Degenerate q-Euler polynomials

Taekyun Kim ${ }^{1 *}$, Dae San Kim ${ }^{2}$ and Dmitry V Dolgy ${ }^{3}$

"Correspondence: taekyun64@hotmail.com
${ }^{1}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea Full list of author information is available at the end of the article

Abstract

Recently, some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on \mathbb{Z}_{p} were introduced in Kim and Kim (Integral Transforms Spec. Funct. 26(4):295-302, 2015). In this paper, we study degenerate q-Euler polynomials which are derived from p-adic q-integrals on \mathbb{Z}_{p}.

MSC: 11B68; 11580
Keywords: degenerate Euler polynomials; p-adic q-fermionic integral

1 Introduction

Let p be a fixed odd prime number. Throughout this paper, $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_{p}, respectively. Let v_{p} be the normalized exponential valuation in \mathbb{C}_{p} with $|p|_{p}=p^{-v_{p}(p)}=\frac{1}{p}$.
Let q be an indeterminate in \mathbb{C}_{p} such that $|1-q|_{p}<p^{-\frac{1}{p-1}}$. The q-extension of x is defined as $[x]_{q}=\frac{1-q^{x}}{1-q}$. Note that $\lim _{q \rightarrow 1}[x]_{q}=x$. For $f \in C\left(\mathbb{Z}_{p}\right)=\left\{f \mid, f\right.$ is a \mathbb{C}_{p}-valued continuous function on $\left.\mathbb{Z}_{p}\right\}$, the fermionic p-adic q-integral on \mathbb{Z}_{p} is defined by Kim to be

$$
\begin{equation*}
I_{-q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1} f(x)(-q)^{x} \quad(\text { see }[1,2]), \tag{1.1}
\end{equation*}
$$

where $[x]_{-q}=\frac{1-(-q)^{x}}{1+q}$.
By (1.1), we easily get

$$
\begin{equation*}
q I_{-q}\left(f_{1}\right)+I_{-q}(f)=[2]_{q} f(0) \quad\left(f_{1}(x)=f(x+1)\right), \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{n} I_{-q}\left(f_{n}\right)+(-1)^{n-1} I_{-q}(f)=[2]_{q} \sum_{l=0}^{n-1}(-1)^{n-1-l} q^{l} f(l) \quad(n \in \mathbb{N}), \tag{1.3}
\end{equation*}
$$

where $f_{n}(x)=f(x+n)$ (see [1-16]).
The ordinary fermionic p-adic integral on \mathbb{Z}_{p} is defined as

$$
\begin{equation*}
\lim _{q \rightarrow 1} I_{-q}(f)=I_{-1}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x)(-1)^{x} \quad \text { (see [2]). } \tag{1.4}
\end{equation*}
$$

© 2015 Kim et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

The degenerate Euler polynomials of order $r(\in \mathbb{N})$ are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{2}{(1+\lambda t)^{\frac{1}{\lambda}}+1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty} \mathcal{E}_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} \quad(\text { see }[5,6,10]) \tag{1.5}
\end{equation*}
$$

where $\lambda, t \in \mathbb{Z}_{p}$ such that $|\lambda t|_{p}<p^{-\frac{1}{p-1}}$.
From (1.5), we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \lim _{\lambda \rightarrow 0} \mathcal{E}_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} \\
& \quad=\lim _{\lambda \rightarrow 0}\left(\frac{2}{(1+\lambda t)^{\frac{1}{\lambda}}+1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}} \\
& \quad=\left(\frac{2}{e^{t}+1}\right)^{r} e^{x t} \\
& \quad=\sum_{n=0}^{\infty} E_{n}^{(r)}(x) \frac{t^{n}}{n!} \tag{1.6}
\end{align*}
$$

where $E_{n}^{(r)}(x)$ are the higher-order Euler polynomials.
Thus, by (1.6), we get

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \mathcal{E}_{n}^{(r)}(x \mid \lambda)=E_{n}^{(r)}(x) \quad(n \geq 0) \tag{1.7}
\end{equation*}
$$

When $x=0, \mathcal{E}_{n}^{(r)}(\lambda)=\mathcal{E}_{n}^{(r)}(0 \mid \lambda)$ are called the higher-order degenerate Euler numbers, while $\lim _{\lambda \rightarrow 0} \mathcal{E}_{n}^{(r)}(\lambda)=E_{n}^{(r)}$ are called the higher-order Euler numbers.

