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Abstract
In this paper, synchronization in dynamical networks with time-varying delay is
investigated. Networks with time-varying coupling delay and node delay are both
studied. By introducing adaptive strategy into pinning impulsive scheme, some
effective and universal controllers are designed. In the proposed control schemes, for
any given networks, the impulsive gains can adjust themselves to proper values when
the impulsive intervals and some parameters are fixed. On the other hand, the
impulsive instants can be estimated by solving a sequence of maximum value
problems when the impulsive gains and some parameters are fixed. Based on the
Lyapunov function method and mathematical analysis technique, several
synchronization criteria are derived. Finally, numerical examples are performed to
verify the effectiveness of the theoretical results.
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1 Introduction
Dynamical networks consisting of nodes and edges are widely used to model the large-
scale real systems coupled with interactive individuals [–]. The nodes denote the indi-
viduals and the edges denote the interactions between a pair of interactive individuals.
Synchronization, as a typical collective dynamical behavior of dynamical network, has
drawn more and more attention from different fields [–]. Due to the complexity of
dynamical networks, especially those dynamical networks coupling with chaotic systems,
they cannot achieve synchronization themselves without external control. Therefore, how
to design effective and low-cost controllers for achieving synchronization becomes an im-
portant and challenging issue.

In the impulsive control scheme, the controllers are added onto nodes only at some
discrete instants, i.e., it is low-cost and easier to implement. Thus, an impulsive control
scheme has been widely used to design controllers for achieving synchronization [–].
In [], Sun et al. studied the synchronization of impulsively coupled complex networks.
In [], Yang et al. considered the exponential synchronization of uncertain delayed com-
plex networks with nonidentical nodes and stochastic perturbations via hybrid adaptive
and impulsive control. In [], Deng et al. investigated the cluster synchronization of com-
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munity network via impulsive control. For any given dynamical network, one can choose
proper impulsive gains and intervals such that the goal is realized.

As we know, many dynamical networks contain large number of nodes, which means
that control of all nodes is high-cost and difficult to implement. Therefore, pinning control
scheme, in which only a small fraction of nodes are controlled, has been widely adopted
to design proper controllers combining with other control schemes [–]. Especially,
in Refs. [–], stabilization and synchronization of dynamical networks are investigated
by combining pinning and impulsive control, and some sufficient conditions are provided.
From the sufficient conditions, for any given dynamical networks, one can easily esti-
mate the impulsive gains and intervals for achieving the goals. However, different dynam-
ical networks may have totally different system parameters and the number of controlled
nodes may also be different, i.e., the pinning impulsive controllers with fixed impulsive
gains and intervals are not universal. In Refs. [–], by introducing an adaptive strat-
egy into (pinning) impulsive scheme, some adaptive (pinning) impulsive controllers are
designed, which are universal to some extent. In Ref. [], pinning impulsive synchroniza-
tion of dynamical network without delay is investigated. However, time delays, including
coupling delay and node delay, usually exist in many real networks. For example, the de-
lays are usually time-varying in electronic implementation of analog networks due to the
finite switching speed of amplifiers []. Therefore, pinning impulsive synchronization of
dynamical network with delay, including node delay and coupling delay, deserves further
studies.

Motivated by the above discussions, this paper investigates the synchronization of dy-
namical networks with time-varying delay via adaptive pinning impulsive control. Firstly,
the dynamical network with time-varying coupling delay is considered and the corre-
sponding controllers are designed. Secondly, the dynamical network with time-varying
node delay is considered. According to the Lyapunov function method and mathematical
analysis technique, the results are analytically proved. Compared with the obtained re-
sults in Refs. [, –], the main contributions of this paper are as follows: () effective
and adaptive pinning impulsive controllers are designed for achieving synchronization of
dynamical networks with time-varying delay, () the adaptive algorithms for not only the
impulsive instants but also the impulsive gains are provided. That is, the obtained results
extend those results obtained in Refs. [, –], to some extent.

