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1 Introduction and results
We shall assume that reader is familiar with the fundamental results and the standard
notations of the Nevanlinna value distribution theory of meromorphic functions (e.g. see
[, ]). In this paper, we use ρ(f ), τ (f ) to denote the order and type of an entire function
f (z), use λ(f ) (λ(f )) to denote the exponent of convergence of zeros (distinct zeros) of f (z),
and use ρ(f ) to denote the hyper-order of f (z) (see []), which is defined to be

ρ(f ) = lim
r→∞

log log T(r, f )
log r

.

The hyper-exponent of convergence of zeros and distinct zeros of f (z) are, respectively,
defined to be (see [])

λ(f ) = lim
r→∞

log log T(r, f )
log r

, λ(f ) = lim
r→∞

log log T(r, f )
log r

.

In addition, we use M to denote a positive constant, not necessarily the same at each oc-
currence. We denote the linear measure of a set E ⊂ (, +∞) by mE =

∫
E dt and the loga-

rithmic measure of E by mlE =
∫

E dt/t, respectively. The upper and the lower logarithmic
density of E are defined by

log dens E = lim
r→∞

ml(E ∩ [, r])
log r

, log dens E = lim
r→∞

ml(E ∩ [, r])
log r

.

For the second order linear differential equation

f ′′ + A(z)f ′ + B(z)f = , (.)
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where A(z) and B(z) �≡  are entire functions of finite order, it is well known that every
solution f �≡  of (.) is of infinite order if ρ(A) < ρ(B) or ρ(B) < ρ(A) ≤ / (see [–]).
For the case of ρ(A) > / and ρ(B) < ρ(A), the possibility of solutions of infinite order
of (.) remains open, many authors have studied the problem (e.g. see [–]). In ,
Laine and Wu proved the following.

Theorem A (see []) Suppose that ρ(B) < ρ(A) < ∞ and that T(r, A) ∼ log M(r, A) as
r → ∞ outside a set of finite logarithmic measure. Then every nonconstant solution f of
(.) is of infinite order.

For the higher order linear differential equation

f (k) + Ak–(z)f (k–) + · · · + A(z)f = F(z), (.)

there are similar results as follows.

Theorem B (see []) Let Aj(z) (j = , . . . , k – ), F(z) �≡  be entire functions. Suppose
that there exists some d ∈ {, . . . , k – } such that max{ρ(F),ρ(Aj) : j �= d} = ρ < ρ(Ad) < ∞
and T(r, Ad) ∼ log M(r, Ad) as r → ∞ outside a set of upper logarithmic density less than
(ρ(Ad) – ρ)/ρ(Ad). Then every transcendental solution f (z) of (.) satisfies λ(f ) = λ(f ) =
ρ(f ) = ∞.

Theorem C (see []) Let Aj(z) (j = , . . . , k – ), F(z) ≡  be entire functions. Suppose that
there exists some d ∈ {, . . . , k – } such that max{ρ(Aj) : j �= , d} < ρ(A) ≤ 

 and that Ad(z)
has a finite deficient value. Then every solution f (z) �≡  of (.) satisfies ρ(A) ≤ ρ(f ) ≤
ρ(Ad).

Then a natural question is: Can we estimate the hyper-order of the solutions of (.) and
(.) under the same condition in Theorems A and B? And: Can we estimate the hyper-
order of the solutions of (.) in Theorem C if ρ(A) > 

 ? Theorems . and . below give
answers to the above questions.

At the same time, many authors have investigated the growth of solutions of (.) and
its non-homogeneous linear differential equation

f ′′ + A(z)f ′ + B(z)f = F(z), (.)

when ρ(A) = ρ(B) and obtained the following results.

Theorem D (see []) Let P(z) and Q(z) be nonconstant polynomials such that P(z) = anzn +
an–zn– + · · · + az + a, Q(z) = bnzn + bn–zn– + · · · + bz + b for some complex numbers
ai, bi (i = , . . . , n) with anbn �=  and let A(z) and A(z) �≡  be entire functions satisfying
ρ(A) < n and ρ(A) < n. Then the following statements hold:

(i) If either arg an �= arg bn or an = cbn with  < c < , then every nonconstant solution f
of

f ′′ + A(z)eP(z)f ′ + A(z)eQ(z)f =  (.)

has infinite order with ρ(f ) ≥ n.
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(ii) Let an = bn and deg(P – Q) = m ≥ , and let the orders of A(z) and A(z) be less
than m. Then every nonconstant solution f of (.) has infinite order with ρ(f ) ≥ m.