In [10], it was shown that

$$
\begin{equation*}
\mathcal{E}_{n}^{(r)}(x \mid \lambda)=\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+x_{2}+\cdots+x_{r}+x \mid \lambda\right)_{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \tag{1.8}
\end{equation*}
$$

where $(x)_{n}=x(x-1) \cdots(x-n+1)$ and $n \in \mathbb{Z}_{\geq 0}$.
In this paper, we study q-extensions of the degenerate Euler polynomials and give some formulae and identities of those polynomials which are derived from the fermionic p-adic q-integrals on \mathbb{Z}_{p}.

2 Some identities of q-analogues of higher-order degenerate Euler polynomials

In this section, we assume that $\lambda, t \in \mathbb{Z}_{p}$ with $|\lambda t|_{p}<p^{-\frac{1}{p-1}}$. From (1.2), we have

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}(1+\lambda t)^{\left(x_{1}+\cdots+x_{r}+x\right) / \lambda} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) \\
& \quad=\left(\frac{[2]_{q}}{q(1+\lambda t)^{1 / \lambda}+1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}} . \tag{2.1}
\end{align*}
$$

Now, we define a q-analogue of degenerate Euler polynomials of order r as follows:

$$
\begin{equation*}
\left(\frac{[2]_{q}}{q(1+\lambda t)^{1 / \lambda}+1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} . \tag{2.2}
\end{equation*}
$$

Thus, by (2.2), we easily get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \lim _{\lambda \rightarrow 0} \mathcal{E}_{n, q}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} \\
& \quad=\lim _{\lambda \rightarrow 0}\left(\frac{[2]_{q}}{q(1+\lambda t)^{1 / \lambda}+1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}} \\
& \quad=\left(\frac{[2]_{q}}{q e^{t}+1}\right)^{r} e^{x t} \\
& \quad=\sum_{n=0}^{\infty} E_{n, q}^{(r)}(x) \frac{t^{n}}{n!} \tag{2.3}
\end{align*}
$$

where $E_{n, q}^{(r)}(x)$ are called the higher-order q-Euler polynomials (see [15-17]). Thus, by (2.3), we get

$$
\lim _{\lambda \rightarrow 0} \mathcal{E}_{n, q}^{(r)}(x \mid \lambda)=E_{n, q}^{(r)}(x) \quad(n \geq 0)
$$

For $\lambda \in \mathbb{C}_{p}$ with $\lambda \neq 1$, the Frobenius-Euler polynomials of order r are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{1-\lambda}{e^{t}-\lambda}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} H_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} \quad(\text { see }[3,18]) \tag{2.4}
\end{equation*}
$$

By replacing λ by $-q^{-1}$, we get

$$
\begin{equation*}
\left(\frac{1+q^{-1}}{e^{t}+q^{-1}}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} H_{n}^{(r)}\left(x \mid-q^{-1}\right) \frac{t^{n}}{n!} \tag{2.5}
\end{equation*}
$$

Now, we define the degenerate Frobenius-Euler polynomials of order r as follows:

$$
\begin{equation*}
\left(\frac{1-u}{(1+\lambda t)^{\frac{1}{\lambda}}-u}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty} h_{n}^{(r)}(x, u \mid \lambda) \frac{t^{n}}{n!} \tag{2.6}
\end{equation*}
$$

From (2.6), we note that

$$
\begin{align*}
\sum_{n=0}^{\infty} \lim _{\lambda \rightarrow 0} h_{n}^{(r)}(x, u \mid \lambda) \frac{t^{n}}{n!} & =\lim _{\lambda \rightarrow 0}\left(\frac{1-u}{(1+\lambda t)^{\frac{1}{\lambda}}-u}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}} \\
& =\left(\frac{1-u}{e^{t}-u}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} H_{n}(x \mid u) \frac{t^{n}}{n!} . \tag{2.7}
\end{align*}
$$

