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Abstract
Recently, some identities of degenerate Euler polynomials arising from p-adic
fermionic integrals on Zp were introduced in Kim and Kim (Integral Transforms Spec.
Funct. 26(4):295-302, 2015). In this paper, we study degenerate q-Euler polynomials
which are derived from p-adic q-integrals on Zp.
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1 Introduction
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
algebraic closure of Qp, respectively. Let νp be the normalized exponential valuation in Cp

with |p|p = p–νp(p) = 
p .

Let q be an indeterminate in Cp such that | – q|p < p– 
p– . The q-extension of x is defined

as [x]q = –qx

–q . Note that limq→[x]q = x. For f ∈ C(Zp) = {f |, f is a Cp-valued continuous
function on Zp}, the fermionic p-adic q-integral on Zp is defined by Kim to be

I–q(f ) =
∫
Zp

f (x) dμ–q(x) = lim
N→∞


[pN ]–q

pN –∑
x=

f (x)(–q)x (see [, ]), (.)

where [x]–q = –(–q)x

+q .
By (.), we easily get

qI–q(f) + I–q(f ) = []qf ()
(
f(x) = f (x + )

)
, (.)

and

qnI–q(fn) + (–)n–I–q(f ) = []q

n–∑
l=

(–)n––lqlf (l) (n ∈N), (.)

where fn(x) = f (x + n) (see [–]).
The ordinary fermionic p-adic integral on Zp is defined as

lim
q→

I–q(f ) = I–(f ) =
∫
Zp

f (x) dμ–(x) = lim
N→∞

pN –∑
x=

f (x)(–)x (see []). (.)
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The degenerate Euler polynomials of order r (∈N) are defined by the generating function
to be

(


( + λt) 
λ + 

)r

( + λt)
x
λ =

∞∑
n=

E (r)
n (x | λ)

tn

n!
(see [, , ]), (.)

where λ, t ∈ Zp such that |λt|p < p– 
p– .

From (.), we have

∞∑
n=

lim
λ→

E (r)
n (x | λ)

tn

n!

= lim
λ→

(


( + λt)

λ + 

)r

( + λt)
x
λ

=
(


et + 

)r

ext

=
∞∑

n=

E(r)
n (x)

tn

n!
, (.)

where E(r)
n (x) are the higher-order Euler polynomials.

Thus, by (.), we get

lim
λ→

E (r)
n (x | λ) = E(r)

n (x) (n ≥ ). (.)

When x = , E (r)
n (λ) = E (r)

n ( | λ) are called the higher-order degenerate Euler numbers,
while limλ→ E (r)

n (λ) = E(r)
n are called the higher-order Euler numbers.

In [], it was shown that

E (r)
n (x | λ) =

∫
Zp

· · ·
∫
Zp

(x + x + · · · + xr + x | λ)n dμ–(x) · · · dμ–(xr), (.)

where (x)n = x(x – ) · · · (x – n + ) and n ∈ Z≥.
In this paper, we study q-extensions of the degenerate Euler polynomials and give some

formulae and identities of those polynomials which are derived from the fermionic p-adic
q-integrals on Zp.

2 Some identities of q-analogues of higher-order degenerate Euler
polynomials

In this section, we assume that λ, t ∈ Zp with |λt|p < p– 
p– . From (.), we have

∫
Zp

· · ·
∫
Zp

( + λt)(x+···+xr+x)/λ dμ–q(x) · · · dμ–q(xr)

=
(

[]q

q( + λt)/λ + 

)r

( + λt)
x
λ . (.)
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Now, we define a q-analogue of degenerate Euler polynomials of order r as follows:

(
[]q

q( + λt)/λ + 

)r

( + λt)
x
λ =

∞∑
n=

E (r)
n,q(x | λ)

tn

n!
. (.)

Thus, by (.), we easily get

∞∑
n=

lim
λ→

E (r)
n,q(x | λ)

tn

n!

= lim
λ→

(
[]q

q( + λt)/λ + 

)r

( + λt)
x
λ

=
(

[]q

qet + 

)r

ext

=
∞∑

n=

E(r)
n,q(x)

tn

n!
, (.)

where E(r)
n,q(x) are called the higher-order q-Euler polynomials (see [–]). Thus, by (.),

we get

lim
λ→

E (r)
n,q(x | λ) = E(r)

n,q(x) (n ≥ ).

