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1 Introduction
Recently, spatially discrete systems have drawn considerable attention, especially in the
study of biological systems, atomic chains, solid state physics, electrical lattices, and Bose-
Einstein condensates. The different dynamical behavior of spatially discrete systems has
been studied in many works, such as [–] for traveling waves solutions, [–] for chaos
behavior and [–] for global attractors. In particularly, the discrete complex Ginzburg-
Landau equation is encountered in several diverse branches of physics, ranging from su-
perconductivity and nonlinear optics, to Bose-Einstein condensates. One of the most in-
teresting applications is the description of the dynamical behavior of discrete complex
Ginzburg-Landau equations. The existence of attractors for discrete complex Ginzburg-
Landau equations is considered in [, ].

However, scientific and engineering systems are often subject to uncertainty or random
influence. Therefore, it is significant and of prime importance to introduce random ef-
fects in the models. These random effects are not only introduced to compensate for the
defects in some deterministic models, but also are often rather intrinsic phenomena. For
example [] has studied the Bose-Einstein condensation far from thermal equilibrium by
solving the complex Ginzburg-Landau equation with a stochastic term. The existence of
global random attractor was extensively studied, in [–] for systems with additive or
multiplicative white noises on infinite lattice, in [, ] for systems with non-Gaussian
noises on infinite lattice and especially in [] for stochastic discrete Ginzburg-Landau
equations with additive white noise. Note that these works only deal with autonomous
systems which do not contain deterministic non-autonomous terms. When a stochastic
equation does not contain deterministic non-autonomous terms, one can associate a ran-
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dom dynamical system with the equation over a probability space and then discuss the
existence of random attractors of the system. The probability space can be considered
as a parametric space. However, when dealing with stochastic equations with determin-
istic non-autonomous terms, we need two parametric spaces. One space is a nonempty
set responsible for the deterministic non- autonomous terms; while the other space is a
probability space responsible for the stochastic terms. The existence of random attrac-
tors for non-autonomous random dynamical systems was first proved in [] and then in
[–]. To the best of our knowledge, there are no results on the existence of random
attractors for stochastic discrete complex non-autonomous Ginzburg-Landau equation
with multiplicative noise. On the basis of this, this article is devoted to the discussion of
this problem.

This paper is organized as follows. In Section , we introduce basic concepts concerning
random dynamical systems and random attractors for non-autonomous random dynam-
ical systems. In Section , we show the existence and uniqueness of the random attractor
for stochastic discrete complex non-autonomous Ginzburg-Landau equation with multi-
plicative noise.

2 Theory of random attractor
In this section, we recall some results on random attractors for non-autonomous random
dynamical systems with two parametric spaces from [, ]. This sort of dynamical sys-
tems can be generated by differential equations with both non-autonomous deterministic
and stochastic external terms. All results given in this section are not original and they
are presented here just for the reader’s convenience. We also refer the reader to [–]
for the theory of random attractors for autonomous random dynamical systems with one
parametric space.

Let (�,F , P) be a probability space and θ : R× � → � be a (B(R) ×F ,F )-measurable
mapping such that θ (, ·) is the identity on �, θ (s + t, ·) = θ (t, ·) ◦ θ (s, ·) for all t, s ∈ R and
Pθ (t, ·) = P for all t ∈ R. We usually write θ (t, ·) as θt and call (�,F , P, {θt}t∈R) a metric
dynamical system.

Let (X, d) be a complete separable metric space with Borel σ -algebra B(X). Given r > 
and D ⊆ X, the neighborhood of D with radius r is written as Nr(D). Denote by X the
collection of all subsets of X. A set-valued mapping K : R× � → X is called measurable
with respect to F in � if the value K(τ ,ω) is a closed nonempty subset of X for all τ ∈ R

and ω ∈ �, and the mapping ω ∈ � → d(x, K(τ ,ω)) is (F ,B(R))-measurable for every fixed
x ∈ X and τ ∈ R. If K is measurable with respect to F in �, then we say that the family
{K(τ ,ω) : τ ∈R,ω ∈ �} is measurable with respect to F in �. We now define a cocycle on
X over two parametric spaces.