Thus, by (2.7), we get

$$
\lim _{\lambda \rightarrow 0} h_{n}^{(r)}(x, u \mid \lambda)=H_{n}(x \mid u) \quad(n \geq 0)
$$

By (2.2) and (2.6), we get

$$
\begin{equation*}
\mathcal{E}_{n, q}^{(r)}(x \mid \lambda)=h_{n}^{(r)}\left(x,-q^{-1} \mid \lambda\right) \quad(n \geq 0) . \tag{2.8}
\end{equation*}
$$

From (2.1) and (2.2), we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(\frac{x_{1}+\cdots+x_{r}+x}{\lambda}\right)_{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) \frac{\lambda^{n} t^{n}}{n!} \\
& \quad=\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} . \tag{2.9}
\end{align*}
$$

Now, we define

$$
\begin{align*}
& (x \mid \lambda)_{n}=x(x-\lambda) \cdots(x-(n-1) \lambda) \quad(n>0), \tag{2.10}\\
& (x \mid \lambda)_{0}=1 .
\end{align*}
$$

By (2.9) and (2.10), we get

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x+x_{1}+\cdots+x_{r} \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right)=\mathcal{E}_{n, q}^{(r)}(x \mid \lambda) \quad(u \geq 0) \tag{2.11}
\end{equation*}
$$

Therefore, by (2.6) and (2.11), we obtain the following theorem.
Theorem 2.1 For $n \geq 0$, we have

$$
\begin{aligned}
\mathcal{E}_{n, q}^{(r)}(x \mid \lambda) & =\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+\cdots+x_{r}+x \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) \\
& =h_{n}^{(r)}\left(x,-q^{-1} \mid \lambda\right) \quad(n \geq 0),
\end{aligned}
$$

where $h_{n}^{(r)}(x, u \mid \lambda)$ are called the degenerate Frobenius-Euler polynomials of order r.

It is not difficult to show that

$$
\begin{align*}
\left(x_{1}\right. & \left.+\cdots+x_{r}+x \mid \lambda\right)_{n} \\
& =\left(x_{1}+\cdots+x_{r}+x\right)\left(x_{1}+\cdots+x_{r}+x-\lambda\right) \cdots\left(x_{1}+\cdots+x_{r}+x-(n-1) \lambda\right) \\
& =\lambda^{n}\left(\frac{x_{1}+\cdots+x_{r}+x}{\lambda}\right)_{n} \\
& =\lambda^{n} \sum_{l=0}^{n} S_{1}(n, l)\left(\frac{x_{1}+\cdots+x_{r}+x}{\lambda}\right)^{l} \\
& =\sum_{l=0}^{n} \lambda^{n-l} S_{1}(n, l)\left(x_{1}+\cdots+x_{r}+x\right)^{l}, \tag{2.12}
\end{align*}
$$

where $S_{1}(n, l)$ is the Stirling number of the first kind.

We observe that

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+\cdots+x_{r}+x\right) t} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right)=\left(\frac{[2]_{q}}{q e^{t}+1}\right)^{r} e^{x t} . \tag{2.13}
\end{equation*}
$$

Thus, by (2.13), we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+\cdots+x_{r}+x\right)^{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) \frac{t^{n}}{n!} \\
& \quad=\left(\frac{[2]_{q}}{q e^{t}+1}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} E_{n, q}^{(r)}(x) \frac{t^{n}}{n!} . \tag{2.14}
\end{align*}
$$

By comparing the coefficients on both sides of (2.14), we get

$$
\begin{equation*}
E_{n, q}^{(r)}(x)=\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+\cdots+x_{r}+x\right)^{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) . \tag{2.15}
\end{equation*}
$$

From Theorem 2.1, (2.12) and (2.15), we note that

$$
\begin{align*}
h_{n}^{(r)}\left(x,-q^{-1} \mid \lambda\right) & =\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+\cdots+x_{r}+x \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) \\
& =\sum_{l=0}^{n} \lambda^{n-l} S_{1}(n, l) \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+\cdots+x_{r}+x\right)^{l} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{r}\right) \\
& =\sum_{l=0}^{n} \lambda^{n-l} S_{1}(n, l) E_{l, q}^{(r)}(x) \\
& =\sum_{l=0}^{n} \lambda^{n-l} S_{1}(n, l) H_{l}^{(r)}\left(x \mid-q^{-1}\right) . \tag{2.16}
\end{align*}
$$

Therefore, by (2.16), we obtain the following theorem.

