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Abstract
In this paper, the problem of a homoclinic solution is studied for the prescribed mean
curvature Liénard equation ( u′(t)√

1+(u′(t))2
)′ + f (u(t))u′(t) + g(u(t)) = p(t), where f ∈ C(R,R),

g ∈ C1(R,R), and p ∈ C(R,R). Under some conditions, the author obtains the result that
the equation has at least one nontrivial homoclinic solution for p(t) �≡ 0, and the
equation has no nontrivial homoclinic solution for p(t) ≡ 0. The arguments are based
upon Mawhin’s continuation theorem.

Keywords: homoclinic solution; periodic solution; Mawhin’s continuation theorem;
prescribed mean curvature equation

1 Introduction
In this paper, we investigate the existence and non-existence of nontrivial homoclinic so-
lutions for a class of prescribed mean curvature equations,

(
u′(t)√

 + (u′(t))

)′
+ f

(
u(t)

)
u′(t) + g

(
u(t)

)
= p(t), (.)

where f ∈ C(R, R), g ∈ C(R, R), p ∈ C(R, R).
As is well known, a solution u(t) of (.) is named homoclinic (to ) if u(t) →  and

u′(t) →  as |t| → +∞. In addition, if u �= , then u is called a nontrivial homoclinic solu-
tion.

A prescribed mean curvature equation arises from some problems associated with dif-
ferential geometry and physics (see [–] and the references therein). In the past years, the
problem of periodic solutions for the prescribed mean curvature equation has attracted
many researchers’ attention [–]. For example, by using an approach based on the Leray-
Schauder degree, the authors in [] studied the periodic solutions for nonlinear equations
with mean curvature-like operators. Considering the delay phenomenon to exist generally
in nature, Feng in [] studied the existence of periodic solutions for a prescribed mean
curvature Liénard equation with delay as follows:

(
u′(t)√

 + (u′(t))

)′
+ f

(
u(t)

)
u′(t) + g

(
t, u

(
t – τ (t)

))
= e(t). (.)
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S Lu and M Lu in [] further studied the existence and non-existence of periodic solutions
for the following prescribed mean curvature equation with multiple delays:

d
dt

(
x′(t)√

 + (x′(t))

)
+

n∑
i=

ai(t)g
(
x
(
t – τi(t)

))
= p(t),

and Li in [] studied the existence of periodic solutions for a prescribed mean curvature
Rayleigh equation. Recently, the problem of existence of homoclinic solutions for some
second-order Hamiltonian systems has been extensively studied by using critical point
theory [–]. However, the problem of homoclinic solution has been rarely studied for
a prescribed mean curvature equation like (.). Liang and Lu in [] investigated the ex-
istence of a homoclinic solution for the following equation:

(
u′(t)√

 + (u′(t))

)′
+ cu′(t) + f

(
u(t)

)
= p(t), (.)

where c >  is a constant, but the term containing the first derivative is only linear with
respect to u′(t).

Let T be a positive constant, like in the work of [, ], for each k ∈ N, we investigate
the existence of kT-periodic solutions uk(t) for the following equation:

(
u′(t)√

 + (u′(t))

)′
+ f

(
u(t)

)
u′(t) + g

(
u(t)

)
= pk(t), (.)

where pk : R → R is a kT-periodic function such that

pk(t) =

{
p(t), t ∈ [–kT , kT – ε),
p(kT – ε) + p(–kT)–p(kT–ε)

ε
(t – kT + ε), t ∈ [kT – ε, kT],

(.)

ε ∈ (, T) is a constant independent of k, T = min{T , }. Then a homoclinic solution for
(.) is obtained as a limit of a certain sequence of {uk(t)}.

In this paper, unlike the methods based on critical point theory for guaranteeing the
existence of homoclinic solutions in the work of [–], our approach for obtaining the
existence of homoclinic solutions for (.) is based on topological degree theory. In detail,
the existence of kT-periodic solutions to (.) is obtained by using Mawhin’s continuation
theorem [], not by using critical point theory. This is due to the fact that there is a
first derivative term f (u(t))u′(t) in (.), and then (.) is not the Euler-Lagrange equation
associated with some functional. Furthermore, we not only investigate the existence of a
homoclinic solution to (.), but we also study the non-existence of a homoclinic solution
to (.).