Definition . Let (�,F , P, {θt}t∈R) be a metric dynamical system. A mapping �: R+ ×
R× � × X → X is called a continuous cocycle on X over R and (�,F , P, {θt}t∈R) if for all
τ ∈R, ω ∈ � and t, s ∈R

+, the following conditions (i)-(iv) are satisfied:
(i) �(·, τ , ·, ·) : R+ × � × X → X is (B(R+) ×F ×B(X), B(X))-measurable;

(ii) �(, τ ,ω, ·) is the identity on X ;
(iii) �(t + s, τ ,ω, ·) = �(t, τ + s, θsω, ·) ◦ �(s, τ ,ω, ·);
(iv) �(t, τ ,ω, ·) : X → X is continuous.
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If, in addition, there exists a positive number T such that for every t ∈ R
+, τ ∈ R and

ω ∈ �,

�(t, τ + T ,ω, ·) = �(t, τ ,ω, ·),

then � is called a continuous periodic cocycle on X with period T .

Definition . A collection D of some families of nonempty subsets of X is said to be
neighborhood closed if for each D = {D(τ ,ω) : τ ∈ R,ω ∈ �} ∈D, there is a positive num-
ber ε depending on D such that the family

{
B(τ ,ω) : B(τ ,ω) is a nonempty subset of Nε

(
D(τ ,ω)

)
,∀τ ∈R,ω ∈ �

}
(.)

also belongs to D.

Hereafter, we assume � is a continuous cocycle on X over R and (�,F , P, {θt}t∈R), and
D is the collection of all tempered families of nonempty bounded subsets of X. Remember
that a family D = {D(τ ,ω) : τ ∈ R,ω ∈ �} of nonempty bounded subsets of X is said to be
tempered if for every c > , the following holds:

lim
t→–∞ ect∥∥D(τ + t, θtω)

∥∥
X = ,

where ‖D‖X = supx∈D ‖x‖X .

Definition . A mapping ψ : R×R×� → X is called a complete orbit of � if for every
t ∈R

+, τ , s ∈ R, and ω ∈ �, the following holds:

�
(
t, τ + s, θsω,ψ(s, τ ,ω)

)
= ψ(t + s, τ ,ω). (.)

If, in addition, there exists D = {D(τ ,ω) : τ ∈ R,ω ∈ �} ∈D such that ψ(t, τ ,ω) belongs to
D(τ + t, θtω) for every t ∈R, τ ∈R, and ω ∈ �, then ψ is called a D-complete orbit of �.

Definition . Let B = {B(τ ,ω) : τ ∈ R,ω ∈ �} be a family of nonempty subsets of X. For
every τ ∈R and ω ∈ �, let

�(B, τ ,ω) =
⋂

r≥

⋃

t≥r
�

(
t, τ – t, θ–tω, B(τ – t, θ–tω)

)
. (.)

Then the family {�(B, τ ,ω) : τ ∈R,ω ∈ �} is called the �-limit set of B and is denoted by
�(B).

Definition . A family K = {K(τ ,ω) : τ ∈R,ω ∈ �} ∈D is called a D-pullback absorbing
set for � if for all τ ∈ R, ω ∈ � and for every D ∈ D, there exists T = T(D, τ ,ω) >  such
that

�
(
t, τ – t, θ–tω, D(τ – t, θ–tω)

) ⊆ K(τ ,ω) for all t ≥ T . (.)
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If, in addition, for all τ ∈ R and ω ∈ �, K(τ ,ω) is a closed nonempty subset of X and K is
measurable in ω with respect to F in �, then we say K is a closed measurable D-pullback
absorbing set for �.

Definition . The cocycle � is said to be D-pullback asymptotically compact in X if for
all τ ∈R and ω ∈ �, the sequence

{
�(tn, τ – tn, θ–tnω, xn)

}∞
n= has a convergent subsequence in X (.)

whenever tn → ∞, and xn ∈ B(τ – tn, θ–tnω) with {B(τ ,ω) : τ ∈R,ω ∈ �} ∈D.

Definition . A family A = {A(τ ,ω) : τ ∈R,ω ∈ �} ∈D is called a D-pullback attractor
for � if the following conditions (i)-(iii) are fulfilled:

(i) A is measurable in ω with respect to F in � and A(τ ,ω) is compact in X for all
τ ∈R and ω ∈ �.

(ii) A is invariant, that is, for every τ ∈R and ω ∈ �,

�
(
t, τ ,ω,A(τ ,ω)

)
= A(τ + t, θtω), ∀t ≥ .

(iii) A attracts every member of D, that is, for every D = {D(τ ,ω) : τ ∈R,ω ∈ �} ∈D
and for every τ ∈R and ω ∈ �,

lim
t→∞ d

(
�

(
t, τ – t, θ–tω, D(τ – t, θ–tω)

)
,A(τ ,ω)

)
= .

If, in addition, there exists T >  such that

A(τ + T ,ω) = A(τ ,ω), ∀τ ∈R,∀ω ∈ �,

then we say A is periodic with period T .