Theorem 2.2 For $n \geq 0$, we have

$$
h_{n}^{(r)}\left(x,-q^{-1} \mid \lambda\right)=\sum_{l=0}^{n} \lambda^{n-l} S_{1}(n, l) H_{l}^{(r)}\left(x \mid-q^{-1}\right)
$$

In particular,

$$
\mathcal{E}_{n, q}^{(r)}(x \mid \lambda)=\sum_{l=0}^{n} \lambda^{n-l} S_{1}(n, l) E_{l, q}^{(r)}(x) .
$$

By replacing t by $\left(e^{\lambda t}-1\right) / \lambda$ in (2.2), we get

$$
\begin{aligned}
& \left(\frac{[2]_{q}}{q e^{t}+1}\right)^{r} e^{x t} \\
& \quad=\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{(r)}(x \mid \lambda) \frac{1}{n!} \frac{1}{\lambda^{n}}\left(e^{\lambda t}-1\right)^{n}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{(r)}(x \mid \lambda) \frac{1}{\lambda^{n}} \sum_{m=n}^{\infty} S_{2}(m, n) \frac{\lambda^{m}}{m!} t^{m} \\
& =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} \mathcal{E}_{n, q}^{(r)}(x \mid \lambda) \lambda^{m-n} S_{2}(m, n)\right) \frac{t^{m}}{m!} \tag{2.17}
\end{align*}
$$

where $S_{2}(m, n)$ is the Stirling number of the second kind.
Thus, by (2.17), we obtain the following theorem.

Theorem 2.3 For $m \geq 0$, we have

$$
H_{m}^{(r)}\left(x \mid-q^{-1}\right)=\sum_{n=0}^{m} h_{n}^{(r)}\left(x,-q^{-1} \mid \lambda\right) \lambda^{m-n} S_{2}(m, n)
$$

In particular,

$$
E_{m, q}^{(r)}(x)=\sum_{n=0}^{m} \mathcal{E}_{n, q}^{(r)}(x \mid \lambda) \lambda^{m-n} S_{2}(m, n)
$$

When $r=1, \mathcal{E}_{n, q}(x \mid \lambda)=\mathcal{E}_{n, q}^{(1)}(x \mid \lambda)$ are called the degenerate q-Euler polynomials. In particular, $x=0, \mathcal{E}_{n, q}(\lambda)=\mathcal{E}_{n, q}(0 \mid \lambda)$ are called the degenerate q-Euler numbers. $h_{n}(x, u \mid$ $\lambda)=h_{n}^{(1)}(x, u \mid \lambda)$ are called the degenerate Frobenius-Euler polynomials. When $x=0$, $h_{n}(u \mid \lambda)=h_{n}(0, u \mid \lambda)$ are called the degenerate Frobenius-Euler numbers.

From (1.2), we have

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} & (1+\lambda t)^{\frac{x_{1}+x}{\lambda}} d \mu_{-q}\left(x_{1}\right) \\
& =\left(\frac{[2]_{q}}{q(1+\lambda t)^{\frac{1}{\lambda}}+1}\right)(1+\lambda t)^{\frac{x}{\lambda}} \\
& =\left(\frac{1+q^{-1}}{(1+\lambda t)^{\frac{1}{\lambda}}+q^{-1}}\right)(1+\lambda t)^{\frac{x}{\lambda}} \\
& =\sum_{n=0}^{\infty} h_{n}\left(x,-q^{-1} \mid \lambda\right) \frac{t^{n}}{n!} . \tag{2.18}
\end{align*}
$$