The rest of this paper is organized as follows. In Section , the network models are in-
troduced and some preliminaries are given. In Section , the adaptive pinning impulsive
controllers for achieving synchronization are designed and the sufficient conditions are
provided. In Section , several numerical simulations are performed to verify the results.
In Section , the conclusion for this paper is given.

2 Model description and preliminaries
Consider a dynamical network consisting of N nodes with time-varying coupling delay,
which is described by

ẋi(t) = f
(
xi(t)

)
+ c

N∑

j=

aijHxj
(
t – τ (t)

)
, i = , , . . . , N , ()

where xi(t) = (xi(t), xi(t), . . . , xin(t))T ∈ Rn is the state variable of node i, f : Rn → Rn is
a nonlinear vector function, c >  is the coupling strength, H = diag(h, h, . . . , hn) is the
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inner coupling matrix, τ (t) ≥  is the time-varying delay. A = (aij) ∈ RN×N is the zero-
row-sum outer coupling matrix denoting the network topology and defined as follows: if
there is a connection between node j and i (i �= j), then aij �= ; otherwise, aij = .

On the other hand, consider a dynamical network consisting of N nodes with time-
varying node delay, which is described by

ẋi(t) = g
(
xi

(
t – τ (t)

))
+ c

N∑

j=

aijHxj(t), i = , , . . . , N , ()

where g : Rn → Rn is a nonlinear vector function.
Networks () and () are said to achieve synchronization if limt→∞ ‖xi(t) – s(t)‖ =  and

limt→∞ ‖xi(t) – s(t)‖ = , where s(t) and s(t) satisfy ṡ(t) = f (s(t)) and ṡ(t) = g(s(t –
τ (t))), respectively.

For achieving the synchronization, adaptive pinning impulsive controllers are designed
and applied onto a small fraction of nodes in networks () and (). The controlled networks
are described by

ẋi(t) = f
(
xi(t)

)
+ c

N∑

j=

aijHxj
(
t – τ (t)

)
, t �= tk ,

xi
(
t+
k
)

= xi
(
t–
k
)

+ bi(tk)
(
xi

(
t–
k
)

– s(tk)
)
, t = tk ,

()

and

ẋi(t) = g
(
xi

(
t – τ (t)

))
+ c

N∑

j=

aijHxj(t), t �= tk ,

xi
(
t+
k
)

= xi
(
t–
k
)

+ bi(tk)
(
xi

(
t–
k
)

– s(tk)
)
, t = tk ,

()

where i = , , . . . , N , k = , , . . . , the impulsive time instants tk satisfy  = t < t < t < · · · <
tk < · · · , and tk → ∞ as k → ∞. xi(t+

k ) = limt→t+
k

xi(t), xi(t–
k ) = limt→t–

k
xi(t). Any solution

of () and () is assumed to be left continuous at each tk , i.e., xi(t–
k ) = xi(tk). bi(tk) is the

impulsive gain at t = tk and bi(t) =  for t �= tk . Further, define bi(tk) = bi(t–
k ) = bi(t+

k ).
Let e(m)

k (t) = xk(t) – sm(t) (m = , ) be the synchronization errors, one can obtain the
following error systems:

ė()
i (t) = f

(
xi(t)

)
– f

(
s(t)

)
+ c

N∑

j=

aijHe()
j

(
t – τ (t)

)
, t �= tk ,

e()
i

(
t+
k
)

= e()
i

(
t–
k
)

+ bi(tk)e()
i

(
t–
k
)
, t = tk ,

()

and

ė()
i (t) = g

(
xi

(
t – τ (t)

))
– g

(
s

(
t – τ (t)

))
+ c

N∑

j=

aijHe()
j (t), t �= tk ,

e()
i

(
t+
k
)

= e()
i

(
t–
k
)

+ bi(tk)e()
i

(
t–
k
)
, t = tk .

