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Abstract
We establish an explicit formula for q-analog of Morley’s congruence.
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1 Introduction
For arbitrary positive integer n, let

[n]q =
 – qn

 – q
=  + q + q + · · · + qn–,

which is the q-analog of an integer n since limq→( – qn)/( – q) = n. Also, for n, m ∈ Z,
define the q-binomial coefficients by

[
n
m

]
q

=
[n]q[n – ]q · · · [n – m + ]q

[m]q[m – ]q · · · []q

when m ≥ , and if m <  we set
[ n

m
]

q = . It is easy to check that

[
n + 

m

]
q

= qm

[
n
m

]
q

+

[
n

m – 

]
q

.

Some combinatorial and arithmetical properties of the binomial sums

n∑
k=

(
n
k

)a

and
n∑

k=

(–)k
(

n
k

)a

have been investigated by several authors (e.g., Calkin [], Cusick [], McIntosh [], Perl-
stadt []). Indeed, we know (cf. [], equations (.) and (.)) that

n∑
k=

(–)k
(

n
k

)

= (–)n
(

n
n

)
(.)
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and

n∑
k=

(–)k
(

n
k

)

= (–)n
(

n
n

)(
n
n

)
. (.)

However, by using asymptotic methods, de Bruijn [] has showed that no closed form
exists for the sum

∑n
k=(–)k(n

k
)a when a ≥ . Wilf proved (in a personal communication

with Calkin; see []) that the sum
∑n

k=
(n

k
)a has no closed form provided that  ≤ a ≤ .

As a q-analog of (.), we have

n∑
k=

(–)kq(n–k)

[
n
k

]

q

= (–)n

[
n
n

]
q

. (.)

Indeed, from the well-known q-binomial theorem (cf. Corollary .. of [])

n∑
k=

[
n
k

]
q

(–)kq(k
)xk = (x; q)n,

where

(x; q)n =

⎧⎨
⎩( – x)( – xq) · · · ( – xqn–), if n ≥ ,

, if n = ,

it follows that

(
x; q)

n = (x; q)n(–x; q)n =

( n∑
k=

[
n
k

]
q

(–)kq(k
)xk

)( n∑
k=

[
n
k

]
q

q(k
)xk

)

=
n∑

m=

xm
n∑

k=

[
n
k

]
q

[
n

m – k

]
q

(–)kq(k
)+(m–k

 ),

whence (.) is derived by comparing the coefficients of xn in the equation above.
As early as , with the help of De Moivre’s theorem, Morley [] proved that

(–)
p–



(
p – 

(p – )/

)
≡ p– (

mod p). (.)

In [], Pan gave a q-analog of Morley’s congruence and showed that

(–)
n–

 q
n–



[
n – 

(n – )/

]
q

≡ (–q; q)
n– –

n – 


( – q)[n]
q
(
mod �n(q)), (.)

where

�n(q) =
∏

≤j≤n
(j,n)=

(
q – eπ ij/n)
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is the nth cyclotomic polynomial. In this section, we shall establish a generalization of
Morley’s congruence (.) proved by Cai and Granville [], Theorem :

p–∑
k=

(–)(a–)k
(

p – 
k

)a

≡ a(p–) (
mod p) (.)

for any prime p ≥  and positive integer a. We also shall obtain a generalization of (.) in
view of (.).

Theorem . Let n be a positive odd integer. Then

n–∑
k=

(–)(a–)kqa(k+
 )

[
n – 

k

]a

q

≡ (–q; q)a
n– +

a(a – )(n – )


( – q)[n]
q
(
mod �n(q)). (.)

Furthermore, we have

qa(n–)/
n–∑
k=

(–)kqa((n–)/–k)

[
n – 

k

]a

q

≡ (–q; q)a
n– +

a(a – )(n – )


( – q)[n]
q
(
mod �n(q)). (.)

Remark Clearly (.) is the special case of (.) in the limiting case q– >  for n = p.

2 Some lemmas
In this section, the following lemmas will be used in the proof of Theorem ..

Lemma .

qkn ≡  – k( – q)[n]q +
k(k – )


( – q)[n]

q
(
mod [n]

q
)
. (.)

Proof

qkn =
k∑

j=

(–)j
(

k
j

)
( – q)j[n]j

q ≡  – k( – q)[n]q +
k(k – )


( – q)[n]

q
(
mod [n]

q
)
.

�

Lemma . Let n be a positive odd integer. Then

(n–)/∑
j=


[j]

q
=

(n–)/∑
j=

qj

[j]
q

+ ( – q)
(n–)/∑

j=


[j]q

≡ –
n – 


( – q) – Qn(, q)( – q)

(
mod �n(q)

)
, (.)

where the q-Fermat quotient is defined by

Qn(m, q) =
(qm; qm)n–/(q; q)n– – 

[n]q
.
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Lemma . Let n be a positive odd integer. Then


(n–)/∑

j=


[j]q

+ Qn(, q) – Qn(, q)[n]q

≡
(

Qn(, q)( – q) +
n – 


( – q)

)
[n]q

(
mod �n(q)). (.)

When n is an odd prime, the above two lemmas have been proved in [], equation (.)
and [], Theorem ., respectively. Of course, clearly the same discussions are also valid
for general odd n.