2 Preliminary
In order to use Mawhin’s continuation theorem [], we first recall it.

Let X and Y be two Banach spaces with norms ‖·‖X , ‖·‖Y , respectively. A linear operator
L : D(L) ⊂ X → Y is said to be a Fredholm operator of index zero provided that:

(a) Im L is a closed subset of Y ,
(b) dim Ker L = codim Im L < ∞.
Let X and Y be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Y , respectively, Ω ⊂ X be an

open and bounded set and L : D(L) ⊂ X → Y be a Fredholm operator of index zero. The
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continuous operator N : Ω ⊂ X → Y is said to be L-compact in Ω̄ provided that:
(c) Kp(I – Q)N(Ω̄) is a relative compact set of X ,
(d) QN(Ω̄) is a bounded set of Y ,

and where we denote X = Ker L, Y = Im L we have the decompositions X = X ⊕ X, Y =
Y ⊕ Y. Let P : X → X, Q : Y → Y be continuous linear projectors (meaning P = P and
Q = Q), and Kp = L|–

Ker P∩D(L).

Lemma . ([]) Let X and Y be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Y , respectively,
Ω be an open and bounded set of X, and L : D(L) ⊂ X → Y be a Fredholm operator of index
zero. The operator N : Ω̄ ⊂ X → Y is said to be L-compact in Ω̄ . In addition, if the following
conditions hold:

(H) Lv �= λNv, ∀(v,λ) ∈ ∂Ω × (, );
(H) QNv �= , ∀v ∈ Ker L ∩ ∂Ω ;
(H) deg{JQN ,Ω ∩ Ker L, } �= , where J : Im Q → Ker L is a homeomorphism,

then Lv = Nv has at least one solution in D(L) ∩ Ω̄ .

Consider the following system:

{
x′(t) = ϕ(y(t)) = y(t)√

–y(t)
,

y′(t) = f (x(t))ϕ(y(t)) – g(x(t)) + p(t).
(.)

Obviously, (x(t), y(t))� is a solution of (.), then x(t) must be a solution of (.), and finding
homoclinic solutions of (.) is equivalent to finding a solution (x(t), y(t))� of (.) such
that (x(t), y(t)) → (, ) as |t| → +∞. Similarly, finding a kT-periodic solution to (.) is
equivalent to finding a kT-periodic solution to the system

{
x′(t) = ϕ(y(t)) = y(t)√

–y(t)
,

y′(t) = –f (x(t))ϕ(y(t)) – g(x(t)) + pk(t),
(.)

where y(t) = x′(t)√
+(x′(t))

. It is easy to see that maxt∈[–kT ,kT] |y(t)| < . Let Xk = Yk = {v =

(x, y)� ∈ C(R, R), v(t) = v(t + kT)}, where the normal is defined by ‖v‖ = max{|x|, |y|},
where |x| = maxt∈[,kT] |x(t)|, |y| = maxt∈[,kT] |y(t)|. It is obvious that Xk and Yk are
Banach spaces.

Furthermore, for x ∈ Xk , denote ‖x‖p by ‖x‖p = (
∫ kT

–kT |x(t)|p dt)/p, where p ≥  is a con-
stant.

Now we define the operator

L : D(L) ⊂ Xk → Yk , Lv = v′ =
(
x′(t), y′(t)

)�,

where D(L) = {v|v = (x, y)� ∈ C(R, R), v(t) = v(t + kT)}.
Let Zk = {v|v = (x, y)� ∈ C(R, R × (–, )), v(t) = v(t + kT)}. Define a nonlinear operator

N : Ω̄ ⊂ Zk ⊂ Xk → Yk ,

Nv =
(

y(t)√
 – y(t)

, –f
(
x(t)

)
ϕ
(
y(t)

)
– g

(
x(t)

)
+ pk(t)

)�
. (.)

Then problem (.) can be written as Lv = Nv in Ω̄ .
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Clearly, Ker L = {v|v ∈ Xk , v′ = (x′(t), y′(t))� = (, )�} = R, and it is also easy to prove
that Im L = {z ∈ Yk ,

∫ kT
 z(s) ds = }, so L is a Fredholm operator of index zero.

Let P : Xk → Ker L, Pv = 
kT

∫ kT
 v(s) ds, Q : Yk → Im Q, Qz = 

kT
∫ kT

 z(s) ds. If set Kp =
L|–

Ker p∩D(L), then

(Kpz)(t) =
∫ kT


G(t, s)z(s) ds,

where

G(t, s) =

{
s–kT

kT ,  ≤ t ≤ s,
s

kT , s ≤ t ≤ kT .

For all Ω such that Ω̄ ⊂ Zk ⊂ Xk , we have Kp(I – Q)N(Ω̄) is a relative compact set of Xk ,
QN(Ω̄) is a bounded set of Yk , so the operator N is L-compact in Ω̄ .