(iii) Let an = cbn with c >  and deg(P – cQ) = m ≥ . Suppose ρ(A) < m and
 < ρ(A) < 

 . Then every nonconstant solution of (.) has infinite order with
ρ(f ) ≥ ρ(A).

(iv) Let an = cbn with c >  and let P – cQ be a constant. Suppose that ρ(A) < ρ(A) < 
 .

Then every nonconstant solution of (.) has infinite order with ρ(f ) ≥ ρ(A).

Theorem E (see []) Let a, b be nonzero complex numbers and a �= b, Q(z) be a noncon-
stant polynomial or Q(z) = h(z)ebz , where h(z) �≡  is a polynomial. Then every solution
f �≡  of the equation

f ′′ + eazf ′ + Q(z)f =  (.)

has infinite order and ρ(f ) = .

Theorem F (see []) Suppose that A �≡ , A �≡ , F are entire functions of order less
than one, and the complex constants a, b satisfy ab �=  and b �= a. Then every nontrivial
solution f of

f ′′ + A(z)eazf ′ + A(z)ebzf = F(z) (.)

is of infinite order.

Theorem G (see []) Let P(z) = anzn + · · · + a, Q(z) = bnzn + · · · + b be polynomials of
degree n ≥  where ai, bi (i = , , . . . , n) are complex numbers, and let A(z) �≡ , A(z) �≡ ,
F(z) be entire functions with order less than n. If an �= bn, then every solution f �≡  of

f ′′ + A(z)eP(z)f ′ + A(z)eQ(z)f = F(z) (.)

is of infinite order. Furthermore, if F(z) �≡ , then every solution f of (.) satisfies λ(f ) =
λ(f ) = ρ(f ) = ∞.

Theorem D left us a question: Can we have ρ(f ) = n (n is a positive integer) for every
nontrivial solution of (.) if an �= bn? Theorem E tells us that the question holds if n = .
Many authors investigated the above question but none of them solve the question com-
pletely, and Theorem . completely solves this question. In the following, we give our
results.

Theorem . Let Aj (j = , . . . , k – ), F(z) be entire functions. Suppose that there exists
some d ∈ {, . . . , k – } such that max{ρ(Aj),ρ(F) : j �= d} ≤ ρ(Ad) < ∞, max{τ (Aj) : ρ(Aj) =
ρ(Ad), τ (F)} < τ (Ad) and that T(r, Ad) ∼ log M(r, Ad) as r → ∞ outside a set of r of finite
logarithmic measure. Then we have:

(i) Every transcendental solution f of (.) satisfies ρ(f ) = ρ(Ad), and (.) may have
polynomial solutions f of degree < d.

(ii) If F(z) �≡ , then every transcendental solution f of (.) satisfies
λ(f ) = λ(f ) = ρ(f ) = ρ(Ad).
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(iii) If d = , then every nonconstant solution f of (.) satisfies ρ(f ) = ρ(A).
Furthermore, if F(z) �≡ , then every nonconstant solution f of (.) satisfies
λ(f ) = λ(f ) = ρ(f ) = ρ(A).

Theorem . Let Aj (j = , . . . , k – ), F(z) ≡  be entire functions satisfying max{ρ(Aj) : j �=
, d} < ρ(A) < ρ(Ad) < ∞. Suppose that T(r, A) ∼ log M(r, A) as r → ∞ outside a set of
r of finite logarithmic measure and that Ad has a finite deficient value. Then every solution
f �≡  of (.) satisfies ρ(A) ≤ ρ(f ) ≤ ρ(Ad).

Theorem . Let P(z), Q(z), A(z), A(z), F(z) satisfy the hypotheses of Theorem G. Then
we have:

() If an �= bn, F(z) ≡ , then every solution f �≡  of (.) satisfies ρ(f ) = n.
() If an = cbn (c < ), F(z) �≡ , then every solution f of (.) satisfies

λ(f ) = λ(f ) = ρ(f ) = n.

Remark . Theorems . and . are improvements of Theorems A-C. Theorem . is
an improvement of Theorems D, E and a supplement to Theorems F, G.

