
Sudsutad et al. Advances in Difference Equations  (2015) 2015:235 
DOI 10.1186/s13662-015-0566-8

R E S E A R C H Open Access

Systems of fractional Langevin equations
of Riemann-Liouville and Hadamard types
Weerawat Sudsutad1,2, Sotiris K Ntouyas3,4 and Jessada Tariboon1,2*

*Correspondence:
jessada.t@sci.kmutnb.ac.th
1Nonlinear Dynamic Analysis
Research Center, Department of
Mathematics, Faculty of Applied
Science, King Mongkut’s University
of Technology North Bangkok,
Bangkok, 10800, Thailand
2Centre of Excellence in
Mathematics, CHE, Si Ayutthaya Rd.,
Bangkok, 10400, Thailand
Full list of author information is
available at the end of the article

Abstract
Fractional differential equations have been shown to be very useful in the study of
models of many phenomena in various fields of science and engineering, such as
physics, chemistry, biology, signal and image processing, biophysics, blood flow
phenomena, control theory, economics, aerodynamics, and fitting of experimental
data. Much of the work on the topic deals with the governing equations involving
Riemann-Liouville- and Caputo-type fractional derivatives. Another kind of fractional
derivative is the Hadamard type, which was introduced in 1892. This derivative differs
from the aforementioned derivatives in the sense that the kernel of the integral in the
definition of the Hadamard derivative contains a logarithmic function of arbitrary
exponent. In the present paper we introduce a new class of boundary value problems
for Langevin fractional differential systems. The Langevin equation is widely used to
describe the evolution of physical phenomena in fluctuating environments. We
combine Riemann-Liouville- and Hadamard-type Langevin fractional differential
equations subject to Hadamard and Riemann-Liouville fractional integral boundary
conditions, respectively. Some new existence and uniqueness results for coupled and
uncoupled systems are obtained by using fixed point theorems. The existence and
uniqueness of solutions is established by Banach’s contraction mapping principle,
while the existence of solutions is derived by using the Leray-Schauder’s alternative.
The obtained results are well illustrated with the aid of examples.
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1 Introduction
In this paper, we concentrate on the study of existence and uniqueness of solutions for a
coupled systems of Riemann-Liouville and Hadamard fractional derivatives of Langevin
equation with fractional integral conditions of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

RLDq (RLDp + λ)x(t) = f (t, x(t), y(t)), a ≤ t ≤ T ,
HDq (HDp + λ)y(t) = g(t, x(t), y(t)), a ≤ t ≤ T ,
x(a) = , σx(τ) =

∑m
i= αiHIρi y(ηi),

y(a) = , σy(τ) =
∑n

j= βjRLIγj x(ξj),

(.)

where RLDq, HDp are the Riemann-Liouville and Hadamard fractional derivative of orders
q, p, respectively, when q ∈ {q, p}, and p ∈ {q, p} with  < qk , pk < ,  < qk + pk < ,
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λk are given constants, k = , , RLIγj , HIρi are the Riemann-Liouville and Hadamard frac-
tional integral of orders γj,ρi > , respectively, ηi, ξj ∈ (a, T) and αi,βj,σ,σ ∈ R for all
i = , , . . . , m, j = , , . . . , n, τ, τ ∈ (a, T], f , g : [a, T] ×R

 →R are continuous functions.
Fractional differential equations have been shown to be very useful in the study of mod-

els of many phenomena in various fields of science and engineering, such as physics, chem-
istry, biology, signal and image processing, biophysics, blood flow phenomena, control
theory, economics, aerodynamics, and fitting of experimental data. For examples and re-
cent development of the topic, see [–] and references cited therein. Ahmad et al. [–]
have studied the existence and uniqueness of solutions of nonlinear fractional differen-
tial and integro-differential equations for a variety of boundary conditions using standard
fixed point theorems. Agarwal et al. [] discusses the existence of solutions of fractional
neutral functional differential equations. Baleanu et al. [] considered Lp-solutions for
a class of sequential fractional differential equations. In [], the nonlinear alternative
and Vitali convergence theorem were used for studying Caputo fractional boundary value
problems with singularities in space variables. In Zhang et al. [], the fixed point the-
ory and monotone iterative technique were used to prove the existence of a unique solu-
tion for a class of nonlinear fractional integro-differential equations on semi-infinite do-
mains in a Banach space. Liu et al. [] discussed the existence of at least three solutions
of p-Laplacian model involving the Caputo fractional derivative with Dirichlet-Neumann
boundary conditions. However, it has been observed that most of the work on the topic
involves either the Riemann-Liouville- or the Caputo-type fractional derivative.

Besides these derivatives, the Hadamard fractional derivative is another kind of frac-
tional derivatives that was introduced by Hadamard in  []. This fractional deriva-
tive differs from the other ones in the sense that the kernel of the integral (in the definition
of Hadamard derivative) contains logarithmic function of arbitrary exponent. For back-
ground material of Hadamard fractional derivative and integral, we refer to [, –].

It seems that the abstract fractional differential equations involving Hadamard fractional
derivatives and Hilfer-Hadamard fractional derivatives have not been fully explored so
far. The basic information on various classes of abstract fractional equations and abstract
Volterra integro-differential equations the interested reader can be found in [–] and
the references cited therein.

The Langevin equation (first formulated by Langevin in ) is found to be an effective
tool to describe the evolution of physical phenomena in fluctuating environments []. For
some new developments on the fractional Langevin equation in physics; see, for example,
[–]. Lizana et al. [] have studied a single-particle equation of motion starting with
a microscopic description of a tracer particle in a one-dimensional many-particle system
with a general two-body interaction potential and they have shown that the resulting dy-
namical equation belongs to the class of fractional Langevin equations using a harmoniza-
tion technique. In [], Gambo et al. discussed the Caputo modification of the Hadamard
fractional derivative. Ahmad et al. [, ] considered solutions of nonlinear Langevin
equation involving two fractional orders. In [], Tariboon et al. studied the existence and
uniqueness of solutions of the nonlinear Langevin equation of Hadamard-Caputo-type
fractional derivatives with nonlocal fractional integral conditions using a variety of fixed
point theorems.

In this paper we prove the existence and uniqueness of the solutions by using Banach’s
contraction principle, and existence of solutions via Leray-Schauder’s alternative. Exam-
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ples illustrating our results are also presented. The case of uncoupled systems is also dis-
cussed. We emphasize that in this paper we combine Riemann-Liouville- and Hadamard-
type fractional differential equations subject to Hadamard and Riemann-Liouville frac-
tional integral boundary conditions, respectively. To the best of the authors’ knowledge
this is the first paper dealing with systems with such combinations of equations and
boundary conditions.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus and
present preliminary results needed in our proofs later. To distinguish the different cases
of derivatives and integrals we use the notations RLD, RLI , HD, HI to denote Riemann-
Liouville or Hadamard derivative or integral respectively.

Definition . [] The Riemann-Liouville fractional derivative of order q >  of a contin-
uous function f : (a,∞) →R, a > , is defined by

RLDqf (t) =


�(n – q)

(
d
dt

)n ∫ t

a
(t – s)n–q–f (s) ds, n –  < q < n,

where n = [q] + , [q] denotes the integer part of a real number q, provided the right-hand
side is point-wise defined on (a,∞), where � is the gamma function defined by �(q) =
∫ ∞

 e–ssq– ds.