Remark . In view of the definition of the nonlinear operator N : Ω̄ ⊂ Zk ⊂ Xk → Yk in
(.), we see that there must be two points ρ ∈ (, +∞) and ρ ∈ (, ) such that the open
and bounded set Ω , which is associated with Lemma ., should be Ω = {v|v = (x, y)� ∈
Zk , |x| < ρ, |y| < ρ}.

Lemma . If u : R → R is continuously differentiable on R, a > , μ > , and p >  are
constants, then for every t ∈ R, the following inequality holds:

∣∣u(t)
∣∣ ≤ (a)– 

μ

(∫ t+a

t–a

∣∣u(s)
∣∣μ ds

) 
μ

+ a(a)– 
p

(∫ t+a

t–a

∣∣u′(s)
∣∣p ds

) 
p

.

This lemma is a special case of Lemma . in [].

Lemma . ([]) Let uk := (xk , yk)� ∈ C
kT be a kT-periodic function, such that for each

k ∈ N, (xk , yk) satisfies

|xk| ≤ A,
∣∣x′

k
∣∣
 ≤ A, |yk| ≤ B,

∣∣y′
k
∣∣
 ≤ B,

where A, A, B, and B are constants independent of k ∈ N. Then there exist a u ∈
C(R, R) and a subsequence {ukj} of {uk}k∈N such that for each j ∈ N,

max
t∈[–jT ,jT]

∣∣uki (t) – u(t)
∣∣ →  as i → +∞.

3 Main results
For the sake of convenience, we list the following assumptions:

(A) There exist constants m > , l > , and m >  such that xg(x) ≤ –m|x|m, |f (x)| ≥ l,
and g ′(x) ≤ , ∀x ∈ R.

(A) p ∈ C(R, R) with p(t) �≡  and supt∈R |p(t)| < +∞;
∫

R |p(t)| m
m– dt < +∞ and∫

R |p(t)| dt < +∞, where m is determined in assumption (A).
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Remark . Let

|p|∞ := sup
t∈R

∣∣p(t)
∣∣, α :=

(∫
R

∣∣p(t)
∣∣ m

m– dt
) m–

m
, β :=

(∫
R

∣∣p(t)
∣∣ dt

) 


.

From (.), and by calculating directly, we can obtain the following result.

Lemma . If assumption (A) holds, then α < +∞, β < +∞; and for all k ∈ N,

|pk| ≤ |p|∞, ‖pk‖ m
m–

:=
(∫ kT

–kT

∣∣pk(t)
∣∣ m

m– dt
) m–

m
≤ α + ε

m–
m |p|∞,

‖pk‖ :=
(∫ kT

–kT

∣∣pk(t)
∣∣ dt

) 
 ≤ β + ε/|p|∞.

In order to study the existence of kT-periodic solutions to (.), we firstly study some
properties of all possible kT-periodic solutions (xk , yk)� to the following system:

{
x′(t) = λϕ(y(t)) = λ

y(t)√
–y(t)

,

y′(t) = –λf (x(t))ϕ(y(t)) – λg(x(t)) + λpk(t), λ ∈ (, ].

Obviously, (xk , yk)� ∈ Zk ⊂ Xk . For each k ∈ N, let Σk represent the set of all the kT-
periodic solutions to the above system. This is

Σk :=
{

(x, y) ∈ Zk

∣∣∣x′(t) =
λy(t)√
 – y(t)

,

y′(t) = –λf
(
x(t)

)
ϕ
(
y(t)

)
– λg

(
x(t)

)
+ λpk(t),λ ∈ (, ]

}
.

Theorem . Assume that conditions (A) and (A) hold, and the constant T satisfies

ρ := (T)– 


(
αm

m

) 
(m–)

+ β

√
T


[
M
l

+ 
]

< , (.)

where M = sup|x|≤M |f (x)|,

M = (T)

m

(
α

m

) 
m–

+
√

T


β

l
.

For each k ∈ N, if (x, y)� ∈ Σk , there are positive constants A, A, B, B, ρ, ρ, and ρ,
which are all independent of k and λ, such that

‖x‖m ≤ A,
∥∥x′∥∥

 ≤ A, ‖y‖ ≤ B,
∥∥y′∥∥

 ≤ B (.)

and

|x| ≤ ρ, |y| ≤ ρ < ,
∣∣x′∣∣

 ≤ ρ,
∣∣y′∣∣

 ≤ ρ. (.)
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Proof For each k ∈ N, if (x, y)� ∈ Σk , then

{
x′(t) = λϕ(y(t)) = λ

y(t)√
–y(t)

,

y′(t) = –λf (x(t))ϕ(y(t)) – λg(x(t)) + λpk(t), λ ∈ (, ].
(.)