2 Lemmas
Lemma . (see [], p.) Let Aj(z) (j = , . . . , k – ), F(z) be entire functions satisfying
max{ρ(Aj),ρ(F) : j = , . . . , k – } ≤ ρ < ∞. Then every solution f of (.) satisfies ρ(f ) ≤ ρ .

Lemma . (see []) Let f (z) be a transcendental meromorphic function, and let α >  be
a given constant. Then for any given constant and for any given ε > :

(i) There exist a constant B >  and a set E ⊂ (,∞) having finite logarithmic measure
such that, for all z satisfying |z| = r /∈ E, we have

∣
∣
∣
∣
f (j)(z)
f (i)(z)

∣
∣
∣
∣ ≤ B

[
T(αr, f )

r
(log r)α log T(αr, f )

]j–i

( ≤ i < j). (.)

(ii) There exist a set H ⊂ [, π ) that has linear measure zero and a constant B >  that
depends only on α, for any θ ∈ [, π )\H, there exists a constant R = R(θ ) >  such
that, for all z satisfying arg z = θ and |z| = r > R, we have

∣
∣
∣
∣
f (j)(z)
f (i)(z)

∣
∣
∣
∣ ≤ B

[
T(αr, f ) log T(αr, f )

]j–i ( ≤ i < j). (.)

Remark . We use E ⊂ (,∞) to denote a set of r of finite logarithmic measure through-
out this paper, not necessarily the same at each occurrence.

Lemma . (see []) Let f (z) be a transcendental entire function, and let zr = reiθr be a
point satisfying |f (zr)| = M(r, f ), then there exists a constant δr >  (depending on r) such
that, for all z satisfying |z| = r /∈ E and arg z = θ ∈ [θr – δr , θr + δr], we have

∣
∣
∣
∣

f (z)
f (j)(z)

∣
∣
∣
∣ ≤ rj (j ∈N). (.)

Lemma . (see []) Let f (z) be an entire function satisfying  < ρ(f ) = ρ < ∞,  < τ (f ) =
τ < ∞. Then for any β < τ , there exists a set E ⊂ [, +∞) that has an infinite logarithmic
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measure such that, for all r ∈ E, we have

log M(r, f ) > βrρ . (.)

Lemma . Let f (z) be a transcendental entire function satisfying  < ρ(f ) = ρ < ∞, τ (f ) =
τ > , and T(r, f ) ∼ log M(r, f ) as r → ∞ outside a set of r of finite logarithmic measure.
Then for any β < τ , there exists a set E ⊂ (,∞) having infinite logarithmic measure and
a set H ⊂ [, π ) with linear measure zero such that, for all z satisfying |z| = r ∈ E and
arg z = θ ∈ [, π )\H, we have

∣
∣f

(
reiθ )∣∣ > exp

{
βrρ

}
. (.)

Proof Since m(r, f ) ∼ log M(r, f ) as r → ∞ (r /∈ E), by the definition of m(r, f ), we see
that there exists a set H ⊂ [, π ) with linear measure zero such that for all z satisfying
arg z = θ ∈ [, π )\H and for any ε > , we have

∣
∣f

(
reiθ )∣∣ > M(r, f )–ε (r /∈ E). (.)

Otherwise, we find that there exists a set H ⊂ [, π ) with positive linear measure, i.e.,
mH >  such that, for all z satisfying arg z = θ ∈ H and for any ε > , one has

∣
∣f

(
reiθ )∣∣ ≤ M(r, f )–ε (r /∈ E).

Then, for all r /∈ E, we have

m(r, f ) =


π

∫ π


log+∣

∣f
(
reiθ )∣∣dθ

=


π

∫

H
log+∣

∣f
(
reiθ )∣∣dθ +


π

∫

[,π )\H
log+∣

∣f
(
reiθ )∣∣dθ

≤ ( – ε)mH
π

log M(r, f ) +
π – mH

π
log M(r, f )

=
π – ε · mH

π
log M(r, f ). (.)

Since ε > , mH > , (.) is a contradiction with m(r, f ) ∼ log M(r, f ).
For any β < τ , we choose β satisfying β < β < τ , by Lemma ., there exists a set E ⊂

(,∞) having infinite logarithmic measure such that, for all |z| = r ∈ E, we have

M(r, f ) > exp
{
βrρ

}
. (.)