The following result on the existence and uniqueness of D-pullback attractors for con-
tinuous cocycle can be found in [, ]. Similar results can be found in [–] for au-
tonomous random dynamical systems.

Proposition . Let D be a neighborhood closed collection of some families of nonempty
subsets of X, and � be a continuous cocycle on X over R and (�,F , P, {θt}t∈R). Then � has
a D-pullback attractor A in D if and only if � is D-pullback asymptotically compact in X
and � has a closed measurable D-pullback absorbing set K in D. The D-pullback attractor
A is unique and is given by for each τ ∈ R and ω ∈ �,

A(τ ,ω) = �(K , τ ,ω) =
⋃

D∈D
�(D, τ ,ω) (.)

=
{
ψ(, τ ,ω) : ψ is a D-complete orbit of �

}
. (.)

If, in addition, both � and K are T-periodic, then so is the attractor A.



Wang et al. Advances in Difference Equations  (2015) 2015:236 Page 5 of 15

3 Main results
Denote by Z the set of integers. We denote by 
p (p ≥ ) defined by


p =
{

u
∣∣∣ u = (un)n∈Z ∈C, and

∑

n∈Z
|un|p < +∞

}
,

with the norm ‖ · ‖p given by

‖u‖p =
(∑

n∈Z
|un|p

)/p

,

for any u = (un)n∈Z ∈ 
p.
In particular, 
 is a Hilbert space with the inner product (·, ·) and norm ‖ · ‖ given by

(u, v) =
∑

n∈Z
unvn, ‖u‖ =

(∑

n∈Z
|un|

)/

,

for any u = (un)n∈Z and v = (vn)n∈Z ∈ 
, where vn denotes the conjugate of vn.
Let τ ∈ R. In this paper we consider the following discrete complex non-autonomous

Ginzburg-Landau equation with multiplicative noise:

dun =
(
(λ + iα)(un– – un + un+) – (γ + iμ)un

– (κ + iβ)|un|pun + gn(t)
)

dt +
N∑

m=

cmun ◦ dωm(t), t > τ , (.)

with the initial condition

un(τ ) = uτ ,n, n ∈ Z, (.)

where p > , λ > , γ > , κ > , α,β ,μ ∈ R, i is the unit of imaginary numbers such that i =
–, u = (un)n∈Z, g(t) = (gn(t))n∈Z ∈ L

loc(R,
), cm ∈ R for m = , . . . , N , wm(t) are mutually
independent Brownian motions on a probability space, and the symbol ◦ indicates that
the equation is understood in the sense of Stratonovich integration.

Denote by B, B∗, A and Cm for m = , . . . , N the linear operators from 
 into 
 in the
following way: for any u = (un)n∈Z ∈ 
,

(Bu)n = un+ – un,
(
B∗u

)
n = un– – un, (Cmu)n = cmun,

and

(Au)n = un – un– – un+, for each n ∈ Z.

Then we find that A = BB∗ = B∗B and (B∗u, v) = (u, Bv) for all u, v ∈ 
. Therefore, (Au, u) ≥
 for all u ∈ 
.
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The problem (.)-(.) can be regarded as follows: for τ ∈R,

du(t) =
(
–(λ + iα)Au – (γ + iμ)u – (κ + iβ)f (u) + g(t)

)
dt

+
N∑

m=

Cmu ◦ dwm(t), t > τ , (.)

with the initial condition

u(τ ) = uτ , (.)

where u = (un)n∈Z, and the nonlinear term f is defined as

f
(
u(t)

)
=

∣∣u(t)
∣∣pu(t) =

(∣∣un(t)
∣∣pun(t)

)
n∈Z.

We now specify the probability space. Denote by

� =
{
ω ∈ C(R,R) : ω() = 

}
.

LetF be the Borel σ -algebra induced by the compact-open topology of �, and P the corre-
sponding Wiener measure on (�,F ). There is a classical group {θt}t∈R acting on (�,F , P),
which is defined by

θtω(·) = ω(· + t) – ω(t), ω ∈ �, t ∈R. (.)

Then (�,F , P, {θt}t∈R) is a metric dynamical system (see []).
On the other hand, let us consider the one-dimensional stochastic differential equation

dz + αz dt = dw(t), (.)

for α > . This equation has a random fixed point in the sense of random dynamical sys-
tems generating a stationary solution known as the stationary Ornstein-Uhlenbeck pro-
cess (see [, ] for more details). In fact, we have the following.