Multiplying the first equation of (.) by y′(t) and integrating from –kT to kT , we have

∫ kT

–kT
y′(t)x′(t) dt =

∫ kT

–kT
y′(t)λϕ

(
y(t)

)
dt =

∫ kT

–kT
λϕ

(
y(t)

)
dy(t) = . (.)

Multiplying the second equation of (.) by x(t) and integrating from –kT to kT , we have

∫ kT

–kT
y′(t)x(t) dt

= –
∫ kT

–kT
y(t)x′(t) dt = –λ

∫ kT

–kT

y(t)√
 – y(t)

dt

= λ

(
–

∫ kT

–kT
x(t)f

(
x(t)

)
ϕ
(
y(t)

)
dt –

∫ kT

–kT
x(t)g

(
x(t)

)
dt +

∫ kT

–kT
x(t)pk(t) dt

)
,

i.e.,

∫ kT

–kT

y(t)√
 – y(t)

dt –
∫ kT

–kT
x(t)g

(
x(t)

)
dt –

∫ kT

–kT
x(t)f

(
x(t)

)
ϕ
(
y(t)

)
dt

= –
∫ kT

–kT
x(t)pk(t) dt

≤
∫ kT

–kT

∣∣x(t)
∣∣∣∣pk(t)

∣∣dt. (.)

From the first equation of (.), we have

∫ kT

–kT
x(t)f

(
x(t)

)
ϕ
(
y(t)

)
dt = λ–

∫ kT

–kT
x(t)f

(
x(t)

)
x′(t) dt = ,

which together (.) with (A) and (A) yields

‖y‖
 + m‖x‖m

m ≤
∫ kT

–kT

∣∣x(t)
∣∣∣∣pk(t)

∣∣dt.

Applying Hölder’s inequality to the above inequality, we obtain

‖y‖
 + m‖x‖m

m ≤ ‖pk‖ m
m–

‖x‖m,

which implies that

m‖x‖m
m ≤ ‖pk‖ m

m–
‖x‖m (.)

and

‖y‖
 ≤ ‖pk‖ m

m–
‖x‖m. (.)
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It follows from (.) and (.) that

‖x‖m ≤
(‖pk‖ m

m–

m

) 
m– ≤

(
α + ε

m–
m |p|∞

m

) 
m–

:= A(ε) (.)

and

‖y‖ <
(

(α + ε
m–

m |p|∞)m

m

) 
(m–)

:= B(ε). (.)

Multiplying the second equation of (.) by x′(t) and integrating from –kT to kT , we have

∫ kT

–kT
y′(t)x′(t) dt = –λ

∫ kT

–kT
f
(
x(t)

)(
x′(t)

) dt – λ

∫ kT

–kT
g
(
x(t)

)
x′(t) dt

+ λ

∫ kT

–kT
x′(t)pk(t) dt.

It follows from (.) and the condition |f (x)| ≥ l for all x ∈ R that

l
∫ kT

–kT

∣∣x′(t)
∣∣ dt ≤

∫ kT

–kT

∣∣x′(t)
∣∣∣∣pk(t)

∣∣dt

≤ ∥∥x′∥∥
‖pk‖,

i.e.,

∥∥x′∥∥
 =

(∫ kT

–kT

∣∣x′(t)
∣∣ dt

)/

≤ ‖pk‖

l
≤ β + ε/|p|∞

l
:= A(ε). (.)

From (.), and by applying Lemma ., we have

|x| ≤ (T)/m
(∫ t+T

t–T

∣∣x(s)
∣∣m dt

)/m

+ T(T)– 


(∫ t+T

t–T

∣∣x′(s)
∣∣ dt

)/

≤ (T)/m
(∫ t+kT

t–kT

∣∣x(s)
∣∣m dt

)/m

+ T(T)– 


(∫ t+kT

t–kT

∣∣x′(s)
∣∣ dt

)/

≤ (T)/m
(∫ kT

–kT

∣∣x(s)
∣∣m dt

)/m

+ T(T)– 


(∫ kT

–kT

∣∣x′(s)
∣∣ dt

)/

≤ (T)/mA(ε) + T(T)– 
 A(ε)

:= ρ(ε). (.)