For λ ∈ Cp with λ �= , the Frobenius-Euler polynomials of order r are defined by the
generating function to be

(
 – λ

et – λ

)r

ext =
∞∑

n=

H (r)
n (x | λ)

tn

n!
(see [, ]). (.)

By replacing λ by –q–, we get

(
 + q–

et + q–

)r

ext =
∞∑

n=

H (r)
n

(
x | –q–) tn

n!
. (.)

Now, we define the degenerate Frobenius-Euler polynomials of order r as follows:

(
 – u

( + λt)

λ – u

)r

( + λt)
x
λ =

∞∑
n=

h(r)
n (x, u | λ)

tn

n!
. (.)

From (.), we note that

∞∑
n=

lim
λ→

h(r)
n (x, u | λ)

tn

n!
= lim

λ→

(
 – u

( + λt)

λ – u

)r

( + λt)
x
λ

=
(

 – u
et – u

)r

ext =
∞∑

n=

Hn(x | u)
tn

n!
. (.)
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Thus, by (.), we get

lim
λ→

h(r)
n (x, u | λ) = Hn(x | u) (n ≥ ).

By (.) and (.), we get

E (r)
n,q(x | λ) = h(r)

n
(
x, –q– | λ)

(n ≥ ). (.)

From (.) and (.), we have

∞∑
n=

∫
Zp

· · ·
∫
Zp

(
x + · · · + xr + x

λ

)
n

dμ–q(x) · · · dμ–q(xr)
λntn

n!

=
∞∑

n=

E (r)
n,q(x | λ)

tn

n!
. (.)

Now, we define

(x | λ)n = x(x – λ) · · · (x – (n – )λ
)

(n > ), (.)

(x | λ) = .

By (.) and (.), we get
∫
Zp

· · ·
∫
Zp

(x + x + · · · + xr | λ)n dμ–q(x) · · · dμ–q(xr) = E (r)
n,q(x | λ) (u ≥ ). (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

E (r)
n,q(x | λ) =

∫
Zp

· · ·
∫
Zp

(x + · · · + xr + x | λ)n dμ–q(x) · · · dμ–q(xr)

= h(r)
n

(
x, –q– | λ)

(n ≥ ),

where h(r)
n (x, u | λ) are called the degenerate Frobenius-Euler polynomials of order r.

It is not difficult to show that

(x + · · · + xr + x | λ)n

= (x + · · · + xr + x)(x + · · · + xr + x – λ) · · · (x + · · · + xr + x – (n – )λ
)

= λn
(

x + · · · + xr + x
λ

)
n

= λn
n∑

l=

S(n, l)
(

x + · · · + xr + x
λ

)l

=
n∑

l=

λn–lS(n, l)(x + · · · + xr + x)l, (.)

where S(n, l) is the Stirling number of the first kind.
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We observe that

∫
Zp

· · ·
∫
Zp

e(x+···+xr+x)t dμ–q(x) · · · dμ–q(xr) =
(

[]q

qet + 

)r

ext . (.)

Thus, by (.), we get

∞∑
n=

∫
Zp

· · ·
∫
Zp

(x + · · · + xr + x)n dμ–q(x) · · · dμ–q(xr)
tn

n!

=
(

[]q

qet + 

)r

ext =
∞∑

n=

E(r)
n,q(x)

tn

n!
. (.)

By comparing the coefficients on both sides of (.), we get

E(r)
n,q(x) =

∫
Zp

· · ·
∫
Zp

(x + · · · + xr + x)n dμ–q(x) · · · dμ–q(xr). (.)

From Theorem ., (.) and (.), we note that

h(r)
n

(
x, –q– | λ)

=
∫
Zp

· · ·
∫
Zp

(x + · · · + xr + x | λ)n dμ–q(x) · · · dμ–q(xr)

=
n∑

l=

λn–lS(n, l)
∫
Zp

· · ·
∫
Zp

(x + · · · + xr + x)l dμ–q(x) · · · dμ–q(xr)

=
n∑

l=

λn–lS(n, l)E(r)
l,q(x)

=
n∑

l=

λn–lS(n, l)H (r)
l

(
x | –q–). (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n ≥ , we have

h(r)
n

(
x, –q– | λ)

=
n∑

l=

λn–lS(n, l)H (r)
l

(
x | –q–).

In particular,

E (r)
n,q(x | λ) =

n∑
l=

λn–lS(n, l)E(r)
l,q(x).