By (.) and (.), for any given  < ε <  – β

β
and, for all z satisfying |z| = r ∈ E\E and

arg z = θ ∈ [, π )\H, we have

∣
∣f

(
reiθ )∣∣ > M(r, f )–ε > exp

{
( – ε)βrρ

}
> exp

{
βrρ

}
.

Therefore we complete the proof of Lemma .. �
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Remark . The following lemma is a special case of Lemma  in [].

Lemma . (see []) Let f (z) be a transcendental entire function satisfying  < ρ(f ) = ρ <
∞ and T(r, f ) ∼ log M(r, f ) as r → ∞ outside a set of r of finite logarithmic measure. Then
for any given ε > , there exists a set E ⊂ (,∞) with positive upper logarithmic density
and a set H ⊂ [, π ) with linear measure zero such that, for all z satisfying r ∈ E and
arg z = θ ∈ [, π )\H, we have

∣
∣f

(
reiθ )∣∣ > exp

{
rρ–ε

}
. (.)

Lemma . (see []) Let f (z) be a meromorphic function of finite order ρ , for any given ξ >
 and l ( < l < 

 ), there exist a constant K(ρ, ξ ) and a set Eξ ⊂ (,∞) of lower logarithmic
density greater than  – ξ such that, for all r ∈ Eξ and for J of length l, we have

r
∫

J

∣
∣
∣
∣
f ′(reiθ )
f (reiθ )

∣
∣
∣
∣dθ < K(ρ, ξ )

(

l log

l

)

T(r, f ). (.)

Lemma . (see []) Let Aj (j = , . . . , k – ), F �≡  be entire functions. If f is a solution of
(.) satisfying max{ρ(F),ρ(Aj) : j = , . . . , k – } < ρ(f ), then

λ(f ) = λ(f ) = ρ(f ). (.)

Lemma . (see []) Suppose that P(z) = anzn + · · ·+a is a polynomial with degree n ≥ ,
an ∈C, and that A(z) ( �≡ ) is an entire function with ρ(A) < n. Set g(z) = A(z)eP(z), z = reiθ ,
δ(P, θ ) = δ(anzn, θ ) = Re{aneinθ }. Then for any given ε > , there exists a set H ⊂ [, π ) of
linear measure zero such that for any θ ∈ [, π )\H, there is a constant R(θ ) >  such that
for |z| = r > R(θ ), we have:

(i) If δ(P, θ ) > , then

exp
{

( – ε)δ(P, θ )rn} <
∣
∣g

(
reiθ )∣∣ < exp

{
( + ε)δ(P, θ )rn}. (.)

(ii) If δ(P, θ ) < , then

exp
{

( + ε)δ(P, θ )rn} <
∣
∣g

(
reiθ )∣∣ < exp

{
( – ε)δ(P, θ )rn}. (.)

3 Proofs of Theorems 1.1-1.3
Proof of Theorem . (i) By Lemma ., we know that every solution f of (.) satisfies
ρ(f ) ≤ ρ(Ad). In the following, we show that every transcendental solution f (z) of (.)
satisfies ρ(f ) ≥ ρ(Ad). Suppose that f (z) is a transcendental solution of (.). By (.), we
have

|Ad| ≤
∣
∣
∣
∣
f (k)

f (d)

∣
∣
∣
∣ + · · · +

∣
∣
∣
∣Ad+

f (d+)

f (d)

∣
∣
∣
∣ +

∣
∣
∣
∣

f
f (d)

∣
∣
∣
∣

(∣
∣
∣
∣Ad–

f (d–)

f

∣
∣
∣
∣ + · · · + |A| +

∣
∣
∣
∣
F
f

∣
∣
∣
∣

)

. (.)

For each sufficiently large circle |z| = r, we take a point zr = reiθr satisfying |f (zr)| = M(r,
f ) > . By Lemma ., there exist a constant δr >  and a set E such that, for all z satisfying
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|z| = r /∈ E and arg z = θ ∈ [θr – δr , θr + δr], we have

∣
∣
∣
∣

f (z)
f (d)(z)

∣
∣
∣
∣ ≤ rd. (.)