Multiplying the second equation of (.) by y′(t) and integrating from –kT to kT , we
have

∫ kT

–kT

(
y′(t)

) dt

= –
∫ kT

–kT
λy′(t)g

(
x(t)

)
dt –

∫ kT

–kT
λy′(t)f

(
x(t)

)
ϕ
(
y(t)

)
dt +

∫ kT

–kT
λy′(t)pk(t) dt
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=
∫ kT

–kT
λg ′(x(t)

) y(t)√
 – y(t)

dt –
∫ kT

–kT
λy′(t)f

(
x(t)

)
ϕ
(
y(t)

)
dt

+
∫ kT

–kT
λy′(t)pk(t) dt. (.)

Since

λ

∫ kT

–kT
y′(t)f

(
x(t)

)
ϕ
(
y(t)

)
dt =

∫ kT

–kT
x′(t)y′(t)f

(
x(t)

)
dt

it follows from (.) that
∣∣∣∣
∫ kT

–kT
y′(t)f

(
x(t)

)
ϕ
(
y(t)

)
dt

∣∣∣∣ ≤ fρ(ε)
∥∥x′∥∥



∥∥y′∥∥
,

which together with (.) gives

∣∣∣∣
∫ kT

–kT
y′(t)f

(
x(t)

)
ϕ
(
y(t)

)
dt

∣∣∣∣ ≤ fρ(ε)A(ε)
∥∥y′∥∥

. (.)

Moreover, by using assumption (A), we see

∫ kT

–kT
λg ′(x(t)

) y(t)√
 – y(t)

dt ≤ .

Substituting it and (.) into (.), we have

∫ kT

–kT

(
y′(t)

) dt ≤ fρ(ε)A(ε)
∥∥y′∥∥

 + ‖pk‖
∥∥y′∥∥

,

i.e.,

∥∥y′∥∥
 ≤ fρ(ε)A(ε) + ‖pk‖ ≤ fρ(ε)A(ε) + β + ε/|p|∞ := B(ε). (.)

Thus by using Lemma ., for all t ∈ [–kT , kT], we get

∣∣y(t)
∣∣ ≤ (T)– 



(∫ t+T

t–T

∣∣y(s)
∣∣ ds

) 


+ T(T)– 


(∫ t+T

t–T

∣∣y′(s)
∣∣ ds

) 


≤ (T)– 


(∫ t+kT

t–kT

∣∣y(s)
∣∣ ds

) 


+ T(T)– 


(∫ t+kT

t–kT

∣∣y′(s)
∣∣ ds

) 


= (T)– 


(∫ kT

–kT

∣∣y(s)
∣∣ ds

) 


+ T(T)– 


(∫ kT

–kT

∣∣y′(s)
∣∣ ds

) 


,

and then by (.) and (.), we have

|y| = max
t∈[–kT ,kT]

∣∣y(t)
∣∣ ≤ (T)– 

 B(ε) +
√

T


B(ε)

= (T)– 


(
(α + ε

m–
m |p|∞)m

m

) 
(m–)

+
√

T


[
fρ(ε)A(ε) + β + ε/|p|∞

]

:= ρ(ε). (.)
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From (.), (.), (.), and (.), we see

lim
ε→

ρ(ε) = ρ() = (T)– 


(
αm

m

) 
(m–)

+ β

√
T


[
M
l

+ 
]

,

where M = sup|x|≤ρ() |f (x)| is a constant determined in (.). It follows from (.) that
there is a constant δ >  such that

ρ(ε) < , ∀ε ∈ (, δ].

This implies that if the constant ε determined in (.) is chosen as in (, δ], then it follows
from (.) that

|y| ≤ ρ := ρ(ε) < ; (.)

and then by the first equation of (.), we get

∣∣x′∣∣
 <

ρ√
 – ρ


:= ρ. (.)

From (.), we have

∣∣y′∣∣
 ≤ max

t∈[–kT ,kT]

∣∣f (x(t)
)
x′(t)

∣∣ + max
t∈[–kT ,kT]

∣∣g(
x(t)

)∣∣ + max
t∈[–kT ,kT]

∣∣pk(t)
∣∣

≤ fρ(ε)ρ + gρ(ε) + |p|∞
:= ρ. (.)