Thus, by (2.18), we get

$$
\begin{align*}
h_{n} & \left(x,-q^{-1} \mid \lambda\right) \\
& =\int_{\mathbb{Z}_{p}}\left(x_{1}+x \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right) \\
& =\lambda^{n} \int_{\mathbb{Z}_{p}}\left(\frac{x_{1}+x}{\lambda}\right)_{n} d \mu_{-q}\left(x_{1}\right) \\
& =\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} \int_{\mathbb{Z}_{p}}\left(x_{1}+x\right)^{l} d \mu_{-q}\left(x_{1}\right) \\
& =\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} H_{l}\left(x \mid-q^{-1}\right) \tag{2.19}
\end{align*}
$$

and

$$
\begin{align*}
h_{n} & \left(-q^{-1} \mid \lambda\right) \\
& =\int_{\mathbb{Z}_{p}}\left(x_{1} \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right) \\
& =\lambda^{n} \int_{\mathbb{Z}_{p}}\left(\frac{x_{1}}{\lambda}\right)_{n} d \mu_{-q}\left(x_{1}\right) \\
& =\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} H_{l}\left(-q^{-1}\right) . \tag{2.20}
\end{align*}
$$

For $d \in \mathbb{N}$, by (1.3), we get

$$
\begin{align*}
& q^{d} \int_{\mathbb{Z}_{p}}\left(x_{1}+d \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right)+(-1)^{d-1} \int_{\mathbb{Z}_{p}}\left(x_{1} \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right) \\
& \quad=[2]_{q} \sum_{l=0}^{d-1}(-1)^{d-1-l} q^{l}(l \mid \lambda)_{n} . \tag{2.21}
\end{align*}
$$

Let $d \equiv 1(\bmod 2)$. Then we have

$$
\begin{equation*}
[2]_{q} \sum_{l=0}^{d-1}(-1)^{l} q^{l}(l \mid \lambda)_{n}=q^{d} h_{n}\left(d,-q^{-1} \mid \lambda\right)+h_{n}\left(-q^{-1} \mid \lambda\right) . \tag{2.22}
\end{equation*}
$$

For $d \in \mathbb{N}$ with $d \equiv 0(\bmod 2)$, we get

$$
\begin{equation*}
[2]_{q} \sum_{l=0}^{d-1}(-1)^{l-1} q^{l}(l \mid \lambda)_{n}=q^{d} h_{n}\left(d,-q^{-1} \mid \lambda\right)-h_{n}\left(-q^{-1} \mid \lambda\right) . \tag{2.23}
\end{equation*}
$$

Therefore, by (2.22) and (2.23), we obtain the following theorem.

Theorem 2.4 Let $d \in \mathbb{N}$ and $n \geq 0$.
(i) For $d \equiv 1(\bmod 2)$, we have

$$
q^{d} h_{n}\left(d,-q^{-1} \mid \lambda\right)+h_{n}\left(-q^{-1} \mid \lambda\right)=[2]_{q} \sum_{l=0}^{d-1}(-1)^{l} q^{l}(l \mid \lambda)_{n} .
$$

(ii) For $d \equiv 0(\bmod 2)$, we have

$$
q^{d} h_{n}\left(d,-q^{-1} \mid \lambda\right)-h_{n}\left(-q^{-1} \mid \lambda\right)=[2]_{q} \sum_{l=0}^{d-1}(-1)^{l-1} q^{l}(l \mid \lambda)_{n} .
$$

Corollary 2.5 Let $d \in \mathbb{N}$ and $n \geq 0$.
(i) For $d \equiv 1(\bmod 2)$, we have

$$
q^{d} E_{n, q}(d \mid \lambda)+E_{n, q}(\lambda)=[2]_{q} \sum_{l=0}^{d-1}(-1)^{l} q^{l}(l \mid \lambda)_{n} .
$$

(ii) For $d \equiv 0(\bmod 2)$, we have

$$
q^{d} E_{n, q}(d \mid \lambda)-E_{n, q}(\lambda)=[2]_{q} \sum_{l=0}^{d-1}(-1)^{l-1} q^{l}(l \mid \lambda)_{n} .
$$