Definition . [] The Riemann-Liouville fractional integral of order q >  of a continu-
ous function f : (a,∞) →R, a > , is defined by

RLIqf (t) =


�(q)

∫ t

a
(t – s)q–f (s) ds,

provided the right-hand side is point-wise defined on (a,∞).

Definition . [] The Hadamard derivative of a measurable fractional order q for a func-
tion f : (a,∞) →R, a > , is defined as

HDqf (t) =


�(n – q)

(

t
d
dt

)n ∫ t

a

(

log
t
s

)n–q– f (s)
s

ds, n –  < q < n, n = [q] + ,

where log(·) = loge(·), provided the (Lebesgue) integral exists and the operator (td/dt)n can
be applied.

Definition . [] The Hadamard fractional integral of order q ∈ R
+ of a function f (t),

for all  < a < t < ∞, is defined as

HIqf (t) =


�(q)

∫ t

a

(

log
t
s

)q–

f (s)
ds
s

,

provided the integral exists.
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Lemma . ([], pp., , ) Let q > , a > , and β > . Then the following properties
hold:

RLIq(t – a)β–(x) =
�(β)

�(β + q)
(x – a)β+q–,

HIq
(

log
t
a

)β–

(x) =
�(β)

�(β + q)

(

log
x
a

)β+q–

,

HIq
HIβ f (x) = HIq+β f (x) semigroup property.

Lemma . [] Let q >  and x ∈ C(a, T)∩L(a, T), a > . Then the fractional differential
equation RLDqx(t) =  has the solutions

x(t) =
n∑

i=

ci(t – a)q–i,

and the following formula holds:

RLIq
RLDqx(t) = x(t) +

n∑

i=

ci(t – a)q–i,

where ci ∈R, i = , , . . . , n, and n –  < q < n.

Lemma . [, ] Let q >  and x ∈ C(a, T) ∩ L(a, T), a > . Then the Hadamard frac-
tional differential equation HDqx(t) =  has the solutions

x(t) =
n∑

i=

ci

(

log
t
a

)q–i

,

and the following formula holds:

HIq
HDqx(t) = x(t) +

n∑

i=

ci

(

log
t
a

)q–i

,

where ci ∈R, i = , , . . . , n, and n –  < q < n.

In the following, for the sake of the convenience, we set

� =
m∑

i=

αi(log ηi
a )q+p+ρi–�(q)

�(q + p + ρi)
, � =

n∑

j=

βj(ξj – a)q+p+γj–�(q)
�(q + p + γj)

,

� =
σ�(q)

�(q + p)

(

log
τ

a

)q+p–

, � =
σ�(q)

�(q + p)
(τ – a)q+p–

and

� = �� – ��.

Lemma . Let � �= ,  < qk , pk < ,  < qk + pk < , k = , , ρi,γj > , αi,βj,σ,σ ∈ R,
ηi, ξj ∈ (a, T), i = , , . . . , m, j = , , . . . , n, τ, τ ∈ (a, T], and φ,ψ ∈ C([a, T],R), a > . Then
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the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

RLDq (RLDp + λ)x(t) = φ(t), a ≤ t ≤ T ,
HDq (HDp + λ)y(t) = ψ(t), a ≤ t ≤ T ,
x(a) = , σx(τ) =

∑m
i= αiHIρi y(ηi),

y(a) = , σy(τ) =
∑n

j= βjRLIγj x(ξj),

(.)

has a solution if and only if the system

x(t) = RLIq+pφ(t) – λRLIp x(t) –
(t – a)q+p–�(q)

��(q + p)

[( n∑

j=

βjRLIq+p+γjφ(ξj)

– λ

n∑

j=

βjRLIp+γj x(ξj) + λσHIp y(τ) – σHIq+pψ(τ)

)

�

+

( m∑

i=

αiHIq+p+ρiψ(ηi) – λ

m∑

i=

αiHIp+ρi y(ηi) + λσRLIp x(τ)

– σRLIq+pφ(τ)

)

�

]

(.)

and

y(t) = HIq+pψ(t) – λHIp y(t) –
(log t

a )q+p–�(q)
��(q + p)

[( m∑

i=

αiHIq+p+ρiψ(ηi)

– λ

m∑

i=

αiHIp+ρi y(ηi) + λσRLIp x(τ) – σRLIq+pφ(τ)

)

�

+

( n∑

j=

βjRLIq+p+γjφ(ξj) – λ

n∑

j=

βjRLIp+γj x(ξj) + λσHIp y(τ)

– σHIq+pψ(τ)

)

�

]

(.)

has a solution.

Proof Using Lemmas . and . and the first two equations in (.) can be expressed as
equivalent integral equations

(
RLDp + λ

)
x(t) = RLIqφ(t) – c(t – a)q–,

(
HDp + λ

)
y(t) = HIqψ(t) – d

(

log
t
a

)q–

.

It follows that

x(t) = RLIq+pφ(t) – λRLIp x(t) – c
�(q)(t – a)q+p–

�(q + p)
– c(t – a)p– (.)
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and

y(t) = HIq+pψ(t) – λHIp y(t) – d
�(q)(log t

a )q+p–

�(q + p)
– d

(

log
t
a

)p–

, (.)

where c, c, d, d ∈R. The condition x(a) = y(a) =  implies that c = d = .
Taking the Riemann-Liouville and Hadamard fractional integrals of order γj,ρi >  for

(.) and (.), respectively, and using the property given in Lemma ., we obtain

σHIq+pψ(τ) – λσHIp y(τ) – d�

=
n∑

j=

βjRLIq+p+γjφ(ξj) – λ

n∑

j=

βjRLIp+γj x(ξj) – c�,

σRLIq+pφ(τ) – λσRLIp x(τ) – c�

=
m∑

i=

αiHIq+p+ρiψ(ηi) – λ

m∑

i=

αiHIp+ρi y(ηi) – d�.

Solving the above system of linear equations for constants c and d, we get

c =
�

�

( n∑

j=

βjRLIq+p+γjφ(ξj) – λ

n∑

j=

βjRLIp+γj x(ξj) + λσHIp y(τ)

– σHIq+pψ(τ)

)

+
�

�

( m∑

i=

αiHIq+p+ρiψ(ηi) – λ

m∑

i=

αiHIp+ρi y(ηi)

+ λσRLIp x(τ) – σRLIq+pφ(τ)

)

,

d =
�

�

( m∑

i=

αiHIq+p+ρiψ(ηi) – λ

m∑

i=

αiHIp+ρi y(ηi) + λσRLIp x(τ)

– σRLIq+pφ(τ)

)

+
�

�

( n∑

j=

βjRLIq+p+γjφ(ξj) – λ

n∑

j=

βjRLIp+γj x(ξj)

+ λσHIp y(τ) – σHIq+pψ(τ)

)

.

Substituting the values of c, c, d, and d in (.) and (.), we obtain the expressions
(.) and (.). �

3 Main results
Throughout this paper, for convenience, we use the following expressions:

RLIwh
(
s, x(s), y(s)

)
(v) =


�(w)

∫ v

a
(v – s)w–h

(
s, x(s), y(s)

)
ds

and

HIuh
(
s, x(s), y(s)

)
(v) =


�(u)

∫ v

a

(

log
v
s

)u– h(s, x(s), y(s))
s

ds,
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where u ∈ {q, p,γj}, w ∈ {q, p,ρi}, v ∈ {t, τ, τ,ηi, ξj} and h = {f , g}, i = , , . . . , m, j =
, , . . . , n.