Lemma . There exists a (θt)t∈R-invariant subset �′ ∈F of full measure such that

lim
t→±∞

|ω(t)|
t

=  for all ω ∈ �′,

and, for such ω, the random variable given by

z∗(ω) = –α

∫ 

–∞
eαsω(s) ds

is well defined. Moreover, for ω ∈ �′, the mapping

(t,ω) → z∗(θtω) = –α

∫ 

–∞
eαsθtω(s) ds = –α

∫ 

–∞
eαsω(t + s) ds + ω(t)
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is a stationary solution of (.) with continuous trajectories. In addition, for ω ∈ �′,

lim
t→±∞

|z∗(θtω)|
|t| = , lim

t→±∞

t

∫ t


z∗(θsω) ds = , (.)

lim
t→±∞


t

∫ t



∣∣z∗(θsω)
∣∣ds = E

∣∣z∗∣∣ < ∞. (.)

Remark . We now consider θ defined in (.) on �′ instead of �. This mapping pos-
sesses the same properties as the original one if we choose for F the trace σ -algebra with
respect to �′ denoted also by F .

Denote by z∗
m the associated Ornstein-Uhlenbeck process corresponding to (.) with

α =  and w replaced by wm for m = , . . . , N . Then, for any m = , . . . , N , we have a station-
ary Ornstein-Uhlenbeck process generated by a random variable z∗

m(ω) on �′
m with prop-

erties formulated in Lemma . defined on the metric dynamical system (�′
m,Fm, Pm, θ ).

We set (�̃,F , P, θ ), where

�̃ = �′
 × · · · × �′

N , F =
N⊗

m=

Fm, P = P × · · · × PN ,

and θ is the flow of the Wiener shifts.
Now, let us note that the operator Cm generates a strongly continuous semigroup (in

fact, a uniformly continuous group) of operators SCm (t). More precisely, SCm (t) is given by

SCm (t)u = ecmtu, for u ∈ 
.

Then we denote for every ω ∈ �̃,

T(ω) := SC

(
z∗

 (ω)
) ◦ · · · ◦ SCN

(
z∗

N (ω)
)

= e
∑N

m= cmz∗
m(ω) Id
 ,

which is clearly a homeomorphism in 
. The inverse operator is well defined by

T–(ω) := SCN

(
–z∗

N (ω)
) ◦ · · · ◦ SC

(
–z∗

 (ω)
)

= e–
∑N

m= cmz∗
m(ω) Id
 .

For simplicity, let us denote

δ(ω) =
N∑

m=

cmz∗
m(ω).

It easily follows that ‖T–(θtω)‖ has sub-exponential growth as t → ±∞ for any ω ∈ �̃.
Hence ‖T–‖ is tempered. According to Remark ., we can change our metric dynamical
system with respect to �′. However, we use the old notation (�,F , P, θ ) to denote the new
metric dynamical system.

For our purpose, we need to convert the stochastic equation (.)-(.) with a random
term into a deterministic one with a random parameter. To this end, let us consider the
change in variable

v(t) = T–(θtω)u(t) = e–δ(θtω)u(t),
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where u(t) is the solution of (.)-(.). Then we have for τ ∈R,

dv(t) = e–δ(θtω) du(t) –
N∑

m=

cme–δ(θtω)u(t) ◦ dz∗
m(θtω),

=
[
–(λ + iα)Av – (γ + iμ)v – (κ + iβ)e–δ(θtω)f

(
eδ(θtω)v

)

+ e–δ(θtω)g(t) + δ(θtω)v(t)
]

dt, t > τ , (.)

with the initial value condition

v(τ ) = e–δ(θτ ω)uτ
�= vτ . (.)

Therefore, by the standard method [], we find that, for every τ ∈ R, ω ∈ � and vτ ∈

, problem (.)-(.) has a unique global solution in 
. In addition, this solution is
measurable in ω ∈ �, and depends continuously on the initial data vτ . Consequently, we
can associate a cocycle for problem (.)-(.) in 
. Let � : R+ × R × � × 
 → 
 be
defined by

�(t, τ ,ω, uτ ) = u(t + τ , τ , θ–τω, uτ ) = eδ(θtω)v(t + τ , τ , θ–τω, vτ ), (.)

where v(t + τ , τ , θ–τω, vτ ) is the solution of problem (.)-(.). Then � satisfies condi-
tions (i)-(iv) in Definition .. Therefore, it is a continuous cocycle associated with problem
(.)-(.).