By replacing t by (eλt – )/λ in (.), we get

(
[]q

qet + 

)r

ext

=
∞∑

n=

E (r)
n,q(x | λ)


n!


λn

(
eλt – 

)n
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=
∞∑

n=

E (r)
n,q(x | λ)


λn

∞∑
m=n

S(m, n)
λm

m!
tm

=
∞∑

m=

( m∑
n=

E (r)
n,q(x | λ)λm–nS(m, n)

)
tm

m!
, (.)

where S(m, n) is the Stirling number of the second kind.
Thus, by (.), we obtain the following theorem.

Theorem . For m ≥ , we have

H (r)
m

(
x | –q–) =

m∑
n=

h(r)
n

(
x, –q– | λ)

λm–nS(m, n).

In particular,

E(r)
m,q(x) =

m∑
n=

E (r)
n,q(x | λ)λm–nS(m, n).

When r = , En,q(x | λ) = E ()
n,q(x | λ) are called the degenerate q-Euler polynomials. In

particular, x = , En,q(λ) = En,q( | λ) are called the degenerate q-Euler numbers. hn(x, u |
λ) = h()

n (x, u | λ) are called the degenerate Frobenius-Euler polynomials. When x = ,
hn(u | λ) = hn(, u | λ) are called the degenerate Frobenius-Euler numbers.

From (.), we have

∫
Zp

( + λt)
x+x

λ dμ–q(x)

=
(

[]q

q( + λt) 
λ + 

)
( + λt)

x
λ

=
(

 + q–

( + λt) 
λ + q–

)
( + λt)

x
λ

=
∞∑

n=

hn
(
x, –q– | λ) tn

n!
. (.)

Thus, by (.), we get

hn
(
x, –q– | λ)

=
∫
Zp

(x + x | λ)n dμ–q(x)

= λn
∫
Zp

(
x + x

λ

)
n

dμ–q(x)

=
n∑

l=

S(n, l)λn–l
∫
Zp

(x + x)l dμ–q(x)

=
n∑

l=

S(n, l)λn–lHl
(
x | –q–) (.)
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and

hn
(
–q– | λ)

=
∫
Zp

(x | λ)n dμ–q(x)

= λn
∫
Zp

(
x

λ

)
n

dμ–q(x)

=
n∑

l=

S(n, l)λn–lHl
(
–q–). (.)

For d ∈N, by (.), we get

qd
∫
Zp

(x + d | λ)n dμ–q(x) + (–)d–
∫
Zp

(x | λ)n dμ–q(x)

= []q

d–∑
l=

(–)d––lql(l | λ)n. (.)

Let d ≡  (mod ). Then we have

[]q

d–∑
l=

(–)lql(l | λ)n = qdhn
(
d, –q– | λ)

+ hn
(
–q– | λ)

. (.)

For d ∈N with d ≡  (mod ), we get

[]q

d–∑
l=

(–)l–ql(l | λ)n = qdhn
(
d, –q– | λ)

– hn
(
–q– | λ)

. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . Let d ∈N and n ≥ .
(i) For d ≡  (mod ), we have

qdhn
(
d, –q– | λ)

+ hn
(
–q– | λ)

= []q

d–∑
l=

(–)lql(l | λ)n.

(ii) For d ≡  (mod ), we have

qdhn
(
d, –q– | λ)

– hn
(
–q– | λ)

= []q

d–∑
l=

(–)l–ql(l | λ)n.

Corollary . Let d ∈N and n ≥ .
(i) For d ≡  (mod ), we have

qdEn,q(d | λ) + En,q(λ) = []q

d–∑
l=

(–)lql(l | λ)n.
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(ii) For d ≡  (mod ), we have

qdEn,q(d | λ) – En,q(λ) = []q

d–∑
l=

(–)l–ql(l | λ)n.

From (.), we note that

∫
Zp

f (x) dμ–q(x) =
[]q

[]qd

d–∑
l=

(–q)a
∫
Zp

f (a + dx) dμ–qd (x), (.)

where d ∈N with d ≡  (mod ).
By (.), we get

∫
Zp

(x | λ)n dμ–q(x)

=
[]q

[]qd

d–∑
a=

(–q)a
∫
Zp

(a + dx | λ)n dμ–qd (x)

=
[]q

[]qd
dn

d–∑
a=

(–q)a
∫
Zp

(
a
d

+ x

∣∣∣ λ

d

)
n

dμ–qd (x)

= dn []q

[]qd

d–∑
a=

(–q)aEn,qd

(
a
d

∣∣∣ λ

d

)
, (.)

where d ∈N with d ≡  (mod ) and n ≥ .
Therefore, by (.), we obtain the following theorem.