From (1.1), we note that

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)=\frac{[2]_{q}}{[2]_{q^{d}}} \sum_{l=0}^{d-1}(-q)^{a} \int_{\mathbb{Z}_{p}} f(a+d x) d \mu_{-q^{d}}(x), \tag{2.24}
\end{equation*}
$$

where $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$.
By (2.24), we get

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}}\left(x_{1} \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right) \\
& \quad=\frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1}(-q)^{a} \int_{\mathbb{Z}_{p}}\left(a+d x_{1} \mid \lambda\right)_{n} d \mu_{-q^{d}}\left(x_{1}\right) \\
& \quad=\frac{[2]_{q}}{[2]_{q^{d}}} d^{n} \sum_{a=0}^{d-1}(-q)^{a} \int_{\mathbb{Z}_{p}}\left(\left.\frac{a}{d}+x_{1} \right\rvert\, \frac{\lambda}{d}\right)_{n} d \mu_{-q^{d}}\left(x_{1}\right) \\
& \quad=d^{n} \frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1}(-q)^{a} \mathcal{E}_{n, q^{d}}\left(\frac{a}{d} \left\lvert\, \frac{\lambda}{d}\right.\right), \tag{2.25}
\end{align*}
$$

where $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$ and $n \geq 0$.
Therefore, by (2.25), we obtain the following theorem.
Theorem 2.6 For $n \geq 0, d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we have

$$
\mathcal{E}_{n, q}(\lambda)=d^{n} \frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1}(-q)^{a} \mathcal{E}_{n, q^{d}}\left(\frac{a}{d} \left\lvert\, \frac{\lambda}{d}\right.\right) .
$$

Moreover,

$$
\mathcal{E}_{n, q}(x \mid \lambda)=d^{n} \frac{[2]_{q}}{[2]_{q^{d}}} \sum_{a=0}^{d-1}(-q)^{a} \mathcal{E}_{n, q^{d}}\left(\frac{a+x}{d} \left\lvert\, \frac{\lambda}{d}\right.\right) .
$$

Now, we consider the degenerate q-Euler polynomials of the second kind as follows:

$$
\begin{equation*}
\widehat{\mathcal{E}}_{n, q}(x \mid \lambda)=\int_{\mathbb{Z}_{p}}\left(-\left(x_{1}+x\right) \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right) \quad(n \geq 0) \tag{2.26}
\end{equation*}
$$

From (2.26), we note that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \hat{\mathcal{E}}_{n, q}(x \mid \lambda) \frac{t^{n}}{n!} \\
& \quad=\sum_{n=0}^{\infty} \lambda^{n} \int_{\mathbb{Z}_{p}}\binom{-\frac{x_{1}+x}{\lambda}}{n} d \mu_{-q}\left(x_{1}\right) t^{n}
\end{aligned}
$$

$$
\begin{align*}
& =(1+\lambda t)^{-x / \lambda} \int_{\mathbb{Z}_{p}}(1+\lambda t)^{-x_{1} / \lambda} d \mu_{-q}\left(x_{1}\right) \\
& =\frac{[2]_{q}}{(1+\lambda t)^{1 / \lambda}+q}(1+\lambda t)^{(1-x) / \lambda} . \tag{2.27}
\end{align*}
$$

When $x=0, \hat{\mathcal{E}}_{n, q}(\lambda)=\hat{\mathcal{E}}_{n, q}(0 \mid \lambda)$ are called the degenerate q-Euler numbers of the second kind.

By (2.26), we get

$$
\begin{align*}
& \hat{\mathcal{E}}_{n, q}(x \mid \lambda) \\
& \quad=\lambda^{n} \int_{\mathbb{Z}_{p}}\left(-\frac{x_{1}+x}{\lambda}\right)_{n} d \mu_{-q}(x) \\
& \quad=\lambda^{n} \sum_{l=0}^{n} S_{1}(n, l) \frac{(-1)^{l}}{\lambda^{l}} \int_{\mathbb{Z}_{p}}\left(x_{1}+x\right)^{l} d \mu_{-q}(x) \\
& \quad=\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l}(-1)^{l} E_{l, q}(x) . \tag{2.28}
\end{align*}
$$

Thus, from (2.28), we have

$$
\begin{align*}
& (-1)^{n} \hat{\mathcal{E}}_{n, q}(x \mid \lambda) \\
& \quad=\sum_{l=0}^{n}(-1)^{n-l} S_{1}(n, l) \lambda^{n-l} E_{l, q}(x) \\
& \quad=\sum_{l=0}^{n}\left|S_{1}(n, l)\right| \lambda^{n-l} E_{l, q}(x) . \tag{2.29}
\end{align*}
$$