By Lemma ., there exist a set H ⊂ [, π ) having linear measure zero and a constant
B >  such that, for all z satisfying arg z = θ ∈ [θr – δr , θr + δr]\H and for sufficiently large
r, we have

∣
∣
∣
∣
f (j)(z)
f (i)(z)

∣
∣
∣
∣ ≤ B

[
T(r, f )

]k ( ≤ i < j ≤ k). (.)

We choose α, α satisfying max{τ (Aj) : ρ(Aj) = ρ(Ad), τ (F)} < α < α < τ (Ad), since |f (z) –
f (zr)| < ε and |f (zr)| → ∞ as r → ∞, for all sufficiently large |z| = r /∈ E and arg z = θ ∈
[θr – δr , θr + δr], we have

∣
∣Aj(z)

∣
∣ ≤ exp

{
αrρ(Ad)} (j �= d),

∣
∣
∣
∣
F(z)
f (z)

∣
∣
∣
∣ ≤ ∣

∣F(z)
∣
∣ ≤ exp

{
αrρ(Ad)}. (.)

Since T(r, Ad) ∼ log M(r, Ad) as r → ∞ (r /∈ E), by Lemma ., for any α < τ (Ad), there
exist a set E ⊂ (,∞) having infinite logarithmic measure and a set H ⊂ [, π ) with
linear measure zero such that for all z satisfying |z| = r ∈ E and arg z = θ ∈ [θr – δr , θr +
δr]\H, we have

∣
∣Ad(z)

∣
∣ > exp

{
αrρ(Ad)}. (.)

Substituting (.)-(.) into (.), for all z satisfying |z| = r ∈ E\E and arg z = θ ∈ [θr –
δr , θr + δr]\(H ∪ H), we have

exp
{
αrρ(Ad)} ≤ (k + )B

[
T(r, f )

]k · rd · exp
{
αrρ(Ad)}. (.)

From (.), we have ρ(f ) ≥ ρ(Ad). Therefore every transcendental solution f (z) of (.)
satisfies ρ(f ) = ρ(Ad). If f (z) is a polynomial solution of (.) with deg f ≥ d, then by a
simple estimation on both sides of (.), we have ρ(f (k) + Ak–f (k–) + · · · + Af ) = ρ(F) <
ρ(Ad), this is a contradiction, therefore each polynomial solution f of (.) must satisfy
deg f < d.

(ii) If F �≡ , by Lemma ., we have that every transcendental solution f (z) of (.) sat-
isfies λ(f ) = λ(f ) = ρ(f ) = ρ(Ad).

(iii) If d = , it is easy to see that (.) cannot have polynomial solutions, and by (i) and
(ii), we see that every nonconstant solution f (z) of (.) satisfies ρ(f ) = ρ(A) and λ(f ) =
λ(f ) = ρ(f ) = ρ(A) if F �≡ . �

Proof of Theorem . Suppose that Ad(z) has a ∈ C as a finite deficient value and satis-
fying δ(a, Ad) = β > . Then by the definition of deficiency, for sufficiently large r, we
have m(r, 

Ad–a ) > βT(r, Ad). Hence, for sufficiently large r, there exists a point zr = reiθr

satisfying |zr| = r and

log
∣
∣Ad(zr) – a

∣
∣ < –βT(r, Ad). (.)
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Without loss of generality, we assume that a = . Set zr = reiθr , by Lemma ., for any
given ξ ( < ξ < ) and for any given l ( < l < 

 ), there exists a set Eξ ⊂ (,∞) of lower
logarithmic density greater than  – ξ such that, for all z satisfying |z| = r ∈ Eξ and arg z =
θ ∈ [θr , θr + l], we have

r
∫ θr+l

θr

∣
∣
∣
∣
A′

d(reiθ )
Ad(reiθ )

∣
∣
∣
∣dθ < K

(
ρ(Ad), ξ

)
(

l log

l

)

T(r, Ad). (.)

We choose l sufficiently small such that K(ρ(Ad), ξ )(l log 
l ) < β , then, for all θ ∈ [θr , θr + l],

we have

log
∣
∣Ad

(
reiθ )∣∣ = log

∣
∣Ad

(
reiθr

)∣∣ +
∫ θ

θr

d
dt

log
∣
∣Ad

(
reit)∣∣dt

≤ –βT(r, Ad) + r
∫ θ

θr

∣
∣
∣
∣
A′

d(reit)
Ad(reit)

∣
∣
∣
∣|dt|

≤ –βT(r, Ad) + K
(
ρ(Ad), ξ

)
(

l log

l

)

T(r, Ad) ≤ . (.)