()
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When t = tk , arrange the synchronization errors e(m)
i (t) (m = , ) according to their

norms as follows:

∥∥e(m)
i(t)(t)

∥∥ ≥ ∥∥e(m)
i(t)(t)

∥∥ ≥ · · · ≥ ∥∥e(m)
iσ (t)(t)

∥∥ ≥ ∥∥e(m)
iσ+(t)(t)

∥∥ ≥ · · · ≥ ∥∥e(m)
iN (t)(t)

∥∥,

where iσ (t) ∈ {, , . . . , N}, σ = , , . . . , N , and if σ �= κ , then iσ (t) �= iκ (t). Further, if
‖eiσ (t)(t)‖ = ‖eiσ+(t)(t)‖, then iσ (t) < iσ+(t). Let P(tk) = {i(tk), i(tk), . . . , ip(tk)} be a set of
p nodes. If i ∈ P(tk), then bi(tk) = b(tk) ∈ (–, –) ∪ (–, ); otherwise, bi(tk) = .

Assumption  Suppose that there exists a positive constant L such that

(
y(t) – x(t)

)T(
f
(
y(t)

)
– f

(
x(t)

)) ≤ L
(
y(t) – x(t)

)T(
y(t) – x(t)

)

holds for any x(t), y(t) ∈ Rn and t > .

Assumption  Suppose that there exist two positive constants L and L such that

(
y(t) – x(t)

)T(
g
(
y
(
t – τ (t)

))
– g

(
x
(
t – τ (t)

)))

≤ L
(
y(t) – x(t)

)T(
y(t) – x(t)

)

+ L
(
y
(
t – τ (t)

)
– x

(
t – τ (t)

))T(
y
(
t – τ (t)

)
– x

(
t – τ (t)

))

holds for any x(t), y(t) ∈ Rn and t > .

Assumption  Suppose that the time-varying coupling delay τ (t) is differentiable and
there exists a constant μ <  such that τ̇ (t) ≤ μ.

3 Main results
Let e(m)(t) = ((e(m)

 (t))T , (e(m)
 (t))T , . . . , (e(m)

N (t))T )T (m = , ), τk = tk – tk– be the impulsive
intervals, I be an identity matrix with appropriate dimension, λ and λ be the largest
eigenvalues of LI + c(A ⊗ H)T (A ⊗ H) + cI/( – μ) and LI + c(A ⊗ H) + LI/( – μ),
β(tk) = ( + b(tk)), ρ(tk) =  – p( – β(tk))/N for t = tk and ρ(t) =  for t �= tk .

Theorem  Suppose that Assumptions  and  hold. If there exists a constant α >  such
that

lnρ(tk) + α + L̂(tk)τk < , k = , , . . . , ()

holds, where L̂(t) is the estimated value of λ, ˙̂L(t) = δ
∑N

i=(e()
i (t))T e()

i (t) with L̂() >  and
δ >  is the adaptive gain, then the synchronization of network () is achieved.

Proof Consider the following Lyapunov function:

V (t) =
N∑

i=

(
e()

i (t)
)T e()

i (t) +
ρ(t)
δ

(
L̂(t) – λ

) +
cρ(t)
 – μ

∫ t

t–τ (t)

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ

for t ∈ (tk–, tk], k = , , . . . .
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When t ∈ (tk–, tk), one has

V (t) =
N∑

i=

(
e()

i (t)
)T e()

i (t) +


δ

(
L̂(t) – λ

) +
c

 – μ

∫ t

t–τ (t)

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ ,

and the derivative of V (t) with respect to t along the trajectory () is

V̇ (t) = 
N∑

i=

(
e()

i (t)
)T ė()

i (t) +

δ

(
L̂(t) – λ

) ˙̂L(t) +
c

 – μ

N∑

i=

(
e()

i (t)
)T e()

i (t)

–
c( – τ̇ (t))

 – μ

N∑

i=

(
e()

i
(
t – τ (t)

))T e()
i

(
t – τ (t)

)

= 
N∑

i=

(
e()

i (t)
)T(

f
(
xi(t)

)
– f

(
s(t)

))

+ c
N∑

i=

N∑

j=

aij
(
e()

i (t)
)T He()

j
(
t – τ (t)

)

+
(
L̂(t) – λ

) N∑

i=

(
e()

i (t)
)T e()

i (t) +
c

 – μ

N∑

i=

(
e()

i (t)
)T e()

i (t)

–
c( – τ̇ (t))

 – μ

N∑

i=

(
e()

i
(
t – τ (t)

))T e()
i

(
t – τ (t)

)

≤ (
e()(t)

)T
(

LI + c(A ⊗ H)T (A ⊗ H) +
cI

 – μ

)
e()(t)

+
c(τ̇ (t) – μ)

 – μ

(
e()(t – τ (t)

))T e()(t – τ (t)
)

+
(
L̂(t) – λ

)(
e()(t)

)T e()(t)

≤ L̂(t)
N∑

i=

(
e()

i (t)
)T e()

i (t).