From (.)-(.), (.)-(.), we know that (.) and (.) are satisfied. Hence the con-
clusion of Theorem . holds. �

Theorem . Suppose that conditions (A) and (A) hold. Furthermore, the positive con-
stant T satisfies (.). Then for each k ∈ N, (.) has at least one kT-periodic solution
(xk(t), yk(t))� in Σk ⊂ Xk such that

‖xk‖m ≤ A,
∥∥x′

k
∥∥

 ≤ A, ‖yk‖ ≤ B,
∥∥y′

k
∥∥

 ≤ B,

|xk| ≤ ρ, |yk| ≤ ρ < ,
∣∣x′

k
∣∣
 ≤ ρ,

∣∣y′
k
∣∣
 ≤ ρ,

where A, A, B, B, ρ, ρ, ρ, ρ are the constants defined in Theorem ..

Proof In order to use Lemma ., for each k ∈ N, we consider the following system:

{
x′(t) = λϕ(y(t)) = λ

y(t)√
–y(t)

,

y′(t) = –λf (x(t))x′(t) – λg(x(t)) + λpk(t), λ ∈ (, ),
(.)

a kT-periodic solution of system (.). Since (, ) ⊂ (, ], we have Ω ⊂ Σk , where Σk

is defined in Theorem .. If (x, y)� ∈ Ω, by using Theorem ., we get

|x| ≤ ρ, |y| ≤ ρ < .
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Let Ω = {v = (x, y)� ∈ Ker L, QNv = }. If (x, y)� ∈ Ω, then (x, y)� = (a, a)� ∈ R (con-
stant vector), we see that

{
a = ,∫ kT

–kT [–g(a) + pk(t)] dt = .
(.)

Multiplying the second equation of (.) by a, we have

kTma
 ≤

∫ kT

–kT
apk(t) dt ≤ √

kT |a|B,

thus

|a| ≤ B√
kTm

≤ B√
Tm

:= β .

Now, if we set Ω = {v = (x, y)� ∈ Xk , |x| < ρ + β , |y| < ρ∗ < }, where ρ < ρ∗ < , then
Ω ⊃ Ω ∪ Ω. So condition (H) and condition (H) of Lemma . are satisfied. What
remains is verifying condition (H) of Lemma .. In order to do this, let

H(v,μ) : (Ω ∩ Ker L) × [, ] → R: H(v,μ) = μ(x, y)� + ( – μ)JQN(v),

where J : Im Q → Ker L is a linear isomorphism, J(x, y) = (y, x)�. From assumption (A), we
have vT H(v,μ) �= , ∀(v,μ) ∈ ∂Ω ∩ Ker L × [, ]. Hence

deg{JQN ,Ω ∩ Ker L, } = deg
{

H(v, ),Ω ∩ Ker L, 
}

= deg
{

H(v, ),Ω ∩ Ker L, 
} �= .

So condition (H) of Lemma . is satisfied. Therefore, by using Lemma ., we see that
(.) has a kT-periodic solution (xk , yk)� ∈ Ω̄ . Obviously, (xk , yk)� is a kT-periodic so-
lution to (.) for the case of λ = , so (xk , yk)� ∈ Σk . Thus, by using conclusions (.) and
(.) in Theorem ., we get

‖xk‖m ≤ A,
∥∥x′

k
∥∥

 ≤ A, ‖yk‖ ≤ B,
∥∥y′

k
∥∥

 ≤ B,

|xk| ≤ ρ, |yk| ≤ ρ < ,
∣∣x′

k
∣∣
 ≤ ρ,

∣∣y′
k
∣∣
 ≤ ρ.

Hence the conclusion of Theorem . holds. The proof is completed. �

Theorem . Suppose that conditions (A) and (A) hold. Furthermore, the positive con-
stant T satisfies (.). Then (.) has at least one nontrivial homoclinic solution.

Proof By using Theorem ., we see that, for each k ∈ N, there exists a kT-periodic so-
lution (xk , yk)� to (.) with

‖xk‖m ≤ A,
∥∥x′

k
∥∥

 ≤ A, ‖yk‖ ≤ B,
∥∥y′

k
∥∥

 ≤ B, (.)

|xk| ≤ ρ, |yk| ≤ ρ < ,
∣∣x′

k
∣∣
 ≤ ρ,

∣∣y′
k
∣∣
 ≤ ρ, (.)

where A, A, B, B, ρ, ρ, ρ, ρ are constants independent of k ∈ N. Equation (.)
together with Lemma . shows that there is a function u := (x, y)� ∈ C(R, R) and a
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subsequence {(xkj , ykj )�} of {(xk , yk)�}k∈N such that for each interval [a, b] ⊂ R, xkj (t) →
x(t) and ykj (t) → y(t) uniformly on [a, b]. This together with the condition of |yk| ≤
ρ <  in (.) implies that

max
t∈[a,b]

∣∣y(t)
∣∣ ≤ ρ <  for any a, b ∈ R with a < b. (.)