Let C = C([a, T],R) denote the Banach space of all continuous functions from [a, T]
to R. Let us introduce the space X = {x(t)|x(t) ∈ C([a, T])} endowed with the norm ‖x‖ =
sup{|x(t)|, t ∈ [a, T]}. Obviously (X,‖ · ‖) is a Banach space. In addition the product space
(X × X,‖(x, y)‖) is a Banach space with norm ‖(x, y)‖ = ‖x‖ + ‖y‖.

Definition . A (x, y) ∈ X ×X is said to be a solution of the system (.) if (x, y) satisfies the
system RLDq (RLDp + λ)x(t) = f (t, x(t), y(t)), HDq (HDp + λ)y(t) = g(t, x(t), y(t)), on [a, T],
and the conditions x(a) = , σx(τ) =

∑m
i= αiHIρi y(ηi), y(a) = , σy(τ) =

∑n
j= βjRLIγj x(ξj).

In view of Lemma ., we define an operator Q : X × X → X × X by

Q(x, y)(t) =

(
Q(x, y)(t)
Q(x, y)(t)

)

,

where

Q(x, y)(t)

= RLIq+p f
(
s, x(s), y(s)

)
(t) – λRLIp x(t)

–
(t – a)q+p–�(q)

��(q + p)

[( n∑

j=

βjRLIq+p+γj f
(
s, x(s), y(s)

)
(ξj)

– λ

n∑

j=

βjRLIp+γj x(ξj) + λσHIp y(τ) – σHIq+p g
(
s, x(s), y(s)

)
(τ)

)

�

+

( m∑

i=

αiHIq+p+ρi g
(
s, x(s), y(s)

)
(ηi) – λ

m∑

i=

αiHIp+ρi y(ηi) + λσRLIp x(τ)

– σRLIq+p f
(
s, x(s), y(s)

)
(τ)

)

�

]

and

Q(x, y)(t)

= HIq+p g
(
s, x(s), y(s)

)
(t) – λHIp y(t)

–
(log t

a )q+p–�(q)
��(q + p)

[( m∑

i=

αiHIq+p+ρi g
(
s, x(s), y(s)

)
(ηi)

– λ

m∑

i=

αiHIp+ρi y(ηi) + λσRLIp x(τ) – σRLIq+p f
(
s, x(s), y(s)

)
(τ)

)

�

+

( n∑

j=

βjRLIq+p+γj f
(
s, x(s), y(s)

)
(ξj) – λ

n∑

j=

βjRLIp+γj x(ξj)

+ λσHIp y(τ) – σHIq+p g
(
s, x(s), y(s)

)
(τ)

)

�

]

.
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For the sake of convenience, we set

A =
(T – a)q+p–�(q)

�(q + p)
, A =

(log T
a )q+p–�(q)
�(q + p)

,

A =
(T – a)p

�(p + )
, A =

(T – a)q+p

�(q + p + )
,

A =
(τ – a)p

�(p + )
, A =

(τ – a)q+p

�(q + p + )
,

A =
(log T

a )p

�(p + )
, A =

(log T
a )q+p

�(q + p + )
,

A =
(log τ

a )p

�(p + )
, A =

(log τ
a )q+p

�(q + p + )
,

A =
m∑

i=

|αi|(log ηi
a )p+ρi

�(p + ρi + )
, A =

m∑

i=

|αi|(log ηi
a )q+p+ρi

�(q + p + ρi + )
,

A =
n∑

j=

|βj|(ξj – a)p+γj

�(p + γj + )
, A =

n∑

j=

|βj|(ξj – a)q+p+γj

�(q + p + γj + )
.

The first result is concerned with the existence and uniqueness of solutions for the prob-
lem (.) and is based on Banach’s fixed point theorem.

Theorem . Assume that f , g : [a, T] ×R
 →R are continuous functions and there exist

constants mi, ni, i = ,  such that for all t ∈ [a, T], a > , and xi, yi ∈R, i = , ,

∣
∣f (t, x, y) – f (t, x, y)

∣
∣ ≤ m|x – x| + m|y – y|

and

∣
∣g(t, x, y) – g(t, x, y)

∣
∣ ≤ n|x – x| + n|y – y|.

In addition, assume that

B + C < ,

where

M =
A

|�|
(|σ||�|A + |�|A + A

)
,

M =
A

|�|
(|σ||�|A + |�|A

)
,

M =
|λ|A

|�|
(|σ||�|A + |�|A

)
+ |λ|A,

M =
|λ|A

|�|
(|σ||�|A + |�|A

)
,

M =
A

|�|
(|σ||�|A + |�|A + A

)
,
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M =
A

|�|
(|σ||�|A + |�|A

)
,

M =
|λ|A

|�|
(|σ||�|A + |�|A

)
+ |λ|A,

M =
|λ|A

|�|
(|σ||�|A + |�|A

)

and

B = (m + m)M + (n + n)M + M + M,

C = (m + m)M + (n + n)M + M + M.

Then the boundary value problem (.) has a unique solution on [a, T].

Proof Define supt∈[a,T] f (t, , ) = N < ∞ and supt∈[a,T] g(t, , ) = N < ∞ and choose a
positive real number r, such that

r ≥ max

{
MN + MN

 – B
,

MN + MN

 – C

}

.

First, we show that QBr ⊂ Br , where Br = {(x, y) ∈ X × X : ‖(x, y)‖ ≤ r}. For (x, y) ∈ Br , we
have

∣
∣Q(x, y)(t)

∣
∣

≤ sup
t∈[a,T]

{

RLIq+p
∣
∣f

(
s, x(s), y(s)

)∣
∣(t) + |λ|RLIp

∣
∣x(s)

∣
∣(t) +

(t – a)q+p–�(q)
|�|�(q + p)

×
(( n∑

j=

|βj|RLIq+p+γj
∣
∣f

(
s, x(s), y(s)

)∣
∣(ξj) + |λ|

n∑

j=

|βj|RLIp+γj
∣
∣x(s)

∣
∣(ξj)

+ |λ||σ|HIp
∣
∣y(s)

∣
∣(τ) + |σ|HIq+p

∣
∣g

(
s, x(s), y(s)

)∣
∣(τ)

)

|�|

+

( m∑

i=

|αi|HIq+p+ρi
∣
∣g

(
s, x(s), y(s)

)∣
∣(ηi) + |λ|

m∑

i=

|αi|HIp+ρi
∣
∣y(s)

∣
∣(ηi)

+ |λ||σ|RLIp
∣
∣x(s)

∣
∣(τ) + |σ|RLIq+p

∣
∣f

(
s, x(s), y(s)

)∣
∣(τ)

)

|�|
)}

≤ RLIq+p
(∣
∣f

(
s, x(s), y(s)

)
– f (s, , )

∣
∣ +

∣
∣f (s, , )

∣
∣
)
(T) + |λ|RLIp

∣
∣x(s)

∣
∣(T)

+
(T – a)q+p–�(q)

|�|�(q + p)

(( n∑

j=

|βj|RLIq+p+γj
(∣
∣f

(
s, x(s), y(s)

)
– f (s, , )

∣
∣

+
∣
∣f (s, , )

∣
∣
)
(ξj) + |λ|

n∑

j=

|βj|RLIp+γj
∣
∣x(s)

∣
∣(ξj) + |λ||σ|HIp

∣
∣y(s)