According to the definition of L̂(t), it is clear that L̂(t) is a positive and monotone in-
creasing function. Then one has

V̇ (t) ≤ L̂(t)V (t) ≤ L̂(tk)V (t),

which gives

V (t) ≤ V (tk–) exp
(
L̂(tk)(t – tk–)

)
, t ∈ (tk–, tk).

Due to xi(t–
k ) = xi(tk) and bi(tk) = bi(t–

k ) = bi(t+
k ), V (t) is left continuous at each tk accord-

ing to the definitions of ρ(t) and V (t). Thus, when t = tk , one has

V
(
t+
k
)

=
N∑

i=

(
e()

i
(
t+
k
))T e()

i
(
t+
k
)

+
ρ(tk)

δ

(
L̂(tk) – λ

)

+
cρ(tk)
 – μ

∫ tk

tk –τ (tk )

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ
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=
(
 + b(tk)

) ∑

i∈P(tk )

(
e()

i
(
t–
k
))T e()

i
(
t–
k
)

+
∑

i /∈P(tk )

(
e()

i
(
t–
k
))T e()

i
(
t–
k
)

+
ρ(tk)

δ

(
L̂(tk) – λ

) +
cρ(tk)
 – μ

∫ tk

tk –τ (tk )

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ

= β(tk)
N∑

i=

(
e()

i
(
t–
k
))T e()

i
(
t–
k
)

+
(
 – β(tk)

) ∑

i /∈P(tk )

(
e()

i
(
t–
k
))T e()

i
(
t–
k
)

+
ρ(tk)

δ

(
L̂(tk) – λ

) +
cρ(tk)
 – μ

∫ tk

tk –τ (tk )

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ .

From the definition of P(tk), one has


N – p

∑

i /∈P(tk )

(
e()

i
(
t–
k
))T e()

i
(
t–
k
) ≤ 

N

N∑

i=

(
e()

i
(
t–
k
))T e()

i
(
t–
k
)
,

and

V
(
t+
k
) ≤ β(tk)

N∑

i=

(
e()

i
(
t–
k
))T e()

i
(
t–
k
)

+
ρ(tk)

δ

(
L̂(tk) – λ

)

+
( – β(tk))(N – p)

N

N∑

i=

(
e()

i
(
t–
k
))T e()

i
(
t–
k
)

+
cρ(tk)
 – μ

∫ tk

tk –τ (tk )

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ

= ρ(tk)V
(
t–
k
)
.

By mathematical induction, for any positive integer k, one has

V
(
t+
k
) ≤ V (t)

k∏

j=

ρ(tj) exp
(
L̂(tj)(tj – tj–)

)
, k = , , . . . .

If condition () holds, one has

ρ(tj) exp
(
L̂(tj)(tj – tj–)

) ≤ exp(–α), j = , , . . . , k,

and

V
(
t+
k
) ≤ V (t) exp(–kα),

which implies V (t+
k ) →  for k → ∞.

Then, for t ∈ (tk , tk+], one has

V (t) ≤ V
(
t+
k
)

exp
(
L̂(tk+)(t – tk)

)
,

which implies V (t) →  for t → ∞, i.e., the error system () is stable about zero and the
synchronization is achieved. This completes the proof. �
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Theorem  Suppose that Assumptions  and  hold. If there exists a constant α >  such
that

lnρ(tk) + α + L̂(tk)τk < , k = , , . . . , ()

holds, where L̂(t) is the estimated value of λ, ˙̂L(t) = δ
∑N

i=(e
i (t))T e

i (t) with L̂() >  and
δ >  is an adaptive gain, then the synchronization of network () is achieved.

