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Abstract
In this paper, we consider the Barnes-type q-Euler polynomials which are derived
from the fermionic p-adic q-integrals and investigate some identities of these
polynomials. Furthermore, we define the Barnes-type q-Changhee polynomials and
numbers, and we derive some identities related with the Barnes-type q-Euler
polynomials and the Barnes-type q-Changhee polynomials.
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1 Introduction
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will, respec-
tively, denote the rings of p-adic integers, the fields of p-adic numbers, and the comple-
tion of the algebraic closure of Qp. The p-adic norm | · |p is normalized as |p|p = 

p . The
space of continuous functions on Zp is denoted by C(Zp). Let q be an element in Cp with
| – q|p < p– 

p– . The q-number of x is defined by [x]q = –qx

–q . For f ∈ C(Zp), the fermionic
p-adic integral on Zp is defined by Kim,

I–q(f ) =
∫
Zp

f (x) dμ–q(x) = lim
N→∞


[pN ]–q

pN –∑
x=

f (x)(–q)x (see [–]), ()

where [x]–q = –(–q)x

+q . From (), we note that

qnI–q(fn) + (–)n–I–q(f ) = []q

n–∑
l=

(–)n––lqlf (l), ()

where fn(x) = f (x + n) (n ≥ ). In particular, for n = ,

qI–q(f) + I–q(f ) = []qf (). ()

We note that
∫
Zp

e(x+y)t dμ–q(y) =
[]q

qet + 
ext . ()
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As is well known, the q-Euler polynomials are defined by Kim,

[]q

qet + 
ext =

∞∑
n=

En,q(x)
tn

n!
(see [, , , ]). ()

When x = , En,q = En,q() are called the q-Euler numbers. We note that limq→ En,q(x) =
En(x), where En(x) are called the Euler polynomials which are defined by the generating
function,


et + 

ext =
∞∑

n=

En(x)
tn

n!
.

The Stirling number of the first kind is given by the generating function,

(x)m =
m∑

l=

S(m, l)xl (m ≥ ) ()

and the Stirling number of the second kind is defined by the generating function,

(
et – 

)m = m!
∞∑

l=m

S(l, m)
tl

l!
(m ≥ ) (see [, , , ]). ()

In [], Kim () presented the generating functions related to the q-Euler polynomi-
als of higher order and gave some interesting identities involving these polynomials. In [],
Bayad and Kim () studied some relations involving values of q-Bernoulli, q-Euler, and
Bernstein polynomials (see [–, , , –, , ]). Recently, Kim et al. studied some
identities for q-analogs of the Changhee polynomials (see [, ]), for various degenerate
Bernoulli polynomials (see [, , , ]), and for q-analogs of the Boole polynomials
(see [, ]).

In recent years, a lot of people have studied various types of q-Euler polynomials and
obtained many results which are interesting in number theory and combinatorics. To cite
a few, in [] one obtained eight basic identities of symmetry in three variables related to
the q-Euler polynomials and a q-analog of alternating power sums. The derivation is based
on the p-adic q-integrals in our case but on the p-adic integrals in []. In [], some combi-
natorial identities involving q-Euler numbers and polynomials were obtained by adopting
the ideas from []. It is fascinating that very recently some degenerate versions of many
important polynomials were studied and some interesting results were obtained including
the degenerate q-Euler polynomials. The aim of this paper is to define Barnes-type q-Euler
numbers and polynomials in terms of p-adic q-integrals and to derive Witt-type formu-
las for them. Further, we find the connection between Barnes-type q-Euler polynomials
and Barnes-type Frobenius polynomials and Barnes-type q-Changhee polynomials. This
generalizes the Euler polynomials introduced in [] by Kim.

In a forthcoming paper, we would like to give some of the applications of our results to
symmetric identities involving Barnes-type q-Euler numbers and polynomials, to deriva-
tion of many identities of combinatorial nature. Also, we will investigate further proper-
ties, recurrence relations, and combinatorial identities for the Barnes-type polynomials
by utilizing umbral calculus and degenerate versions of them.
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The main results of this paper are some identities of the Barnes-type q-Euler polyno-
mials. Furthermore, we define the Barnes-type q-Changhee polynomials and numbers,
and we derive some identities related with the Barnes-type q-Euler polynomials and the
Barnes-type q-Changhee polynomials.

2 The Barnes-type q-Euler polynomials and numbers
Let w, . . . , wr ∈Cp. The Barnes-type Euler polynomials are defined by the generating func-
tion

r∏
l=

(


ewit + 

)
ext =

∞∑
n=

En(x|w, . . . , wr)
tn

n!
. ()

When x = , En(w, . . . , wr) = En(|w, . . . , wr) are called the Barnes-type Euler numbers
(see [, , , , , , , –]). By (), we get

∫
Zp

· · ·
∫
Zp

e(wx+···+wrxr+x)t dμ–q(x) · · · dμ–q(xr) =
r∏

l=

(
[]q

qewlt + 

)
ext , ()

for |t|p < p– 
p– . From (), the Barnes-type q-Euler polynomials are defined by the gener-

ating function,

[]r
q

r∏
l=

(


qewt + 

)
ext =

∞∑
n=

En,q(x|w, . . . , wr)
tn

n!
. ()

When x = , En,q(w, . . . , wr) = En,q(|w, . . . , wr) are called the Barnes-type q-Euler num-
bers. By () and (), we get

∞∑
n=

En,q(x|w, . . . , wr)
tn

n!

=
∫
Zp

· · ·
∫
Zp

e(wx+···+wrxr+x)t dμ–q(x) · · · dμ–q(xr)

=
∞∑

n=

∫
Zp

· · ·
∫
Zp

(wx + · · · + wrxr + x)n dμ–q(x) · · · dμ–q(xr)
tn

n!
. ()

From (), we obtain the following theorem.