Theorem . For n ≥ , d ∈N with d ≡  (mod ), we have

En,q(λ) = dn []q

[]qd

d–∑
a=

(–q)aEn,qd

(
a
d

∣∣∣ λ

d

)
.

Moreover,

En,q(x | λ) = dn []q

[]qd

d–∑
a=

(–q)aEn,qd

(
a + x

d

∣∣∣ λ

d

)
.

Now, we consider the degenerate q-Euler polynomials of the second kind as follows:

Ên,q(x | λ) =
∫
Zp

(
–(x + x) | λ)

n dμ–q(x) (n ≥ ). (.)

From (.), we note that

∞∑
n=

Ên,q(x | λ)
tn

n!

=
∞∑

n=

λn
∫
Zp

(
– x+x

λ

n

)
dμ–q(x)tn
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= ( + λt)–x/λ
∫
Zp

( + λt)–x/λ dμ–q(x)

=
[]q

( + λt)/λ + q
( + λt)(–x)/λ. (.)

When x = , Ên,q(λ) = Ên,q( | λ) are called the degenerate q-Euler numbers of the second
kind.

By (.), we get

Ên,q(x | λ)

= λn
∫
Zp

(
–

x + x
λ

)
n

dμ–q(x)

= λn
n∑

l=

S(n, l)
(–)l

λl

∫
Zp

(x + x)l dμ–q(x)

=
n∑

l=

S(n, l)λn–l(–)lEl,q(x). (.)

Thus, from (.), we have

(–)nÊn,q(x | λ)

=
n∑

l=

(–)n–lS(n, l)λn–lEl,q(x)

=
n∑

l=

∣∣S(n, l)
∣∣λn–lEl,q(x). (.)

We observe that

∞∑
n=

En,q– ( – x)
tn

n!

=
 + q–

q–et + 
e(–x)t =

 + q
qe–t + 

e–xt

=
[]q

qe–t + 
e–xt =

∞∑
n=

(–)nEn,q(x)
tn

n!
. (.)

From (.), we have

En,q– ( – x) = (–)nEn,q(x) (n ≥ ). (.)

By replacing t by eλt–
λ

in (.), we get

∞∑
n=

Ên,q(x | λ)

n!


λn

(
eλt – 

)n

=
 + q
et + q

e(–x)t
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=
[]q–

q–et + 
e(–x)t

=
∞∑

n=

En,q– ( – x)
tn

n!
. (.)

On the other hand, we have

∞∑
m=

Êm,q(x | λ)


m!


λm

(
eλt – 

)m

=
∞∑

m=

Êm,q(x | λ)


λm

∞∑
n=m

S(n, m)
λntn

n!

=
∞∑

n=

( n∑
m=

Êm,q(x | λ)S(m, n)λn–m

)
tn

n!
. (.)

From (.) and (.), we note that

(–)nEn,q– (x) =
n∑

m=

Êm,q(x | λ)S(n, m)λn–m. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

(–)nÊn,q(x | λ) =
n∑

l=

∣∣S(n, l)
∣∣λn–lEl,q(x)

and

(–)nEn,q– (x) =
n∑

l=

S(n, l)λn–lÊl,q(x | λ).

It is easy to show that

(
x + y

n

)
=

n∑
l=

(
x
l

)(
y

n – l

)
(n ≥ ). (.)

From (.), we have

(–)nEn,q(λ)
n!

=
(–)n

n!

∫
Zp

(x | λ)n dμ–q(x)

= λn
∫
Zp

(
– x

λ
+ n – 
n

)
dμ–q(x)

= λn
n∑

l=

(
n – 
n – l

)∫
Zp

(
– x

λ

l

)
dμ–q(x)
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= λn
n∑

l=

(
n – 
l – 

)


λll!

∫
Zp

(–x | λ)l dμ–q(x)

=
n∑

l=

(
n – 
l – 

)
λn–l 

l!
Êl,q(λ) (.)

and

(–)n

n!
Ên,q(λ) =

n∑
l=

(
n – 
l – 

)
λn–l 

l!
El,q(λ). (.)
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