We observe that

$$
\begin{align*}
& \sum_{n=0}^{\infty} E_{n, q^{-1}}(1-x) \frac{t^{n}}{n!} \\
& \quad=\frac{1+q^{-1}}{q^{-1} e^{t}+1} e^{(1-x) t}=\frac{1+q}{q e^{-t}+1} e^{-x t} \\
& \quad=\frac{[2]_{q}}{q e^{-t}+1} e^{-x t}=\sum_{n=0}^{\infty}(-1)^{n} E_{n, q}(x) \frac{t^{n}}{n!} . \tag{2.30}
\end{align*}
$$

From (2.30), we have

$$
\begin{equation*}
E_{n, q^{-1}}(1-x)=(-1)^{n} E_{n, q}(x) \quad(n \geq 0) \tag{2.31}
\end{equation*}
$$

By replacing t by $\frac{e^{\lambda t}-1}{\lambda}$ in (2.27), we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \hat{\mathcal{E}}_{n, q}(x \mid \lambda) \frac{1}{n!} \frac{1}{\lambda^{n}}\left(e^{\lambda t}-1\right)^{n} \\
& \quad=\frac{1+q}{e^{t}+q} e^{(1-x) t}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{[2]_{q^{-1}}}{q^{-1} e^{t}+1} e^{(1-x) t} \\
& =\sum_{n=0}^{\infty} E_{n, q^{-1}}(1-x) \frac{t^{n}}{n!} . \tag{2.32}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
& \sum_{m=0}^{\infty} \hat{\mathcal{E}}_{m, q}(x \mid \lambda) \frac{1}{m!} \frac{1}{\lambda^{m}}\left(e^{\lambda t}-1\right)^{m} \\
& \quad=\sum_{m=0}^{\infty} \hat{\mathcal{E}}_{m, q}(x \mid \lambda) \frac{1}{\lambda^{m}} \sum_{n=m}^{\infty} S_{2}(n, m) \frac{\lambda^{n} t^{n}}{n!} \\
& \quad=\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} \hat{\mathcal{E}}_{m, q}(x \mid \lambda) S_{2}(m, n) \lambda^{n-m}\right) \frac{t^{n}}{n!} . \tag{2.33}
\end{align*}
$$

From (2.32) and (2.33), we note that

$$
\begin{equation*}
(-1)^{n} E_{n, q^{-1}}(x)=\sum_{m=0}^{n} \hat{\mathcal{E}}_{m, q}(x \mid \lambda) S_{2}(n, m) \lambda^{n-m} . \tag{2.34}
\end{equation*}
$$

Therefore, by (2.29) and (2.34), we obtain the following theorem.
Theorem 2.7 For $n \geq 0$, we have

$$
(-1)^{n} \hat{\mathcal{E}}_{n, q}(x \mid \lambda)=\sum_{l=0}^{n}\left|S_{1}(n, l)\right| \lambda^{n-l} E_{l, q}(x)
$$

and

$$
(-1)^{n} E_{n, q^{-1}}(x)=\sum_{l=0}^{n} S_{2}(n, l) \lambda^{n-l} \hat{\mathcal{E}}_{l, q}(x \mid \lambda) .
$$

It is easy to show that

$$
\begin{equation*}
\binom{x+y}{n}=\sum_{l=0}^{n}\binom{x}{l}\binom{y}{n-l} \quad(n \geq 0) \tag{2.35}
\end{equation*}
$$