Below, we will show that (x(t), y(t))� is just a homoclinic solution to (.).
Since (xk(t), yk(t))� is a kT-periodic solution of (.), it follows that

⎧⎨
⎩

x′
k(t) = ϕ(yk(t)) = yk (t)√

–y
k (t)

,

y′
k(t) = –f (xk(t))ϕ(yk(t)) – g(xk(t)) + pk(t).

(.)

For all a, b ∈ R with a < b, there must be a positive integer j such that for j > j,
[–kjT , kjT – ε] ⊃ [a, b]. So for j > j, from (.) and (.) we see that

⎧⎪⎨
⎪⎩

x′
kj

(t) = ϕ(ykj (t)) =
ykj (t)√
–y

kj
(t)

,

y′
kj

(t) = –f (xkj (t))ϕ(ykj (t)) – g(xkj (t)) + p(t), t ∈ (a, b),

which together with (.) results in

x′
kj

(t) =
ykj (t)√

 – y
kj

(t)
→ y(t)√

 – y
(t)

(.)

and

y′
kj

(t) = –f
(
xkj (t)

)
ϕ
(
ykj (t)

)
– g

(
xkj (t)

)
+ p(t)

→ –f
(
x(t)

) y(t)√
 – y

(t)
– g

(
x(t)

)
+ p(t) (.)

uniformly for t ∈ [a, b] as j → +∞. Since xkj (t) → x(t) and xkj (t) is continuously differen-
tiable for t ∈ (a, b), it follows that

x′
kj

(t) → x′
(t) uniformly for t ∈ [a, b] as j → +∞,

which together with (.) yields

x′
(t) =

y(t)√
 – y

(t)
, t ∈ (a, b).

Similarly, by (.) we have

y′
(t) = –f

(
x(t)

) y(t)√
 – y

(t)
– g

(
x(t)

)
+ p(t), t ∈ (a, b).
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Considering a, b are two arbitrary constants with a < b, it is easy to see that (x(t), y(t))�,
t ∈ R, is a solution to (.), i.e.,

⎧⎨
⎩

x′
(t) = y(t)√

–y
(t)

,

y′
(t) = –f (x(t)) y(t)√

–y
(t)

– g(x(t)) + p(t).
(.)

Now, we will prove x(t) →  and x′
(t) →  as |t| → +∞.

Since

∫ +∞

–∞

(∣∣x(t)
∣∣m +

∣∣x′
(t)

∣∣)dt = lim
i→+∞

∫ iT

–iT

(∣∣x(t)
∣∣m +

∣∣x′
(t)

∣∣)dt

= lim
i→+∞ lim

j→+∞

∫ iT

–iT

(∣∣xkj (t)
∣∣m +

∣∣x′
kj

(t)
∣∣)dt,

clearly, for every i ∈ N, if kj > i, by (.),

∫ iT

–iT

(∣∣xkj (t)
∣∣m +

∣∣x′
kj

(t)
∣∣)dt ≤

∫ kjT

–kjT

(∣∣xkj (t)
∣∣m +

∣∣x′
kj

(t)
∣∣)dt ≤ Am

 + A
 .

Let i → +∞ and j → +∞. We have

∫ +∞

–∞

(∣∣x(t)
∣∣m +

∣∣x′
(t)

∣∣)dt ≤ A
 + A



and then
∫

|t|≥r

(∣∣x(t)
∣∣m +

∣∣x′
(t)

∣∣)dt → 

as r → +∞. So by using Lemma ., we obtain

∣∣x(t)
∣∣ ≤ (T)– 

m

(∫ t+T

t–T

∣∣x(s)
∣∣m ds

) 
m

+ T(T)– 


(∫ t+T

t–T

∣∣x′(s)
∣∣ ds

) 


≤ [
(T)– 

m + T(T)– 

][(∫ t+T

t–T

∣∣x(s)
∣∣m ds

)/m

+
(∫ t+T

t–T

∣∣x′(s)
∣∣ ds

) 

]

→  as |t| → +∞,

which implies that

x(t) →  as |t| → +∞. (.)