In the sequel, we will study tempered pullback attractors of � in 
. As usual, we use
D to denote the collection of all tempered families of nonempty bounded subsets of 
.
By definition, a family D = {D(τ ,ω) : τ ∈ R,ω ∈ �} of nonempty bounded subsets of 
 is
tempered if for every c > ,

lim
t→–∞ ect∥∥D(τ + t, θtω)

∥∥ = ,

where ‖D‖ = supψ∈D ‖ψ‖.
Now, we establish uniform estimates of solutions and then derive uniform estimates

on the tails of solutions of system (.)-(.). These estimates will be used to prove the
existence of tempered random attractors. The following condition will be needed for g
when deriving uniform estimates of solutions:

∫ 

–∞
e

γ
 s∥∥g(s + τ )

∥∥ ds < ∞, ∀τ ∈R. (.)

When constructing tempered pullback attractors, we will assume that

lim
t→–∞ ect

∫ 

–∞
e

γ
 s∥∥g(s + t)

∥∥ ds = , ∀c > . (.)

Lemma . Suppose (.) holds. Then for every τ ∈ R, ω ∈ �, and D = {D(τ ,ω) : τ ∈
R,ω ∈ �} ∈ D, there exists T = T(τ ,ω, D, ε) >  such that, for all t ≥ T and vτ–t ∈ D(τ –
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t, θ–tω), the solution v of system (.)-(.) satisfies

∥∥v(τ , τ – t, θ–τω, vτ–t)
∥∥ +

γ



∫ 

–t
eγ s–

∫ s
 δ(θrω) dr∥∥v(s + τ , τ – t, θ–τω, vτ–t)

∥∥ ds

≤ 
γ

∫ 

–∞
eγ r+

∫ 
r δ(θsω) dse–δ(θrω)∥∥g(r + τ )

∥∥ dr. (.)

Proof Taking the inner product of (.) with v in 
 and taking the real part, we get

d
dt

∥∥v(t)
∥∥ ≤ –γ ‖v‖ + 

(
e–δ(θtω)g(t), v

)
+ δ(θtω)‖v‖

≤ –
(



γ – δ(θtω)

)
‖v‖ +


γ

e–δ(θtω)∥∥g(t)
∥∥. (.)

Multiplying (.) by eγ t–
∫ t

 δ(θsω) ds and then integrating over (τ – t, τ ) with t ∈R
+, we get,

for every ω ∈ �,

∥∥v(τ , τ – t,ω, vτ–t)
∥∥ +

γ



∫ τ

τ–t
eγ (s–τ )–

∫ s
τ δ(θrω) dr∥∥v(s, τ – t,ω, vτ–t)

∥∥ ds

≤ e–γ t+
∫ τ
τ–t δ(θsω) ds‖vτ–t‖ +


γ

∫ τ

τ–t
eγ (r–τ )+

∫ τ
r δ(θsω) dse–δ(θrω)∥∥g(r)

∥∥ dr. (.)

Replacing ω by θ–τω in (.), we obtain, for every t ∈R
+, τ ∈ R and ω ∈ �,

∥∥v(τ , τ – t, θ–τω, vτ–t)
∥∥ +

γ



∫ 

–t
eγ s–

∫ s
 δ(θrω) dr∥∥v(s + τ , τ – t, θ–τω, vτ–t)

∥∥ ds

≤ e–γ t+
∫ 

–t δ(θsω) ds‖vτ–t‖ +

γ

∫ 

–t
eγ r+

∫ 
r δ(θsω) dse–δ(θrω)∥∥g(r + τ )

∥∥ dr. (.)

Because of the properties of the Ornstein-Uhlenbeck process z∗
m, there exists T = T(ω) >

 such that
∫ 

–t δ(θsω) ds ≤ γ

 t for all t ≥ T. Since vτ–t ∈ D(τ – t, θ–tω) and D is tempered,
we find hat

lim sup
t→∞

e–γ t+
∫ 

–t δ(θsω) ds‖vτ–t‖ ≤ lim sup
t→∞

e– γ
 t∥∥D(τ – t, θ–tω)

∥∥ = . (.)

By (.) and the properties of z∗
m again, we see the following integral is convergent:

∫ 

–∞
eγ r+

∫ 
r δ(θsω) dse–δ(θrω)∥∥g(r + τ )

∥∥ dr < ∞. (.)