In general, if a �= , then Ad(z) – a has zero as a deficient value, and using the reasoning
above to Ad(z) – a, we have

log
∣
∣Ad

(
reiθ ) – a

∣
∣ ≤  (.)

holds, for all |z| = r ∈ Eξ and arg z = θ ∈ [θr , θr + l]. From (.), we have
∣
∣Ad

(
reiθ )∣∣ ≤ |a| +  (.)

holds, for all z satisfying |z| = r ∈ Eξ and arg z = θ ∈ [θr , θr + l]. Let f �≡  be a solution of
(.). By (.), we have

∣
∣A(z)

∣
∣ ≤

∣
∣
∣
∣
f (k)(z)
f (z)

∣
∣
∣
∣ + · · · +

∣
∣
∣
∣Ad(z)

f (d)(z)
f (z)

∣
∣
∣
∣ + · · · +

∣
∣
∣
∣A(z)

f ′(z)
f (z)

∣
∣
∣
∣. (.)

By Lemma ., there exists a set H ⊂ [, π ) having linear measure zero and a constant
B >  such that, for all z satisfying arg z = θ ∈ [θr , θr + l]\H and for all sufficiently large r,
we have

∣
∣
∣
∣
f (j)(z)
f (z)

∣
∣
∣
∣ ≤ B

[
T(r, f )

]k (j = , . . . , k). (.)

Since T(r, A) ∼ log M(r, A) as r → ∞ (r /∈ E), by Lemma ., for any given ε > , there
exists a set E ⊂ (,∞) with positive upper logarithmic density and a set H ⊂ [, π ) with
linear measure zero such that, for all z satisfying |z| = r ∈ E and arg z = θ ∈ [θr , θr + l]\H,
we have

∣
∣A

(
reiθ )∣∣ ≥ exp

{
rρ(A)–ε

}
. (.)

Set max{ρ(Aj), j �= , d} = b < ρ(A), then for any given ε ( < ε < ρ(A) – b) and, for all
sufficiently large |z| = r, we have

∣
∣Aj(z)

∣
∣ < exp

{
rb+ε

}
(j �= , d). (.)
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Substituting (.), (.)-(.) into (.), for all |z| = r ∈ (Eξ ∩ E)\E and arg z = θ ∈
[θr , θr + l]\(H ∪ H), we have

exp
{

rρ(A)–ε
} ≤ kB

[
T(r, f )

]k · exp
{

rb+ε
}

, (.)

where (Eξ ∩E)\E is a set having positive upper logarithmic density. From (.), we have
ρ(f ) ≥ ρ(A). On the other hand, by Lemma ., we see that ρ(f ) ≤ ρ(Ad) holds, for all
solutions of (.). Therefore, each solution f �≡  of (.) satisfies ρ(A) ≤ ρ(f ) ≤ ρ(Ad).

�

Proof of Theorem . () By Lemma ., it is easy to see that every solution f �≡  of (.)
satisfies ρ(f ) ≤ n and that (.) has no polynomial solutions by the assumption. In the
following, we need to show that every transcendental solution f of (.) satisfies ρ(f ) ≥ n.
We divide the proof into two parts: (i) arg an �= arg bn or an = cbn ( < c < ), (ii) an = cbn

(c > ).
(i) arg an �= arg bn or an = cbn ( < c < ). By Theorem D(i), every solution f �≡  of (.)

satisfies ρ(f ) ≥ n.
(ii) an = cbn (c > ). We have δ(anzn, θ ) = cδ(bnzn, θ ) (c > ). For each sufficiently large

circle |z| = r, if zr = reiθr is a point satisfying |f (zr)| = M(r, f ), then we affirm that for any
given (sufficiently small in general) δr > , we have [θr – δr , θr + δr] ∩ {θ : δ(anzn, θ ) > } �= ∅
and m([θr – δr , θr + δr] ∩ {θ : δ(anzn, θ ) > }) > . On the contrary, if zr = reiθr is a point
satisfying |f (zr)| = M(r, f ), and there exists a δ >  (depending on r, in the same way as
the following δj, j = , , , ) such that [θr – δ, θr + δ] ∩ {θ : δ(anzn, θ ) > } = ∅, i.e., [θr –
δ, θr + δ] ⊂ {θ : δ(anzn, θ ) ≤ }, we will get a contradiction. In fact, we can choose a δ > 
(δ < δ) such that [θr – δ, θr + δ] ⊂ {θ : δ(anzn, θ ) < }, by (.), we have