∣
∣(τ)

+ |σ|HIq+p
(∣
∣g

(
s, x(s), y(s)

)
– g(s, , )

∣
∣ +

∣
∣g(s, , )

∣
∣
)
(τ)

)

|�|
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+

( m∑

i=

|αi|HIq+p+ρi
(∣
∣g

(
s, x(s), y(s)

)
– g(s, , )

∣
∣ +

∣
∣g(s, , )

∣
∣
)
(ηi)

+ |λ|
m∑

i=

|αi|HIp+ρi
∣
∣y(s)

∣
∣(ηi) + |λ||σ|RLIp

∣
∣x(s)

∣
∣(τ)

+ |σ|RLIq+p
(∣
∣f

(
s, x(s), y(s)

)
– f (s, , )

∣
∣ +

∣
∣f (s, , )

∣
∣
)
(τ)

)

|�|
)

≤ (
m‖x‖ + m‖y‖ + N

)
RLIq+p ()(T) + |λ|‖x‖RLIp ()(T)

+
(T – a)q+p–�(q)

|�|�(q + p)

((
(
m‖x‖ + m‖y‖ + N

)
n∑

j=

|βj|RLIq+p+γj ()(ξj)

+ |λ|‖x‖
n∑

j=

|βj|RLIp+γj ()(ξj) + |λ||σ|‖y‖HIp ()(τ)

+ |σ|
(
n‖x‖ + n‖y‖ + N

)
HIq+p ()(τ)

)

|�|

+

(
(
n‖x‖ + n‖y‖ + N

)
m∑

i=

|αi|HIq+p+ρi ()(ηi) + |λ|‖y‖
m∑

i=

|αi|HIp+ρi ()(ηi)

+ |λ||σ|‖x‖RLIp ()(τ) + |σ|
(
m‖x‖ + m‖y‖ + N

)
RLIq+p ()(τ)

)

|�|
)

=

(
(T – a)q+p–�(q)

|�|�(q + p)

(
|�||σ|(τ – a)q+p

�(q + p + )
+

n∑

j=

|�||βj|(ξj – a)q+p+γj

�(q + p + γj + )

)

+
(T – a)q+p

�(q + p + )

)
(
m‖x‖ + m‖y‖ + N

)
+

(T – a)q+p–�(q)
|�|�(q + p)

×
(

|σ||�|(log τ
a )q+p

�(q + p + )
+

m∑

i=

|�||αi|(log ηi
a )q+p+ρi

�(q + p + ρi + )

)
(
n‖x‖ + n‖y‖ + N

)

+

(
(T – a)q+p–�(q)

|�|�(q + p)

(
|λ||�||σ|(τ – a)p

�(p + )
+

n∑

j=

|λ||�||βj|(ξj – a)p+γj

�(p + γj + )

)

+
|λ|(T – a)p

�(p + )

)

‖x‖ +
(T – a)q+p–�(q)

|�|�(q + p)

( m∑

i=

|λ||�||αi|(log ηi
a )p+ρi

�(p + ρi + )

+
|λ||�||σ|(log τ

a )p

�(p + )

)

‖y‖

=
(

A

|�|
(|σ||�|A + |�|A

)
+ A

)
(
m‖x‖ + m‖y‖ + N

)

+
A

|�|
(|σ||�|A + |�|A

)(
n‖x‖ + n‖y‖ + N

)

+
( |λ|A

|�|
(|σ||�|A + |�|A

)
+ |λ|A

)

‖x‖

+
|λ|A

|�|
(|σ||�|A + |�|A

)‖y‖
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= M
(
m‖x‖ + m‖y‖ + N

)
+ M

(
n‖x‖ + n‖y‖ + N

)
+ M‖x‖ + M‖y‖

= (mM + nM + M)‖x‖ + (mM + nM + M)‖y‖ + MN + MN

≤ (
(m + m)M + (n + n)M + M + M

)
r + MN + MN

= Br + MN + MN ≤ r.

In the same way, we obtain

∣
∣Q(x, y)(t)

∣
∣

≤
(

(log T
a )q+p–�(q)

|�|�(q + p)

(
|�||σ|(log τ

a )q+p

�(q + p + )
+

m∑

i=

|�||αi|(log ηi
a )q+p+ρi

�(q + p + ρi + )

)

+
(log T

a )q+p

�(q + p + )

)
(
n‖x‖ + n‖y‖ + N

)
+

(log T
a )q+p–�(q)

|�|�(q + p)

×
(

|�||σ|(τ – a)q+p

�(q + p + )
+

n∑

j=

|�||βj|(ξj – a)q+p+γj

�(q + p + γj + )

)
(
m‖x‖ + m‖y‖ + N

)

+

(
(log T

a )q+p–�(q)
|�|�(q + p)

(
|λ||�||σ|(log τ

a )p

�(p + )
+

m∑

i=

|λ||�||αi|(log ηi
a )p+ρi

�(p + ρi + )

)

+
|λ|(log T

a )p

�(p + )

)

‖y‖ +
(log T

a )q+p–�(q)
|�|�(q + p)

( n∑

j=

|λ||�||βj|(ξj – a)p+γj

�(p + γj + )

+
|λ||�||σ|(τ – a)p

�(p + )

)

‖x‖

=
(

A

|�|
(|�||σ|A + |�|A

)
+ A

)
(
n‖x‖ + n‖y‖ + N

)

+
A

|�|
(|�||σ|A + |�|A

)(
m‖x‖ + m‖y‖ + N

)

+
(

|λ|A +
|λ|A

|�|
(|�||σ|A + |�|A

)
)

‖y‖

+
|λ|A

|�|
(|�||σ|A + |�|A

)‖x‖

= M
(
n‖x‖ + n‖y‖ + N

)
+ M

(
m‖x‖ + m‖y‖ + N

)
+ M‖y‖ + M‖x‖

= (nM + mM + M)‖x‖ + (nM + mM + M)‖y‖ + MN + MN

≤ (
(m + m)M + (n + n)M + M + M

)
r + MN + MN

= Cr + MN + MN ≤ r.

Now for (x, y), (x, y) ∈ X × X, and for any t ∈ [a, T], we get

∣
∣Q(x, y)(t) – Q(x, y)(t)

∣
∣

≤ RLIq+p
(∣
∣f

(
s, x(s), y(s)

)
– f

(
s, x(s), y(s)

)∣
∣
)
(T) + |λ|RLIp

(∣
∣x(s) – x(s)

∣
∣
)
(T)

+
(T – a)q+p–�(q)

|�|�(q + p)
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×
(( n∑

j=

|βj|RLIq+p+γj
(∣
∣f

(
s, x(s), y(s)

)
– f

(
s, x(s), y(s)

)∣
∣
)
(ξj)

+ |λ|
n∑

j=

|βj|RLIp+γj
(∣
∣x(s) – x(s)

∣
∣
)
(ξj) + |λ||σ|HIp

(∣
∣y(s) – y(s)

∣
∣
)
(τ)

+ |σ|HIq+p
(∣
∣g

(
s, x(s), y(s)

)
– g

(
s, x(s), y(s)

)∣
∣
)
(τ)

)

|�|

+

( m∑

i=

|αi|HIq+p+ρi
(∣
∣g

(
s, x(s), y(s)

)
– g

(
s, x(s), y(s)

)∣
∣
)
(ηi)