It follows from (.) and (.) that there exists T = T(τ ,ω, D) >  such that, for all t ≥ T ,

∥∥v(τ , τ – t, θ–τω, vτ–t)
∥∥ +

γ



∫ 

–t
eγ s–

∫ s
 δ(θrω) dr∥∥v(s + τ , τ – t, θ–τω, vτ–t)

∥∥ ds

≤ 
γ

∫ 

–∞
eγ r+

∫ 
r δ(θsω) dse–δ(θrω)∥∥g(r + τ )

∥∥ dr, (.)

which implies the desired estimates. �



Wang et al. Advances in Difference Equations  (2015) 2015:236 Page 10 of 15

Lemma . Suppose that (.) holds. Then for every τ ∈ R, ω ∈ �, D = {D(τ ,ω) : τ ∈
R,ω ∈ �} ∈ D and ε > , there exist T = T(τ ,ω, D, ε) >  and N̂ = N̂(τ ,ω, ε) >  such that,
for all t ≥ T and vτ–t ∈ D(τ – t, θ–tω), the solution of problem (.)-(.) satisfies

∑

|n|≥N̂

∣∣vn(τ , τ – t, θ–τω, vτ–t)
∣∣ ≤ ε. (.)

Proof Let ρ(·) be a smooth function defined on R
+ such that  ≤ ρ(s) ≤  for all s ∈ R

+,
and

ρ(s) =

{
, for  ≤ s ≤ ,
, for s ≥ .

(.)

Then there exists a constant C such that |ρ ′(s)| ≤ C for s ∈R
+.

Let k be a fixed positive integer which will be specified later, and set x = (xn)n∈Z with
xn = ρ( |n|

k )vn. Taking the inner product of (.) with x in 
 and taking the real part, we get

d
dt

∑

j∈Z
ρ

( |n|
k

)
|vn| ≤ – Re

(
(λ + iα)Av, x

)
– 

(
γ – δ(θtω)

)∑

n∈Z
ρ

( |n|
k

)
|vn|

+ e–δ(θtω)(g(t), x
)
. (.)

We now estimate the terms in (.) as follows. First, we have

Re
(
(λ + iα)Av, x

)
= Re(λ + iα)(Bv, Bx)

= Re(λ + iα)
∑

n∈Z
(vn+ – vn)(xn+ – xn)

= λ
∑

n∈Z

(
ρ

( |n + |
k

)
|vn+| + ρ

( |n|
k

)
|vn|

)

+ α Im
∑

n∈Z

(
ρ

( |n + |
k

)
vnvn+ + ρ

( |n|
k

)
vn+vn

)

– λRe
∑

n∈Z

(
ρ

( |n + |
k

)
vnvn+ + ρ

( |n|
k

)
vn+vn

)

≥ α Im
∑

n∈Z

(
ρ

( |n + |
k

)
vnvn+ + ρ

( |n|
k

)
vn+vn

)

= α Im
∑

n∈Z

(
ρ

( |n + |
k

)
– ρ

( |n|
k

))
vnvn+,

where we use the fact that

∑

n∈Z

(
ρ

( |n + |
k

)
|vn+| + ρ

( |n|
k

)
|vn|

)

≥ Re
∑

n∈Z

(
ρ

( |n + |
k

)
vnvn+ + ρ

( |n|
k

)
vn+vn

)
.
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By the property of the cut-off function, we have

∣∣∣∣α Im
∑

j∈Z

(
ρ

( |n + |
k

)
– ρ

( |n|
k

))
vjvn+

∣∣∣∣ =
∣∣∣∣α Im

∑

n∈Z

|ρ ′(ξn)|
k

vnvn+

∣∣∣∣

≤ |α|C

k
‖v‖,

which yields

– Re
(
(λ + iα)Av, x

) ≤ |α|C

k
‖v‖. (.)

For the last term on the right-hand side of (.), we obtain

e–δ(θtω)(g(t), x
) ≤ γ


∑

n∈Z
ρ

( |n|
k

)
|vn| +


γ

e–δ(θtω)
∑

n∈Z
ρ

( |n|
k

)∣∣gn(t)
∣∣. (.)

Then it follows from (.)-(.) that

d
dt

∑

n∈Z
ρ

( |n|
k

)
|vn| ≤ |α|C

k
‖v‖ –

(
γ – δ(θtω)

)∑

n∈Z
ρ

( |n|
k

)
|vn|

+

γ

e–δ(θtω)
∑

n∈Z
ρ

( |n|
k

)∣∣gn(t)
∣∣. (.)