Proof Consider the following Lyapunov function:

V (t) =
N∑

i=

(
e()

i (t)
)T e()

i (t) +
ρ(t)
δ

(
L̂(t) – λ

)

+
Lρ(t)
 – μ

∫ t

t–τ (t)

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ

for t ∈ (tk–, tk], k = , , . . . .
When t ∈ (tk–, tk), one has

V (t) =
N∑

i=

(
e()

i (t)
)T e()

i (t) +


δ

(
L̂(t) – λ

)

+
L

 – μ

∫ t

t–τ (t)

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ ,

and the derivative of V (t) with respect to t along the trajectory () is

V̇ (t) = 
N∑

i=

(
e()

i (t)
)T ė()

i (t) +

δ

(
L̂(t) – λ

) ˙̂L(t) +
L

 – μ

N∑

i=

(
e()

i (t)
)T e()

i (t)

–
L( – τ̇ (t))

 – μ

N∑

i=

(
e()

i
(
t – τ (t)

))T e()
i

(
t – τ (t)

)

≤ (
e()(t)

)T
(

LI + c(A ⊗ H) +
LI

 – μ

)
e()(t)

+
L(τ̇ (t) – μ)

 – μ

(
e()(t – τ (t)

))T e()(t – τ (t)
)

+
(
L̂(t) – λ

)(
e()(t)

)T e()(t)

≤ L̂(t)
N∑

i=

(
e()

i (t)
)T e()

i (t) ≤ L̂(tk)V (t),

which gives

V (t) ≤ V (tk–) exp
(
L̂(t)(t – tk–)

)
, t ∈ (tk–, tk).
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When t = tk ,

V
(
t+
k
)

=
N∑

i=

(
e()

i
(
t+
k
))T e()

i
(
t+
k
)

+
ρ(tk)

δ

(
L̂(tk) – λ

)

+
Lρ(tk)
 – μ

∫ tk

tk –τ (tk )

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ

≤ ρ(tk)
N∑

i=

(
e()

i
(
t–
k
))T e()

i
(
t–
k
)

+
ρ(tk)

δ

(
L̂(tk) – λ

)

+
Lρ(tk)

δ

∫ tk

tk –τ tk

N∑

i=

(
e()

i (θ )
)T e()

i (θ ) dθ

= ρ(tk)V
(
t–
k
)
.

Thus, similar to the proof of Theorem , the proof can be completed. �

Remark  Generally, the impulsive interval τk is chosen as a constant τ, i.e., tk – tk– = τ.
Thus, for any given τ and α, one can choose

–
(
 – N

(
 – exp

(
–α – L̂(tk)τk

))
/p

) 
 –  + ε

≤ b(tk) ≤ (
 – N

(
 – exp

(
–α – L̂(tk)τk

))
/p

) 
 –  – ε,

such that conditions () and () hold, where ε is an arbitrary small positive constant.

Remark  From conditions () and (), if p, N , b(tk) and α are fixed, one can estimate the
control instants tk through finding the maximum value of tk subject to tk < tk– – (lnρ(tk) +
α)̂L–(tk)/ with t = , k = , , . . . .

Remark  Compared with the results in Ref. [], this paper considers not only the dy-
namical network with time-varying coupling delay but also the one with time-varying
node delay. Besides the adaptive algorithm for solving the impulsive instants, the algo-
rithm for determining the impulsive gains is also given. Compared with the results in
Refs. [–], this paper designs effective and adaptive controllers through introducing
a proper adaptive strategy. From the derived conditions and proofs in Theorems  and ,
the largest eigenvalues λ and λ need not be calculated. That is, the obtained results in
Refs. [, –] are extended to some extent.