∣
∣AeP(z)∣∣

∣
∣
∣
∣

f ′(z)
f ′′(z)

∣
∣
∣
∣ +

∣
∣AeQ(z)∣∣

∣
∣
∣
∣

f (z)
f ′′(z)

∣
∣
∣
∣ ≥ . (.)

On each sufficiently large circle |z| = r, we take a point zr = reiθr such that |f (zr)| = M(r, f )
and [θr – δ, θr + δ] ⊂ {θ : δ(anzn, θ ) < }. By Lemma ., there exists a constant δ =
min{δ, δ} >  such that for all z satisfying |z| = r /∈ E and arg z = θ ∈ [θr – δ, θr + δ],
we have

∣
∣
∣
∣

f (z)
f ′′(z)

∣
∣
∣
∣ ≤ r,

∣
∣
∣
∣

f ′(z)
f ′′(z)

∣
∣
∣
∣ ≤ r. (.)

Since max{ρ(A),ρ(A)} < n, by Lemma ., for any given ε > , there exists a set H ⊂
[, π ) of linear measure zero such that, for all z satisfying |z| = r /∈ E and arg z = θ ∈
[θr – δ, θr + δ]\H, we have

∣
∣AeQ(z)∣∣

∣
∣
∣
∣

f (z)
f ′′(z)

∣
∣
∣
∣ ≤ r · exp

{
( – ε)δ

(
bnzn, θ

)
rn} →  (r → ∞), (.)

∣
∣AeP(z)∣∣

∣
∣
∣
∣

f ′(z)
f ′′(z)

∣
∣
∣
∣ ≤ r · exp

{
( – ε)δ

(
anzn, θ

)
rn} →  (r → ∞). (.)

Substituting (.)-(.) into (.), we get  ≤ , this is a contradiction. Therefore, for
each sufficiently large circle |z| = r /∈ E, if zr = reiθr is a point satisfying |f (zr)| = M(r, f ),
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then for any given (sufficiently small) δr > , we have [θr –δr , θr +δr]∩{θ : δ(anzn, θ ) > } �= ∅
and m([θr – δr , θr + δr] ∩ {θ : δ(anzn, θ ) > }) > . Then by (.), we have

∣
∣AeP(z)∣∣ ≤

∣
∣
∣
∣
f ′′(z)
f ′(z)

∣
∣
∣
∣ +

∣
∣AeQ(z)∣∣

∣
∣
∣
∣

f (z)
f ′(z)

∣
∣
∣
∣. (.)

On each sufficiently large circle |z| = r /∈ E, we choose a point zr = reiθr such that |f (zr)| =
M(r, f ) and m([θr – δr , θr + δr] ∩ {θ : δ(anzn, θ ) > }) > . By Lemma . and Lemma ., for
all z satisfying arg z = θ ∈ [θr – δr , θr + δr]\H, we have

∣
∣
∣
∣
f ′′(z)
f ′(z)

∣
∣
∣
∣ < B

[
T

(
r, f ′)] ≤ B

[
T(r, f ) + M{log r}],

∣
∣
∣
∣

f (z)
f ′(z)

∣
∣
∣
∣ ≤ r (r /∈ E). (.)

Since δ(anzn, θ ) = cδ(bnzn, θ ) > , by Lemma ., for any given ε ( < ε < c–
c+ ), there exists

a set H ⊂ [, π ) of linear measure zero such that, for all z satisfying |z| = r /∈ E and
arg z = θ ∈ [θr – δr , θr + δr]\(H ∪ H), we have

∣
∣AeQ(z)∣∣ ≤ exp

{
( + ε)δr

(
bnzn, θ

)
rn},

∣
∣AeP(z)∣∣ ≥ exp

{
( – ε)c · δr

(
bnzn, θ

)
rn}.

(.)