Given t ∈R
+, τ ∈R, and ω ∈ �, it follows from (.) that

∑

n∈Z
ρ

( |n|
k

)∣∣vn(τ , τ – t,ω, vτ–t)
∣∣

≤ e–γ t+
∫ τ
τ–t δ(θrω) dr

∑

j∈Z
ρ

( |n|
k

)
|vτ–t,n|

+
|α|C

k

∫ τ

τ–t
eγ (s–τ )+

∫ τ
s δ(θrω) dr∥∥v(s, τ – t,ω, vτ–t)

∥∥ ds

+

γ

∫ τ

τ–t
eγ (s–τ )+

∫ τ
s δ(θrω) dre–δ(θsω)

∑

|n|≥k

∣∣gn(s)
∣∣ ds. (.)

We now replace ω in (.) by θ–τω to yield

∑

n∈Z
ρ

( |n|
k

)∣∣vn(τ , τ – t, θ–τω, vτ–t)
∣∣

≤ e–γ t+
∫ 

–t δ(θrω) dr
∑

n∈Z
ρ

( |n|
k

)
|vτ–t,n|

+
|α|C

k

∫ 

–t
eγ s+

∫ 
s δ(θrω) dr∥∥v(s + τ , τ – t, θ–τω, vτ–t)

∥∥ ds

+

γ

∫ 

–∞
eγ s+

∫ 
s δ(θrω) dre–δ(θsω)

∑

|n|≥k

∣∣gn(s + τ )
∣∣ ds. (.)
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By the fact that vτ–t ∈ D(τ – t, θ–tω) and D is tempered, we have

lim sup
t→∞

e–γ t+
∫ 

–t δ(θrω) dr
∑

n∈Z
ρ

( |n|
k

)
|vτ–t,n|

≤ lim sup
t→∞

e–γ t+
∫ 

–t δ(θrω) dr∥∥D(τ – t, θ–tω)
∥∥ = ,

which means that we can choose T = T(τ ,ω, D) >  such that, for all t ≥ T,

e–γ t+
∫ 

–t δ(θrω) dr
∑

n∈Z
ρ

( |n|
k

)
|vτ–t,n| ≤ ε


. (.)

By (.) and the properties of z∗
m, we know that


γ

∫ 

–∞
eγ s+

∫ 
s δ(θrω) dre–δ(θsω)

∑

n∈Z

∣∣gn(s + τ )
∣∣ ds < ∞,

and hence there is a N = N(τ ,ω, ε) >  such that, for all k ≥ N,


γ

∫ 

–∞
eγ s+

∫ 
s δ(θrω) dre–δ(θsω)

∑

|n|≥k

∣∣gn(s + τ )
∣∣ ds ≤ ε


. (.)

Furthermore, it follows from Lemma . that there exist T = T(τ ,ω, D, ε) >  and N =
N(τ ,ω, ε) >  such that, for all t ≥ T and k ≥ N,

|α|C

k

∫ τ

τ–t
eγ (s–τ )+

∫ τ
s δ(θrω) dr∥∥v(s, τ – t,ω, vτ–t)

∥∥ ds ≤ ε


. (.)

Denote by N̂(τ ,ω, ε) = max{N, N} and T(τ ,ω, D, ε) = max{T, T}, it follows from (.)-
(.) that for all t ≥ T(τ ,ω, D, ε) and k ≥ N̂(τ ,ω, ε),

∑

|n|≥k

∣∣vn(τ , τ – t, θ–τω, vτ–t)
∣∣ ≤

∑

n∈Z
ρ

( |n|
k

)∣∣vn(τ , τ – t, θ–τω, vτ–t)
∣∣

≤ ε, (.)

which concludes the proof. �

Based on the uniform estimates given by Lemmas . and ., we are now ready to
present the existence of D-pullback attractors for �.

Theorem . Suppose (.) and (.) hold. Then the continuous cocycle � associated
with equation (.) and (.) has a unique D-pullback attractor A = {A(τ ,ω) : τ ∈ R,ω ∈
�} ∈D in 
.

Proof Notice that, for each τ ∈R, ω ∈ �,

u(τ , τ – t, θ–τω, uτ–t) = eδ(ω)v(τ , τ – t, θ–τω, vτ–t), (.)
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where uτ–t = e–δ(θ–tω)vτ–t . Suppose D = {D(τ ,ω) : τ ∈ R,ω ∈ �} is a family of nonempty
subsets of 
. Based on D, define a family D̂ by

D̂(τ ,ω) =
{
ϕ ∈ 
 : ‖ϕ‖ ≤ e–δ(θ–τ ω)∥∥D(τ ,ω)

∥∥, τ ∈R,ω ∈ �
}

. (.)

If D is tempered, then one can check that D̂ given by (.) is also tempered. In addition,
if uτ–t ∈ D(τ – t, θ–tω), then we have

vτ–t = e–δ(θ–tω)uτ–t ∈ D̂(τ – t, θ–tω).