Theorem . For n ≥ , we have

En,q(x|w, . . . , wr) =
∫
Zp

· · ·
∫
Zp

(wx + · · · + wrxr + x)n dμ–q(x) · · · dμ–q(xr). ()

From (), we note that

En,q(w, . . . , wr) =
∫
Zp

· · ·
∫
Zp

(wx + · · · + wrxr)n dμ–q(x) · · · dμ–q(xr). ()
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Now, we observe that

∞∑
n=

En,q(x|w, . . . , wr)
tn

n!
=

( + q)r

(qewt + ) · · · (qewrt + )
ext

=
( + q–)r

(ewt + q–) · · · (ewrt + q–)
ext

=
∞∑

n=

Hn
(
x, –q–|w, . . . , wr

) tn

n!
, ()

where Hn(x, u|w, . . . , wr) are called the Barnes-type Frobenius-Euler polynomials defined
by the generating function,

( – u)r

(ewt – u) · · · (ewrt – u)
ext =

∞∑
n=

Hn(x, u|w, . . . , wr)
tn

n!
(see [, ]). ()

Therefore, by (), we obtain the following theorem.

Theorem . Let n ≥ , we have

En,q(x|w, . . . , wr) = Hn
(
x, –q–|w, . . . , wr

)
. ()

Let n ≥  and d ∈ N with d ≡  (mod ). By (), we get

qdI–q(fd) + I–q(f ) = []q

d–∑
l=

(–q)lf (l). ()

By (), we get

∞∑
n=

En,q(x|w, . . . , wr)
tn

n!

=
(

[]q

[]qd

)∫
Zp

· · ·
∫
Zp

e(wx+···+wrxr+x)t dμ–q(x) · · · dμ–q(xr)

=
(

[]q

[]qd

) r∏
l=

(
[]q

qdewldt + 

) d–∑
l,...,lr=

(–q)l+···+lr e(wl+···+wrlr+x)t

=
(

[]q

[]qd

)( ∞∑
m=

Em,qd (dw, . . . , dwr)
tm

m!

)

×
d–∑

l,...,lr=

(–q)l+···+lr
∞∑

k=

(wl + · · · + wrlr + x)k tk

k!

=
∞∑

n=

(
[]q

[]qd

)( n∑
k=

(
n
k

) d–∑
l,...,lr=

(–q)l+···+lr (wl + · · · + wrlr + x)k

× En–k,qd (dw, . . . , dwr)

)
tn

n!
. ()

Thus, by (), we obtain the following theorem.
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Theorem . Let n ≥ . Then, for positive integer d with d ≡  (mod ),

En,q(x|w, . . . , wr)

=
(

[]q

[]qd

) n∑
k=

(
n
k

) d–∑
l,...,lr=

(–q)l+···+lr (wl + · · · + wl + x)k

× En–k,qd (dw, . . . , dwr). ()

We note that in [], the authors considered the q-extensions of Changhee polynomials
which are derived from the fermionic p-adic q-integral on Zp, and they gave some identi-
ties for these polynomials. Finally, we consider the Barnes-type q-Changhee polynomials.
By (), we note that, for l = , . . . , r,

∫
Zp

( + t)wlx dμ–q(x) =
[]q

q( + t)wl + 
, ()

where |t|p < p– 
p– . By (), we get

∫
Zp

· · ·
∫
Zp

( + t)wx+···+wrxr+x dμ–q(x) · · · dμ–q(xr) =
r∏

l=

[]q

q( + t)wl + 
( + t)x. ()

From (), the Barnes-type q-Changhee polynomials are defined by the generating func-
tion,

r∏
l=

[]q

q( + t)wl + 
( + t)x =

∞∑
n=

Chn,q(x|w, . . . , wr)
tn

n!
. ()

When x = , Chn,q(w, . . . , wr) = Chn,q(|w, . . . , wr) are called the Barnes-type q-Changhee
numbers (see [, , , ]). By () and (), we have

∞∑
n=

Chn,q(x|w, . . . , wr)
tn

n!

=
∫
Zp

· · ·
∫
Zp

( + t)wx+···+wrxr+x dμ–q(x) · · · dμ–q(xr)

=
∞∑

n=

∫
Zp

· · ·
∫
Zp

(
wx + · · · + wrxr + x

n

)
tn dμ–q(x) · · · dμ–q(xr)

=
∞∑

n=

∫
Zp

· · ·
∫
Zp

(wx + · · · + wrxr + x)n dμ–q(x) · · · dμ–q(xr)
tn

n!

=
∞∑

n=

n∑
l=

∫
Zp

· · ·
∫
Zp

S(n, l)(wx + · · · + wrxr + x)l dμ–q(x) · · · dμ–q(xr)
tn

n!

=
∞∑

n=

n∑
l=

S(n, l)El,q(x|w, . . . , wr)
tn

n!
. ()

By (), we obtain the following theorem.
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Theorem . Let n ≥ . Then we have

Chn,q(x|w, . . . , wr) =
n∑

l=

S(n, l)El,q(x|w, . . . , wr). ()

By replacing t by et – , we have

r∏
l=

[]q

qewlt + 
ext =

∞∑
m=

Chm,q(x|w, . . . , wr)
(et – )m

m!

=
∞∑

m=

Chm,q(x|w, . . . , wr)


m!
m!

∞∑
n=m

S(n, m)
tm

m!

=
∞∑

n=

n∑
m=

S(n, m)Chm,q(x|w, . . . , wr)
tn

n!
. ()

By () we obtain the following theorem.

Theorem . Let n ≥ . Then we have

En,q(x|w, . . . , wr) =
n∑

m=

S(n, m)Chn,q(x|w, . . . , wr). ()
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