+ |λ|
m∑

i=

|αi|HIp+ρi
(∣
∣y(s) – y(s)

∣
∣
)
(ηi) + |λ||σ|RLIp

(∣
∣x(s) – x(s)

∣
∣
)
(τ)

+ |σ|RLIq+p
(∣
∣f

(
s, x(s), y(s)

)
– f

(
s, x(s), y(s)

)∣
∣
)
(τ)

)

|�|
)

≤
(

(T – a)q+p–�(q)
|�|�(q + p)

( n∑

j=

|�||βj|(ξj – a)q+p+γj

�(q + p + γj + )
+

|σ||�|(τ – a)q+p

�(q + p + )

)

+
(T – a)q+p

�(q + p + )

)
(
m‖x – x‖ + m‖y – y‖

)
+

(T – a)q+p–�(q)
|�|�(q + p)

×
(

|σ||�|(log τ
a )q+p

�(q + p + )
+

m∑

i=

|�||αi|(log ηi
a )q+p+ρi

�(q + p + ρi + )

)

× (
n‖x – x‖ + n‖y – y‖

)

+

(
(T – a)q+p–�(q)

|�|�(q + p)

(
|λ||σ||�|(τ – a)p

�(p + )
+

n∑

j=

|λ||�||βj|(ξj – a)p+γj

�(p + γj + )

)

+
|λ|(T – a)p

�(p + )

)

‖x – x‖ +
(T – a)q+p–�(q)

|�|�(q + p)

( m∑

i=

|λ||�||αi|(log ηi
a )p+ρi

�(p + ρi + )

+
|λ||σ||�|(log τ

a )p

�(p + )

)

‖y – y‖

=
(

A

|�|
(|σ||�|A + |�|A + A

)
)

(
m‖x – x‖ + m‖y – y‖

)

+
(

A

|�|
(|σ||�|A + |�|A

)
)

(
n‖x – x‖ + n‖y – y‖

)

+
( |λ|A

|�|
(|σ||�|A + |�|A

)
+ |λ|A

)

‖x – x‖

+
( |λ|A

|�|
(|σ||�|A + |�|A

)
)

‖y – y‖

= M
(
m‖x – x‖ + m‖y – y‖

)
+ M

(
n‖x – x‖ + n‖y – y‖

)

+ M‖x – x‖ + M‖y – y‖

= (mM + nM + M)‖x – x‖ + (mM + nM + M)‖y – y‖,
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and consequently we obtain

∥
∥Q(x, y)(t) – Q(x, y)

∥
∥ ≤ B

(‖x – x‖ + ‖y – y‖
)
. (.)

Similarly,

∥
∥Q(x, y)(t) – Q(x, y)

∥
∥ ≤ C

(‖x – x‖ + ‖y – y‖
)
. (.)

It follows from (.) and (.) that

∥
∥Q(x, y)(t) – Q(x, y)(t)

∥
∥ ≤ (B + C)

(‖x – x‖ + ‖y – y‖
)
.

Since (B + C) < , therefore, Q is a contraction operator. So, by Banach’s fixed point
theorem, the operator Q has a unique fixed point, which is the unique solution of the
problem (.). This completes the proof. �

In the next result, we prove the existence of solutions for the problem (.) by applying
the Leray-Schauder alternative.

Lemma . (Leray-Schauder alternative [], p.) Let G be a normed linear space and
F : G → G be a completely continuous operator (i.e., a map that restricted to any bounded
set in G is compact). Let

E(F) =
{

x ∈ G : x = κF(x) for some  < κ < 
}

.

Then either the set E(F) is unbounded, or F has at least one fixed point.

For convenience, we set the constants

E = (M + M)P + (M + M)R + M + M,

E = (M + M)P + (M + M)R + M + M

and

E∗ = min{ – E,  – E}. (.)

Theorem . Assume that the functions f , g : [a, T] × R
 → R are continuous functions

and there exist real constants Pi, Ri ≥  (i = , ) and P > , R >  such that ∀xi ∈ R

(i = , ) we have

∣
∣f (t, x, x)

∣
∣ ≤ P + P|x| + P|x|,

∣
∣g(t, x, x)

∣
∣ ≤ R + R|x| + R|x|.

In addition it is assumed that

E <  and E < .

Then there exists at least one solution for the boundary value problem (.).
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Proof First we show that the operator Q : X × X → X × X is completely continuous. Note
that Q is continuous, since the functions f and g are continuous.

Let U ⊂ X × X be bounded. Then there exist positive constants L and L such that

∣
∣f

(
t, x(t), y(t)

)∣
∣ ≤ L,

∣
∣g

(
t, x(t), y(t)

)∣
∣ ≤ L, ∀(x, y) ∈ U ,

and a positive real number r′ such that

r′ ≥ max

{
ML + ML

 – (M + M)
,

ML + ML

 – (M + M)

}

.

Then, for any (x, y) ∈ U where Br′ = {(x, y) ∈ X × X : ‖(x, y)‖ ≤ r′} and using Lemma .,
we have

∥
∥Q(x, y)(t)

∥
∥

≤ RLIq+p
∣
∣f

(
s, x(s), y(s)

)∣
∣(T) + |λ|RLIp

∣
∣x(s)

∣
∣(T) +

(T – a)q+p–�(q)
|�|�(q + p)

×
(( n∑

j=

|βj|RLIq+p+γj
∣
∣f

(
s, x(s), y(s)

)∣
∣(ξj) + |λ|

n∑

j=

|βj|RLIp+γj
∣
∣x(s)

∣
∣(ξj)

+ |λ||σ|HIp
∣
∣y(s)

∣
∣(τ) + |σ|HIq+p

∣
∣g

(
s, x(s), y(s)

)∣
∣(τ)

)

|�|

+

( m∑

i=

|αi|HIq+p+ρi
∣
∣g

(
s, x(s), y(s)

)∣
∣(ηi) + |λ|

m∑

i=

|αi|HIp+ρi
∣
∣y(s)

∣
∣(ηi)

+ |λ||σ|RLIp
∣
∣x(s)

∣
∣(τ) + |σ|RLIq+p

∣
∣f

(
s, x(s), y(s)

)∣
∣(τ)

)

|�|
)

≤
(

A

|�|
(|σ||�|A + |�|A

)
+ A

)

L +
(

A

|�|
(|σ||�|A + |�|A

)
)

L

+
( |λ|A

|�|
(|σ||�|A + |�|A

)
+ |λ|A +

|λ|A

|�|
(|σ||�|A + |�|A

)
)

r′

= ML + ML + (M + M)r′.

In the same way, we deduce that

∥
∥Q(x, y)

∥
∥

≤
(

A

|�|
(|σ||�|A + |�|A

)
+ A

)

L +
(

A

|�|
(|σ||�|A + |�|A

)
)

L

+
( |λ|A

|�|
(|σ||�|A + |�|A

)
+ |λ|A +

|λ|A

|�|
(|σ||�|A + |�|A

)
)

r′

= ML + ML + (M + M)r′.