From (2.35), we have

$$
\begin{aligned}
& \frac{(-1)^{n} \mathcal{E}_{n, q}(\lambda)}{n!} \\
& \quad=\frac{(-1)^{n}}{n!} \int_{\mathbb{Z}_{p}}\left(x_{1} \mid \lambda\right)_{n} d \mu_{-q}\left(x_{1}\right) \\
& \quad=\lambda^{n} \int_{\mathbb{Z}_{p}}\binom{-\frac{x_{1}}{\lambda}+n-1}{n} d \mu_{-q}\left(x_{1}\right) \\
& \quad=\lambda^{n} \sum_{l=0}^{n}\binom{n-1}{n-l} \int_{\mathbb{Z}_{p}}\binom{-\frac{x_{1}}{\lambda}}{l} d \mu_{-q}\left(x_{1}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\lambda^{n} \sum_{l=1}^{n}\binom{n-1}{l-1} \frac{1}{\lambda^{l} l!} \int_{\mathbb{Z}_{p}}\left(-x_{1} \mid \lambda\right)_{l} d \mu_{-q}\left(x_{1}\right) \\
& =\sum_{l=1}^{n}\binom{n-1}{l-1} \lambda^{n-l} \frac{1}{l!} \hat{\mathcal{E}}_{l, q}(\lambda) \tag{2.36}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{(-1)^{n}}{n!} \hat{\mathcal{E}}_{n, q}(\lambda)=\sum_{l=1}^{n}\binom{n-1}{l-1} \lambda^{n-l} \frac{1}{l!} \mathcal{E}_{l, q}(\lambda) . \tag{2.37}
\end{equation*}
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details

Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea. ${ }^{2}$ Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea. ${ }^{3}$ Institute of Natural Sciences, Far Eastern Federal University, Vladivostok, 690950, Russia.

Acknowledgements

This paper is supported by Grant No. 14-11-00022 of Russian Scientific Fund.
Received: 5 May 2015 Accepted: 2 July 2015 Published online: 08 August 2015

References

1. Kim, T : Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}. Russ. J. Math. Phys. 16(4), 484-491 (2009)
2. Kim, T: q-Euler numbers and polynomials associated with p-adic q-integrals. J. Nonlinear Math. Phys. 14(1), 15-27 (2007)
3. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 22(3), 399-406 (2012)
4. Cangül, IN, Kurt, V, Simsek, Y, Pak, HK, Rim, S-H: An invariant p-adic q-integral associated with q-Euler numbers and polynomials. J. Nonlinear Math. Phys. 14(1), 8-14 (2007)
5. Carlitz, L: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51-88 (1979)
6. Carlitz, L: A degenerate Staudt-Clausen theorem. Arch. Math. (Basel) 7, 28-33 (1956)
7. He, Y, Zhang, W: A convolution formula for Bernoulli polynomials. Ars Comb. 108, 97-104 (2013)
8. Jeong, J-H, Jin, J-H, Park, J-W, Rim, S-H: On the twisted weak q-Euler numbers and polynomials with weight 0 . Proc. Jangjeon Math. Soc. 16(2), 157-163 (2013)
9. Kim, BM, Jang, L-C: A note on the Von Staudt-Clausen's theorem for the weighted q-Genocchi numbers. Adv. Differ. Equ. 2015, 4 (2015)
10. Kim, DS, Kim, T: Some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on \mathbb{Z}_{p}. Integral Transforms Spec. Funct. 26(4), 295-302 (2015)
11. Kim, DS, Kim, T: A note on Boole polynomials. Integral Transforms Spec. Funct. 25(8), 627-633 (2014)
12. Kim, DS, Kim, T, Dolgy, DV, Komatsu, T: Barnes-type degenerate Bernoulli polynomials. Adv. Stud. Contemp. Math (Kyungshang) 25(1), 121-146 (2015)
13. Zhang, Z, Yang, J: On sums of products of the degenerate Bernoulli numbers. Integral Transforms Spec. Funct. 20(9-10), 751-755 (2009)
14. Luo, Q-M, Qi, F: Relationships between generalized Bernoulli numbers and polynomials and generalized Euler numbers and polynomials. Adv. Stud. Contemp. Math. 7(1), 11-18 (2003)
15. Kim, T : An invariant p-adic q-integral on \mathbb{Z}_{p}. Appl. Math. Lett. 21(2), 105-108 (2008)
16. Ozden, H, Simsek, Y: A new extension of q-Euler numbers and polynomials related to their interpolation functions. Appl. Math. Lett. 21(9), 934-939 (2008)
17. Rim, S-H, Jeong, J: On the modified q-Euler numbers of higher order with weight. Adv. Stud. Contemp. Math. (Kyungshang) 22(1), 93-98 (2012)
18. Sen, E: Theorems on Apostol-Euler polynomials of higher order arising from Euler basis. Adv. Stud. Contemp. Math. (Kyungshang) 23(2), 337-345 (2013)