Similarly, we can prove that

y(t) →  as |t| → +∞,

which together with the first equation of (.) gives

x′
(t) →  as |t| → +∞. (.)
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It is easy to see from (.) that x(t) is a solution for (.). Thus, by (.) and (.),
x(t) is just a homoclinic solution to (.). Clearly, x(t) �≡ , otherwise, p(t) ≡ , which
contradicts assumption (A). Hence the conclusion of Theorem . holds. The proof is
completed. �

Theorem . Suppose that xg(x) ≤  for x ∈ (–∞, ) ∪ (, +∞) and u(t) is an arbitrary
homoclinic solution to (.). Then the following statements are true:

() If p(t) ≥  (p(t) > ) for all t ∈ R, then u(t) ≤  (u(t) < ) for all t ∈ R.
() If p(t) ≤  (p(t) < ) for all t ∈ R, then u(t) ≥  (u(t) < ) for all t ∈ R.

Proof We only prove the cases outside the brackets.
() Suppose that u(t) is an arbitrary homoclinic solution to (.), then

(
u′

(t)√
 + (u′

(t))

)′
+ f

(
u(t)

)
u′

(t) + g
(
u(t)

)
= p(t) (.)

and

u(t) → , u′
(t) →  as |t| → +∞. (.)

If statement () in Theorem . is not true, there must be a point t∗ ∈ R such that u(t∗) > .
It follows from (.) that there is a constant ρ >  such that t∗ ∈ (–ρ,ρ) and u(t) < u(t∗)


for t ∈ (–∞,ρ) ∪ (ρ, +∞). Let t∗∗ ∈ [–ρ,ρ] such that u(t∗∗) = maxt∈[–ρ,ρ] u(t), then

u
(
t∗∗) ≥ u

(
t∗) >  (.)

and

u
(
t∗∗) ≥ u

(
t∗) > sup

t∈(–∞,ρ)∪(ρ,+∞)
u(t),

i.e.,

u
(
t∗∗) = max

t∈R
u(t).

So u′
(t∗∗) =  and ( u′

(t)√
+(u′

(t)) )′|t=t∗∗ ≤ , and then from (.) we see

g
(
u

(
t∗∗)) = –

(
u′

(t)√
 + (u′

(t))

)′∣∣∣∣
t=t∗∗

+ p
(
t∗∗),

i.e.,

g
(
u

(
t∗∗)) ≥ .

By using the assumption of xg(x) ≤  for x ∈ (–∞, )∪ (, +∞), we have u(t∗∗) ≤ , which
contradicts (.). This contradiction implies that statement () in Theorem . is true.
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Similarly, we can prove that statement () in Theorem . is also true. The proof is com-
pleted. �

By using Theorem ., we can obtain the following results.

Corollary . Suppose that xg(x) ≤  for x ∈ (–∞, ) ∪ (, +∞). If p(t) ≡ , then (.) has
no nontrivial homoclinic solution.

Corollary . Suppose that xg(x) ≤  for x ∈ (–∞, ) ∪ (, +∞) and u(t) is a homoclinic
solution to (.). If there are two points t, t ∈ R such that u(t)u(t) < , then there must
be two points t, t ∈ R such that p(t)p(t) < .

As an application, we consider the following example:

(
u′(t)√

 + (u′(t))

)′
–

(
 +

u(t)
 + +u(t)

)
u′(t) – 

(
u(t)

) =
θet/

e–t + et , (.)

where θ ∈ R is a constant. Corresponding to (.), we can chose p(t) = θet/

e–t+et , m = , m = ,
and l =  such that assumption (A) holds. Furthermore, by a direct calculation, we can
easily obtain

∫ +∞

–∞

∣∣p(t)
∣∣ dt =

θπ


< ∞,

∫
R

∣∣p(t)
∣∣ m

m– dt =
∫ +∞

–∞

∣∣p(t)
∣∣ 

 dt =


θ/ < ∞.

This implies that assumption (A) also holds, and supt∈R |p(t)| = θ
  

 < θ
 , α = ( 

 ) 
 θ , β =

√
π
θ . Let T = 

 . Since lim|θ |→+∞ ρ = +∞ and limθ→ ρ = , where ρ = (T)– 
 ( αm

m
)


(m–) +

β

√
T
 [ M

l + ] is determined in (.), it follows that there is constant θ >  such that

ρ = (T)– 


(
αm

m

) 
(m–)

+ β

√
T


[
M
l

+ 
]

< , ∀θ ∈ (–θ, ) ∪ (, θ).

So by applying Theorem ., Theorem ., and Corollary ., we can obtain the following
results:

() If θ ∈ (–θ, ) ∪ (, θ), then (.) has at least one nontrivial homoclinic solution.
Furthermore, if θ ∈ (–θ, ), then all the homoclinic solutions to (.) are positive;
if θ ∈ (, θ), then all the homoclinic solutions to (.) are negative.

() If θ = , then (.) has no nontrivial homoclinic solution.
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