Thus, it follows from the above inequalities that the operator Q is uniformly bounded.
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Next, we show that Q is equicontinuous. Let t, t ∈ [a, T] with t < t. Then we have
∣
∣Q(x, y)(t) – Q(x, y)(t)

∣
∣

≤ ∣
∣RLIq+p f

(
s, x(s), y(s)

)
(t) – RLIq+p f

(
s, x(s), y(s)

)
(t)

∣
∣

+ |λ|
∣
∣RLIp x(t) – RLIp x(t)

∣
∣ +

|(t – a)q+p– – (t – a)q+p–|�(q)
|�|�(q + p)

×
(( n∑

j=

|βj|RLIq+p+γj
∣
∣f

(
s, x(s), y(s)

)∣
∣(ξj) + |λ|

n∑

j=

|βj|RLIp+γj
∣
∣x(s)

∣
∣(ξj)

+ |σ|HIq+p
∣
∣g

(
s, x(s), y(s)

)∣
∣(τ) + |λ||σ|HIp

∣
∣y(s)

∣
∣(τ)

)

|�|

+

( m∑

i=

|αi|HIq+p+ρi
∣
∣g

(
s, x(s), y(s)

)∣
∣(ηi) + |λ|

m∑

i=

|αi|HIp+ρi
∣
∣y(s)

∣
∣(ηi)

+ |σ|RLIq+p
∣
∣f

(
s, x(s), y(s)

)∣
∣(τ) + |λ||σ|RLIp

∣
∣x(s)

∣
∣(τ)

)

|�|
)

≤ L

�(q + p)

(∫ t

a

[
(t – a)q+p– – (t – a)q+p–]ds +

∫ t

t

(t – a)q+p– ds
)

+
|λ|r′

�(p)

(∫ t

a

[
(t – a)p– – (t – a)p–]ds +

∫ t

t

(t – a)p– ds
)

+
|(t – a)q+p– – (t – a)q+p–|�(q)

|�|�(q + p)
((|�|A + |σ||�|A

)
L

+
(|σ||�|A + |�|A

)
L +

(|λ||�|A + |λ||σ||�|A + |λ||�|A

+ |λ||σ||�|A
)
r′).

Analogously, we can obtain
∣
∣Q(x, y)(t) – Q(x, y)(t)

∣
∣

≤ ∣
∣HIq+p g

(
s, x(s), y(s)

)
(t) – HIq+p g

(
s, x(s), y(s)

)
(t)

∣
∣

+ |λ|
∣
∣HIp y(t) – HIp y(t)

∣
∣ +

|(log t
a )q+p– – (log t

a )q+p–|�(q)
|�|�(q + p)

×
(( m∑

i=

|αi|HIq+p+ρi
∣
∣g

(
s, x(s), y(s)

)∣
∣(ηi) + |λ|

m∑

i=

|αi|HIp+ρi
∣
∣y(s)

∣
∣(ηi)

+ |σ|RLIq+p
∣
∣f

(
s, x(s), y(s)

)∣
∣(τ) + |λ||σ|RLIp

∣
∣x(s)

∣
∣(τ)

)

|�|

+

( n∑

j=

|βj|RLIq+p+γj
∣
∣f

(
s, x(s), y(s)

)∣
∣(ξj) + |λ|

n∑

j=

|βj|RLIp+γj
∣
∣x(s)

∣
∣(ξj)

+ |σ|HIq+p
∣
∣g

(
s, x(s), y(s)

)∣
∣(τ) + |λ||σ|HIp

∣
∣y(s)

∣
∣(τ)

)

|�|
)

≤ L

�(q + p)

(∫ t

a

((

log
t

a

)q+p–

–
(

log
t

a

)q+p–)

ds
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+
∫ t

t

(

log
t

a

)q+p–

ds
)

+
|λ|r′

�(p)

(∫ t

a

((

log
t

a

)q+p–

–
(

log
t

a

)q+p–)

ds +
∫ t

t

(

log
t

a

)q+p–

ds
)

+
|(log t

a )q+p– – (log t
a )q+p–|�(q)

|�|�(q + p)
((|σ||�|A + |�|A

)
L

+
(|�|A + |σ||�|A

)
L +

(|λ||σ||�|A + |λ||�|A + |λ||σ||�|A

+ |λ||�|A
)
r′).

Therefore, the operator Q(x, y) is equicontinuous, and thus the operator Q(x, y) is com-
pletely continuous, by Arzelá-Ascoli theorem.

Finally, it will be verified that the set E = {(x, y) ∈ X × X|(x, y) = κQ(x, y),  < κ < } is
bounded. Let (x, y) ∈ E , then (x, y) = κQ(x, y). For any t ∈ [a, T], we have

x(t) = κQ(x, y)(t), y(t) = κQ(x, y)(t).

Then

∣
∣x(t)

∣
∣

=
∣
∣κQ(x, y)(t)

∣
∣

≤ (
P + P‖x‖ + P‖y‖)RLIq+p ()(T) + ‖x‖|λ|RLIp ()(T)

+
(T – a)q+p–�(q)

|�|�(q + p)

((
(
P + P‖x‖ + P‖y‖)

n∑

j=

|βj|RLIq+p+γj ()(ξj)

+ ‖x‖|λ|
n∑

j=

|βj|RLIp+γj ()(ξj) +
(
R + R‖x‖ + R‖y‖)|σ|HIq+p ()(τ)

+ ‖y‖|λ||σ|HIp ()(τ)

)

|�| +

(
(
R + R‖x‖ + R‖y‖)

m∑

i=

|αi|HIq+p+ρi ()(ηi)

+ ‖y‖|λ|
m∑

i=

|αi|HIp+ρi ()(ηi) +
(
P + P‖x‖ + P‖y‖)|σ|RLIq+p ()(τ)

+ ‖x‖|λ||σ|RLIp ()(τ)

)

|�|
)

=
(
P + P‖x‖ + P‖y‖)M +

(
R + R‖x‖ + R‖y‖)M + ‖x‖M + ‖y‖M

and

∣
∣y(t)

∣
∣

=
∣
∣κQ(x, y)(t)

∣
∣

≤ (
R + R‖x‖ + R‖y‖)HIq+p ()(T) + ‖y‖|λ|HIp ()(T)

+
(log T

a )q+p–�(q)
|�|�(q + p)

((
(
R + R‖x‖ + R‖y‖)

m∑

i=

|αi|HIq+p+ρi ()(ηi)
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+ ‖y‖|λ|
m∑

i=

|αi|HIp+ρi ()(ηi) +
(
P + P‖x‖ + P‖y‖)|σ|RLIq+p ()(τ)

+ ‖x‖|λ||σ|RLIp ()(τ)

)

|�| +

(
(
P + P‖x‖ + P‖y‖)

n∑

j=

|βj|RLIq+p+γj ()(ξj)

+ ‖x‖|λ|
n∑

j=

|βj|RLIp+γj ()(ξj) +
(
R + R‖x‖ + R‖y‖)|σ|HIq+p ()(τ)

+ ‖y‖|λ||σ|HIp ()(τ)

)

|�|
)

=
(
P + P‖x‖ + P‖y‖)M +

(
R + R‖x‖ + R‖y‖)M + ‖x‖M + ‖y‖M.

Hence we have

‖x‖ ≤ (
P + P‖x‖ + P‖y‖)M +

(
R + R‖x‖ + R‖y‖)M + ‖x‖M + ‖y‖M

and

‖y‖ ≤ (
P + P‖x‖ + P‖y‖)M +

(
R + R‖x‖ + R‖y‖)M + ‖x‖M + ‖y‖M,

which implies

‖x‖ + ‖y‖ ≤ (M + M)P + (M + M)R

+
(
(M + M)P + (M + M)R + M + M

)‖x‖
+

(
(M + M)P + (M + M)R + M + M

)‖y‖.