Substituting (.) and (.) into (.), for any given ε ( < ε < c–
c+ ) and for sufficiently

large r /∈ E, we have

exp
{

( – ε)c · δr
(
bnzn, θ

)
rn}

≤ B
[
T(r, f ) + M{log r}] + r · exp

{
( + ε)δr

(
bnzn, θ

)
rn}. (.)

By (.), we have ρ(f ) ≥ n.
Combining (i) and (ii), we have every solution f �≡  of (.) satisfies ρ(f ) = n.
() By Lemma ., it is easy to see that every solution f of (.) satisfies ρ(f ) ≤ n. It is

easy to know that (.) has no polynomial solutions by the assumption. In the following, we
need to show that every transcendental solution f of (.) satisfies ρ(f ) ≥ n. Since an = cbn

(c < ), then we have {θ : δ(anzn, θ ) > }∩{θ : δ(bnzn, θ ) > } = ∅ and {θ : δ(anzn, θ ) > }∪{θ :
δ(bnzn, θ ) > } ∪ H = [, π ), where H ⊂ [, π ) is a set of linear measure zero. For each
sufficiently large circle |z| = r, we have if zr = reiθr is a point satisfying |f (zr)| = M(r, f ), for
any given δ > , set I = [θr –δ, θr +δ], then we have either m(I ∩{θ : δ(anzn, θ ) > }) >  or
m(I ∩ {θ : δ(anzn, θ ) < }) > . We divide the proof into two cases: (i) m(I ∩ {θ : δ(anzn, θ ) >
}) > , (ii) m(I ∩ {θ : δ(anzn, θ ) < }) > .

(i) m(I ∩ {θ : δ(anzn, θ ) > }) > . Suppose that f (z) is a transcendental solution of (.),
by (.), we have

∣
∣AeP(z)∣∣ ≤

∣
∣
∣
∣
f ′′(z)
f ′(z)

∣
∣
∣
∣ +

∣
∣AeQ(z)∣∣

∣
∣
∣
∣

f (z)
f ′(z)

∣
∣
∣
∣ +

∣
∣
∣
∣
F(z)
f (z)

f (z)
f ′(z)

∣
∣
∣
∣. (.)

On each sufficiently large circle |z| = r, we choose a point zr = reiθr satisfying |f (zr)| =
M(r, f ). By Lemma . and Lemma ., there exists a constant δ = min{δr , δ} >  such
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that, for all z satisfying |z| = r /∈ E and arg z = θ ∈ [θr – δ, θr + δ]\H, we have

∣
∣
∣
∣
f ′′(z)
f ′(z)

∣
∣
∣
∣ ≤ B

[
T(r, f ) + M{log r}],

∣
∣
∣
∣

f (z)
f ′(z)

∣
∣
∣
∣ ≤ r,

∣
∣
∣
∣
F(z)
f (z)

∣
∣
∣
∣ ≤ ∣

∣F(z)
∣
∣ ≤ exp

{
rα

}
(α < n).

(.)

Since max{ρ(A),ρ(A)} < n, by Lemma ., for any given ε > , there exists a set H ⊂
[, π ) of linear measure zero such that, for all z satisfying arg z = θ ∈ [θr – δ, θr + δ]\H,
we have

∣
∣AeQ(z)∣∣

∣
∣
∣
∣

f (z)
f ′(z)

∣
∣
∣
∣ ≤ r · exp

{
( – ε)δr

(
bnzn, θ

)
rn} →  (r → ∞), (.)

∣
∣AeP(z)∣∣ ≥ exp

{
( – ε)δr

(
anzn, θ

)
rn} (r → ∞). (.)

Substituting (.)-(.) into (.), for any given ε (> ) and for sufficiently large r /∈ E,
we have

exp
{

( – ε)δr
(
anzn, θ

)
rn} ≤ B

[
T(r, f ) + M{log r}] + M + r · exp

{
rα

}
. (.)

By (.), we have ρ(f ) ≥ n.
(ii) m(I ∩ {θ : δ(anzn, θ ) < }) > . Replacing |AeP(z)| with |AeQ(z)| on the left side of

(.) and by the same reasoning in case (i), we can obtain ρ(f ) ≥ n for every transcen-
dental solution of (.).

Combining (i) and (ii), every solution f of (.) satisfies ρ(f ) = n. Since F(z) �≡ , by
Lemma ., every solution f of (.) satisfies λ(f ) = λ(f ) = ρ(f ) = n. �
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