4 Numerical illustrations
Example  Consider the synchronization of network () with time-varying coupling de-
lay. The network topology is generated as the BA scale-free network [] with N = 
and m = m = . Choose the node dynamics as the Lorenz system []

ẋi = (xi – xi),

ẋi = xi – xixi – xi,

ẋi = xixi – /xi,
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Figure 1 The orbits of eij(t), i = 1, 2, . . . , 100, j = 1, 2, 3. The red, blue and green lines denote the orbits of
ei1(t), ei2(t) and ei3(t), respectively.

Figure 2 The orbit of b(tk ) vs k.

the inner coupling matrix H as an identity matrix and the time-varying delay as τ (t) =
. – . sin t.

Firstly, choose c = ., the impulsive intervals τk as a constant τ = ., α = ., δ =
., L̂() = . and p = . According to Remark , choose b(tk) = (–N(–exp(–α –
L̂(tk)τk))/p) 

 –  – ε with ε = . such that condition () holds. Choose the initial values
of xi(t) and s(t) randomly. Figure  shows the orbits of synchronization errors eij(t), i =
, , . . . , , j = , , . Figure  shows the impulsive gain b(tk) versus k.

Secondly, choose b(tk) = –., α = ., p = , δ = ., L̂() = . and the initial
values of xi(t) and s(t) randomly. The impulsive instants are estimated according to Re-
mark . Figure  shows the orbits of synchronization errors eij(t), i = , , . . . , , j = , , .
Figure  shows the impulsive interval τk versus k.

Example  Consider the synchronization of network () with time-varying node delay.
The network topology is also generated as the BA scale-free network [] with N =  and
m = m = , and the inner coupling matrix H is chosen as an identity matrix. Choose the
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Figure 3 The orbits of eij(t), i = 1, 2, . . . , 100, j = 1, 2, 3. The red, blue and green lines denote the orbits of
ei1(t), ei2(t) and ei3(t), respectively.

Figure 4 The orbit of τk vs k.

node dynamics as the delayed chaotic system []

ẋi(t) = –xi(t) + Mf
(
xi(t)

)
+ Mg

(
xi

(
t – τ (t)

))
,

where xi(t) = (xi(t), xi(t))T , f (xi(t)) = g(xi(t)) = (tanh(xi(t)), tanh(xi(t)))T , τ (t) = exp(t)/
( + exp(t)) and

M =

[
. –.

–. .

]

, M =

[
–. –.
. –.

]

.

Firstly, choose c = ., τ = ., α = ., δ = ., L̂() = . and p = . According to
Remark , choose b(tk) = ( – N( – exp(–α – L̂(tk)τk))/p) 

 –  – ε with ε = . such that
condition () holds. Choose the initial values of xi(t) and s(t) randomly. Figure  shows the
orbits of synchronization errors eij(t), i = , , . . . , , j = , . Figure  shows the impulsive
gain b(tk) versus k.
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Figure 5 The orbits of eij(t), i = 1, 2, . . . , 20, j = 1, 2. The red and blue lines denote the orbits of ei1(t) and
ei2(t), respectively.

Figure 6 The orbit of b(tk ) vs k.

Secondly, choose b(tk) = –., α = ., δ = ., L̂() = ., and the initial values
of xi(t) and s(t) randomly. The impulsive instants are estimated according to Remark .
Figure  shows the orbits of synchronization errors eij(t), i = , , . . . , , j = , . Figure 
shows the impulsive interval τk versus k.

5 Conclusion
In this paper, the synchronization of dynamical networks with time-varying delay is well
studied via adaptive pinning impulsive control. Dynamical networks with both time-
varying coupling delay and node delay are considered. Based on the Lyapunov function
method and mathematical analysis technique, several sufficient conditions for achieving
synchronization are derived. According to the discussions in Remarks  and , the impul-
sive gains or instants can adjust themselves to proper values or be estimated by solving
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Figure 7 The orbits of eij(t), i = 1, 2, . . . , 20, j = 1, 2. The red and blue lines denote the orbits of ei1(t) and
ei2(t), respectively.

Figure 8 The orbit of τk vs k.

a sequence of maximum value problems. Noticeably, some constants with respect to the
node dynamics and topology of network need not be calculated beforehand. Finally, the
obtained results are verified to be correct and effective by performing several numerical
simulations.
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