Consequently,

∥
∥(x, y)

∥
∥ ≤ (M + M)P + (M + M)R

E∗

for any t ∈ [a, T], where E∗ is defined by (.), which proves that E is bounded. Thus, by
Lemma ., the operatorQ has at least one fixed point. Hence the boundary value problem
(.) has at least one solution on [a, T]. The proof is complete. �

3.1 Examples
In this section we present examples to illustrate our results.

Example . Consider the system of Langevin equations via the Riemann-Liouville and
Hadamard fractional derivatives and fractional integral conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

RLD/(RLD/ + 
 )x(t) = |x| sin(π t)

(–t) ( |x|
|x|+ + ) + |y|

(–t) – 
 ,

HD/(HD/ – 
 )y(t) = |x|

(+t) + cos(π t)
(–t) ( |y|

|y|+ + )|y| + ,
x( 

 ) = ,
√

x() = 
 HI

√
y( 

 ) – 
 HI/y( 

 ),
y( 

 ) = , 
 y( 

 ) = 
 RLIπ/x( 

 ) + 
 RLI

√
x( 

 ), 
 ≤ t ≤ .

(.)



Sudsutad et al. Advances in Difference Equations  (2015) 2015:235 Page 18 of 24

Here q = /, q = /, p = /, p = /, λ = /, λ = –/, n = , m = , a = /,
T = , σ =

√
, σ = /, τ = , τ = /, η = /, η = /, ξ = /, ξ = /, α =

/, α = –/, β = /, β = /, ρ =
√

, ρ = /, γ = π/, γ =
√

, and f (t, x, y) =
((sin(π t))/(( – t)))(|x|/(|x| + ) + )|x| + (|y|/(( – t))) – (/) and g(t, x, y) = (|x|/(( +
t))) + (cos(π t))/(( – t))(|y|/(|y| + ) + )|y| + . Since

∣
∣f (t, x, y) – f (t, x, y)

∣
∣ ≤ 

,
|x – x| +


,

|y – y|

and

∣
∣g(t, x, y) – g(t, x, y)

∣
∣ ≤ 

,
|x – x| +


,

|y – y|.

By using the Maple program, we can find that

� = �� – �� � –. �= .

Then the assumptions of Theorem . are satisfied with m = /,, m = /,, n =
/,, n = /,, M � ., M � ., M � .,
M � ., M � ., M � ., M � .,
M � ., and

B = (m + m)M + (n + n)M + M + M ≈ .,

C = (m + m)M + (n + n)M + M + M ≈ ..

Therefore, we get

B + C � . < .

Hence, by Theorem ., the problem (.) has a unique solution on [/, ].

Example . Consider the system of Langevin equations via the Riemann-Liouville and
Hadamard fractional derivatives and fractional integral conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

RLD/(RLD/ – 
 )x(t) =

√


 + |x|π cos(π t)
(π–t) + π|y|

(π–t) ( |y|
|y|+ + ),

HD/(HD/ – 
 )y(t) =

√


 + π|x|
(π–t) ( |x|

|x|+ + ) + π sin y(t)
(π–t) ,

x( π
 ) = , 

 x(π ) =
√

HI/y(π ) – 
 HI/y( π

 ) + 
 HI/y(π ),

y( π
 ) = ,

√


 y( π
 ) = RLI/x( π

 ) – RLI/x(π ), π
 ≤ t ≤ π .

(.)

Here q = /, q = /, p = /, p = /, λ = –/, λ = –/, n = , m = , a = π/,
T = π , σ = /, σ =

√
/, τ = π , τ = π/, η = π , η = π/, η = π , ξ = π/, ξ = π ,

α =
√

, α = –/, α = /, β = , β = –, ρ = /, ρ = /, ρ = /, γ = /, γ = /,
and f (t, x, y) = (

√
/)+(|x|π cos(π t))/((π – t))+(π|y|/((π – t)))(|y|/(|y|+)+)

and g(t, x, y) = (
√

/) + (π|x|/((π – t)))(|x|/(|x| + ) + ) + (π sin y(t))/((π – t)).
We have

∣
∣f (t, x, x)

∣
∣ ≤

√



+




|x| +



|x|
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and

∣
∣g(t, x, x)

∣
∣ ≤

√



+




|x| +



|x|.

By using the Maple program, we can find that

� = �� – �� � . �= .

Then the assumptions of Theorem . are satisfied with P =
√

/, P = /, P =
/, R =

√
/, R = /, R = /, M � ., M � ., M �

., M � ., M � ., M � ., M �
., M � ., and

E = (M + M)P + (M + M)R + M + M � . < ,

E = (M + M)P + (M + M)R + M + M � . < 

and

E∗ = min{ – E,  – E} = min{., .} = ..

Thus all the conditions of Theorem . hold true and consequently as regards the conclu-
sion of Theorem ., for the problem (.) there exists at least one solution on [π/, π ].

4 Uncoupled integral boundary conditions case
In this section we consider the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

RLDq (RLDp + λ)x(t) = f (t, x(t), y(t)), a ≤ t ≤ T ,
HDq (HDp + λ)y(t) = g(t, x(t), y(t)), a ≤ t ≤ T ,
x(a) = , σx(τ) =

∑m
i= αiRLIρi x(ηi),

y(a) = , σy(τ) =
∑n

j= βjHIγj y(ξj).

(.)

Definition . A (x, y) ∈ X × X is said to be a solution of the system (.) if (x, y) satis-
fies the system RLDq (RLDp + λ)x(t) = f (t, x(t), y(t)), HDq (HDp + λ)y(t) = g(t, x(t), y(t)),
on [a, T], and the conditions x(a) = , σx(τ) =

∑m
i= αiRLIρi x(ηi), y(a) = , σy(τ) =

∑n
j= βjHIγj y(ξj).

Lemma . (Auxiliary lemma) For h ∈ C([a, T],R), the problem

{

RLDq (RLDp + λ)x(t) = h(t),  < q, p ≤ ,  < q + p ≤ ,
x(a) = , σx(τ) =

∑m
i= αiRLIρi x(ηi), t ∈ [a, T],

(.)

has a solution if and only if the equation

x(t) = RLIq+p h(t) – λRLIp x(t) –
(t – a)q+p–�(q)

��(q + p)

( m∑

i=

αiRLIq+p+ρi h(ηi)

– λ

m∑

i=

αiRLIp+ρi x(ηi) + λσRLIp x(τ) – σRLIq+p h(τ)

)

(.)
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has a solution, where

� :=
m∑

i=

αi(ηi – a)q+p+ρi–�(q)
�(q + p + ρi)

–
σ�(q)(τ – a)q+p–

�(q + p)
�= . (.)

4.1 Existence results for uncoupled case
In view of Lemma ., we define an operator K : X × X → X × X by

K(x, y)(t) =

(
K(x, y)(t)
K(x, y)(t)

)

,

where

K(x, y)(t) = RLIq+p f
(
s, x(s), y(s)

)
(t) – λRLIp x(t) –

(t – a)q+p–�(q)
��(q + p)

×
( m∑

i=

αiRLIq+p+ρi f
(
s, x(s), y(s)

)
(ηi) – λ

m∑

i=

αiRLIp+ρi x(ηi)

+ λσRLIp x(τ) – σRLIq+p f
(
s, x(s), y(s)

)
(τ)

)

and

K(x, y)(t) = HIq+p g
(
s, x(s), y(s)

)
(t) – λHIp y(t) –

(log t
a )q+p–�(q)

��(q + p)

×
( n∑

j=

βjHIq+p+γj g
(
s, x(s), y(s)

)
(ξj) – λ

n∑

j=

βjHIp+γj y(ξj)

+ λσHIp y(τ) – σHIq+p g
(
s, x(s), y(s)

)
(τ)

)

,

where

� :=
n∑

j=

βj(log
ξj
a )q+p+γj–�(q)

�(q + p + γj)
–

σ�(q)(log τ
a )q+p–

�(q + p)
�= . (.)