3 Proofs of Theorem 1.1
In this section, we shall prove (.) and (.).

Proof By the properties of the q-binomial coefficients, we know that

(–)k

[
n – 

k

]
q

=
k∏

j=

[j]q – [n]q

qj[j]q

≡ q–(k+
 )

(
 –

k∑
j=

[n]q

[j]q
+

∑
≤i<j≤k

[n]
q

[i]q[j]q

) (
mod �n(q)).

Thus

(–)akqa(k+
 )

[
n – 

k

]a

q

≡  – a
k∑

j=

[n]q

[j]q
+ a

∑
≤i<j≤k

[n]
q

[i]q[j]q
+

(
a


)( k∑
j=

[n]q

[j]q

) (
mod �n(q)).

Noting that

( k∑
j=


[j]q

)

= 
∑

≤i<j≤k


[i]q[j]q

+
k∑

j=


[j]

q
,

we have

n–∑
k=

(–)(a–)kqa(k+
 )

[
n – 

k

]a

q

≡
n–∑
k=

(–)k

(
 – a

k∑
j=

[n]q

[j]q
+ a

∑
≤i<j≤k

[n]
q

[i]q[j]q
+

(
a


)( k∑
j=

[n]q

[j]q

))

=

(
–a

n–∑
j=

[n]q

[j]q
+ a

∑
≤i<j≤n–

[n]
q

[i]q[j]q
+

(
a


) n–∑
j=

[n]
q

[j]
q

) n–∑
k=j

(–)k

= –a
n–∑
j=
|j

[n]q

[j]q
+ a

∑
≤i<j≤n–

|j

[n]
q

[i]q[j]q
+

(
a


) n–∑
j=
|j

[n]
q

[j]
q

(
mod �n(q)). (.)
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Thus letting a =  in (.), we get

∑
≤i<j≤n–

|j

[n]
q

[i]q[j]q
≡ (–q; q)n– –  +

n–∑
j=
|j

[n]q

[j]q

(
mod �n(q)), (.)

whence by (.) and (.)

∑
≤i<j≤n–

|j


[i]q[j]q

≡ Qn(, q)


+

Qn(, q)


( – q) +
n – 


( – q) (

mod �n(q)
)
.

Recalling (.) and (.), then we obtain

n–∑
k=

(–)(a–)kqa(k+
 )

[
n – 

k

]a

q

≡  + a[n]qQn(, q) +
(

a


)
[n]

qQn(, q) +
(

a


)
n – 


( – q)[n]

q

≡
a∑

j=

(
a
j

)
[n]j

qQn(, q)j +
(

a


)
n – 


( – q)[n]

q

= (–q; q)a
n– +

a(a – )(n – )


( – q)[n]
q
(
mod �n(q)).

Let us turn to (.). Similarly

n–∑
k=

(–)kqa(k+
 )

[
n – 

k

]a

q

– qa(n–)/
n–∑
k=

(–)kqa((n–)/–k)

[
n – 

k

]a

q

=  – qa(n
) +

n–∑
k=

(–)kqa(k+
 )

(
 – qa((n

)–nk))[
n – 

k

]a

q

≡  – qa(n
) +

n–∑
k=

(–)k( – qa((n
)–nk))( – a

k∑
j=

[n]q

[j]q

) (
mod �n(q)).

Recalling (.), then we have

 – qa((n
)–nk) ≡ a

(
n – 


– k

)(
 – qn) +

(
a((n – )/ – k)



)(
 – qn) (

mod �n(q)),

therefore

n–∑
k=

(–)k( – qa((n
)–nk))( – a

k∑
j=

[n]q

[j]q

)

≡ qa(n
) – q–a(n

)

 + qan – a
n–∑
j=

[n]q

[j]q

n–∑
k=j

(–)k
(

n – 


– k
)(

 – qn)

=
qa(n

) – q–a(n
)

 + qan + a( – qn)[n]q

( n–∑
j=
|j

j
[j]q

+
n–∑
j=
�j

n – j
[j]q

) (
mod �n(q)).
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Since

qan =
(
 –

(
 – qn))a ≡  – a

(
 – qn) +

(
a


)(
 – qn) (

mod �n(q))

and


 – a( – qn)

=




 – a( – qn)/

≡ 

(
 + a

(
 – qn)/

) (
mod �n(q)),

we have

qa(n
) – q–a(n

)

 + qan ≡ –
a(n – )( – qn) + a(n – )/ · ( – qn)

 – a( – qn)

≡ –
a(n – )



((
 – qn) +

a + 


(
 – qn)

) (
mod �n(q)).

Noting that

n–∑
j=
|j

j
[j]q

+
n–∑
j=
�j

n – j
[j]q

=
n–∑
j=
|j

j
[j]q

+
n–∑
j=
|j

j
[n – j]q

=
n–∑
j=
|j

(
j

[j]q
+

jqj

[n]q – [j]q

)
≡ n – 


( – q)

(
mod �n(q)

)
,

we have

n–∑
k=

(–)kqa(k+
 )

[
n – 

k

]a

q

– qa(n–)/
n–∑
k=

(–)kqa((n–)/–k)

[
n – 

k

]a

q

≡
(

–
(

a(n – )/


)
–

a(a + )(n – )


+
a(n – )



)(
 – qn)

=
a(n – )


(
 – qn) (

mod �n(q)).

In view of (.), this concludes the proof of (.). �
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