For every τ ∈R and ω ∈ �, denote K(τ ,ω) by

K(τ ,ω) =
{
ϕ ∈ 
 : ‖ϕ‖ ≤ 

γ
eδ(ω)

∫ 

–∞
eγ s+

∫ 
s δ(θrω) dre–δ(θsω)∥∥g(s + τ )

∥∥ ds
}

. (.)

Since D̂ ∈ D, by Lemma ., we find that there exists T = (τ ,ω, D) >  such that, for all
t ≥ T and vτ–t ∈ D̂(τ – t, θ–tω),

∥∥u(τ , τ – t, θ–tω, uτ–t)
∥∥ ≤ eδ(ω)∥∥v(τ , τ – t, θ–tω, vτ–t)

∥∥

≤ 
γ

eδ(ω)
∫ 

–∞
eγ s+

∫ 
s δ(θrω) dre–δ(θsω)∥∥g(s + τ )

∥∥ ds, (.)

which means that, for all t ≥ T ,

�
(
t, τ – t, θ–tω, D(τ – t, θ–tω)

) ⊆ K(τ ,ω). (.)

This shows that K pullback-attracts all elements inD. We now verify that K given by (.)
is tempered. Let ξ be an arbitrary positive number. Then for each τ ∈ R and ω ∈ �, we
have by (.)

eξ t∥∥K(τ + t, θtω)
∥∥

≤ 
γ

eξ teδ(θtω)
∫ 

–∞
eγ s+

∫ 
s δ(θr+tω) dre–δ(θs+tω)∥∥g(s + τ + t)

∥∥ ds

=

γ

eξ teδ(θtω)
∫ 

–∞
eγ s+

∫ t
s+t δ(θrω) dre–δ(θs+tω)∥∥g(s + τ + t)

∥∥ ds. (.)

Let  < ε < 
 min{ξ ,γ }. By the properties of z∗

m(ω), we find that

∣∣∣∣

∫ t


δ(θsω) ds

∣∣∣∣ ≤ ε|t|, ∣∣δ(θtω)
∣∣ ≤ ε|t|

for |t| large enough. Therefore, (.) implies that

lim
t→–∞ eξ t∥∥K(τ + t, θtω)

∥∥

≤ 
γ

lim
t→–∞

∫ 

–∞
eξ t+ε|t|+γ s+ε|s+t|+ε|t|∥∥g(s + τ + t)

∥∥ ds

≤ 
γ

lim
t→–∞ e(ξ–ε)t

∫ 

–∞
e(γ –ε)s∥∥g(s + τ + t)

∥∥ ds. (.)
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Then it follows from (.) and (.) that

lim
t→–∞ eξ t∥∥K(τ + t, θtω)

∥∥

≤ 
γ

lim
t→–∞ e(ξ–ε)t

∫ 

–∞
e

γ
 s∥∥g(s + τ + t)

∥∥ ds = . (.)

Therefore we find from (.) that K is tempered in 
. Moreover, we can check that K is
measurable. Thus, K ∈D is a closed measurable D-pullback absorbing set for �.

By a similar argument, from Lemma ., we can derive the following estimates on the
tails of solutions of (.)-(.). For every τ ∈ R, ω ∈ �, D = {D(τ ,ω) : τ ∈ R,ω ∈ �} ∈ D
and ε > , there exist T = T(τ ,ω, D, ε) >  and N̂ = N̂(τ ,ω, ε) >  such that, for all t ≥ T
and λ ≥ λ, the solution of problem (.)-(.) satisfies

∑

|i|≥N̂

∣∣ui(τ , τ – t, θ–τω, uτ–t)
∣∣ ≤ ε, (.)

where uτ–t ∈ D(τ – t, θ–tω). This implies that � is asymptotically null in 
. Thus Theo-
rem . follows from Theorem . in [] immediately. �

We now consider the periodicity of the attractorA. Suppose that g(t) is T-periodic func-
tion with respect to t and g ∈ L((, T),
). Then by (.) we find that the D-pullback ab-
sorbing set is T-periodic. Furthermore, in this case, the cocycle � associated with prob-
lem (.) and (.) is also T-periodic. Thus from Proposition ., the periodicity of the
attractor A follows.

Theorem . Let (.) and (.) hold. Suppose that g(t) is T-periodic function and g ∈
L((, T),
) for T > . Then the continuous cocycle � associated with (.) and (.) has
a unique T-periodic D-pullback attractor A ∈D in 
.
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