)| + t + sin t +

u(t, y)
 + u(t, y)

,

I
(
u(t, y)

)
=

|u(t, y)|
 + |u(t, y)| + t, g

(
t, u(t, y)

)
=




arctan u(t, y) + .

Similarly, the functions f , I , and g can be rewritten as

f
(
t, x(t)

)
= e–|x(t)| + t + sin t +

x(t)
 + x(t)

,

I
(
x(t)

)
=

|x(t)|
 + |x(t)| + t, g

(
t, x(t)

)
=




arctan x(t) + .

Put mf (t) ≡ , ϕf (‖x‖) ≡ 
√

π , ϕI(‖x‖) ≡ 

√

π , mg(t) ≡ , ϕg(‖x‖) ≡ ( π
 + )

√
π , LI = 

 ,
and Lg(t) ≡ 

 , then it is easy to show that H(f ), H(I), H(g), and H(Ig) hold. We have

MA
(
LI + ‖Lg‖C(J)

)
=




< .

In such a case, obviously, we can choose a constant r >  such that condition () holds.
Therefore it follows from Theorem . that problem () has a PC-mild solution.
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