For the sake of convenience, we set

A =
m∑

i=

|αi|(ηi – a)p+ρi

�(p + ρi + )
, A =

m∑

i=

|αi|(ηi – a)q+p+ρi

�(q + p + ρi + )
,

A =
n∑

j=

|βj|(log
ξj
a )p+γj

�(p + γj + )
, A =

n∑

j=

|βj|(log
ξj
a )q+p+γj

�(q + p + γj + )

and

M =
A

|�|
(|σ|A + A

)
+ A, M =

|λ|A

|�|
(|σ|A + A

)
+ |λ|A,

M =
A

|�|
(|σ|A + A

)
+ A, M =

|λ|A

|�|
(|σ|A + A

)
+ |λ|A.
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Now we state the existence and uniqueness result for the problem (.). We do not pro-
vide the proof of this result because it is similar to that of Theorem ..

Theorem . Assume that f , g : [, T] ×R
 →R are continuous functions and there exist

constants m̄i, n̄i, i = ,  such that for all t ∈ [a, T] and xi, yi ∈R, i = , ,

∣
∣f (t, x, y) – f (t, x, y)

∣
∣ ≤ m̄|x – x| + m̄|y – y|

and

∣
∣g(t, x, y) – g(t, x, y)

∣
∣ ≤ n̄|x – x| + n̄|y – y|.

Assume, in addition

δ + δ < ,

where

δ = m̄M + m̄M + M,

δ = n̄M + n̄M + M.

Then the boundary value problem (.) has a unique solution.

Example . Consider the system of Langevin equations via the Riemann-Liouville and
Hadamard fractional derivatives and fractional integral conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

RLD/(RLD/ – 
 )x(t) = |x|

(t+) ( |x|
|x|+ + ) + sin y(t)

(t+) – ,

HD/(HD/ + 
 )y(t) = |x| sin(π t)

(+t) + |y| sin(π t)
(+t) ( |y|

|y|+ + ) + 
 ,

x( 
 ) = , 

 x( 
 ) = 

 RLI/x( 
 ) –

√


 RLI/y( 
 ),

y( 
 ) = , 

 y( 
 ) =

√


 HI
√

/y( 
 ) – 

 HI/y( 
 ), 

 ≤ t ≤ 
 .

(.)

Here q = /, q = /, p = /, p = /, λ = –/, λ = /, n = , m = , a = /,
T = /, σ = /, σ = /, τ = /, τ = /, η = /, η = /, ξ = /, ξ = /, α = /,
α = –

√
/, β =

√
/, β = –/, ρ = /, ρ = /, γ =

√
/, γ = /, and f (t, x, y) =

(|x|/(t + ))(|x|/(|x| + ) + ) + ((sin y(t))/(t + )) –  and g(t, x, y) = (|x| sin(π t))/(( +
t)) + (|y| sin(π t))/(( + t))(|y|/(|y| + ) + ) + (/). We have

∣
∣f (t, x, x) – f (t, y, y)

∣
∣ ≤ 


|x – x| +




|y – y|

and

∣
∣g(t, x, x) – g(t, y, y)

∣
∣ ≤ 


|x – x| +




|y – y|.

Then the assumptions of Theorem . are satisfied with m̄ = /, m̄ = /, n̄ = /,
and n̄ = /. By using the Maple program, we can find that

� =
m∑

i=

αi�(q)(ηi – a)q+p+ρi–

�(q + p + ρi)
–

σ�(q)(τ – a)q+p–

�(q + p)
� –. �= ,
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and M � ., M � ., M � ., M � .
with

δ = m̄M + m̄M + M � .,

δ = n̄M + n̄M + M � ..

Therefore, we get

δ + δ � . < .

Hence, by Theorem ., the problem (.) has a unique solution on [/, /].

The second result, dealing with the existence of solutions for the problem (.), is anal-
ogous to Theorem . and is given below.

Theorem . Assume that there exist real constants ui, vi ≥  (i = , ) and u > , v > 
such that ∀xi ∈R (i = , ) we have

∣
∣f (t, x, x)

∣
∣ ≤ u + u|x| + u|x|,

∣
∣g(t, x, x)

∣
∣ ≤ v + v|x| + v|x|.

In addition it is assumed that

l <  and l < ,

where

l = uM + vM + M and l = uM + vM + M.

Then the boundary value problem (.) has at least one solution.

Proof Setting

l = min{ – l,  – l},

the proof is similar to that of Theorem .. So we omit it. �

Example . Consider the system of Langevin equations via the Riemann-Liouville and
Hadamard fractional derivatives and fractional integral conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

RLD/(RLD/ + 
 )x(t) = 

 + |x| sin( π t)
(+t) + |y|

(+t) ( |y|
|y|+ + ),

HD/(HD/ + 
 )y(t) = 

 + |x|
(+t) · ( |x|

|x|+ + ) + cos y(t)
(+t) ,

x(
√


 ) = , √


x(

√


 ) = 
 RLI

√
/x(

√


 ) – 
 RLI/y(

√


 ),

y(
√


 ) = , √

 y(
√


 ) = 

 HI/y(
√


 ) – 

 HI/y(
√


 ),

√


 ≤ t ≤ √
.

(.)
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Here q = /, q = /, p = /, p = /, λ = /, λ = /, n = , m = , a =
√

/,
T =

√
, σ = /

√
, σ = /

√
, τ =

√
/, τ =

√
/, η =

√
/, η =

√
/, ξ =

√
/,

ξ =
√

/, α = /, α = –/, β = /, β = –/, ρ =
√

/, ρ = /, γ = /, γ = /,
and (/) + (|x| sin(π t))/(( + t)) + (|y|/(( + t)))(|y|/(|y| + ) + ) and (/) + (|x|/(( +
t)))(|x|/(|x| + ) + ) + (cos y(t))/(( + t)). We have

∣
∣f (t, x, x)

∣
∣ ≤ 


+


( +

√
)

|x| +


( +
√

)
|x|

and

∣
∣g(t, x, x)

∣
∣ ≤ 


+


( +

√
)

|x| +


( +
√

)
|x|.

By using the Maple program, we can find that

� =
n∑

j=

βj�(q)(log
ξj
a )q+p+γj–

�(q + p + γj)
–

σ�(q)(log τ
a )q+p–

�(q + p)
� –. �= .

Then the assumptions of Theorem . are satisfied with u = /, u = /(+
√

), u =
/( +

√
), v = /, v = /( +

√
), v = /(( +

√
)), M � .,

M � ., M � ., M � ., and

l = uM + vM + M � . < ,

l = uM + vM + M � . < 

and

l = max{ – l,  – l} = max{., .} = ..

Thus all the conditions of Theorem . hold true and consequently by the conclusion of
Theorem ., the problem (.) has at least one solution on [

√
/,

√
].
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