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Abstract
In this paper, we study the existence and uniqueness of positive solutions for a class
of higher-order nonlocal fractional differential equations with Riemann-Stieltjes
integral boundary conditions. We firstly convert the problem to an equivalent integral
equation, and then by applying a fixed point theorem of a sum operator, the
existence and uniqueness of positive solutions is established. Furthermore, an
iterative scheme to approximate the solution is constructed and an example is given
to illuminate the application of the main results.
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1 Introduction
In this paper, we are interested in the existence and uniqueness of positive solutions for a
fractional differential equation nonlocal boundary value problem (BVP for short):

{
–Dα

+x(t) = f (t, x(t), x(t)) + g(t, x(t)),  < t < , n –  < α ≤ n, n ≥ ,
x(k)() = ,  ≤ k ≤ n – , x() =

∫ 
 x(s) dA(s),

()

where Dα
+ is the standard Riemann-Liouville fractional derivative, f : [, ] × [, +∞) ×

[, +∞) → [, +∞) and g : [, ] × [, +∞) → [, +∞) are continuous,
∫ 

 x(s) dA(s) de-
notes the Riemann-Stieltjes integral of x with respect to A, A : [, ] → R is a function
of bounded variation and dA can be a signed measure. Here we also recall that the idea
using a Riemann-Stieltjes integral with a signed measures is due to Webb and Infante in
[, ], which can cover the multi-point boundary conditions and the integral boundary
conditions in a single framework as special cases.

Differential equations have recently been proved to be a valuable tool in modeling many
phenomena arising from various fields of science and engineering. In consequence, the
subject of differential equations has received much attention and many results on bound-
ary value problems of differential equations have been reported. In particular, since many
phenomena arising in a variety of different areas of applied mathematics and physics, such
as heat conduction, polymer rheology, chemistry physics, fluid flows and electrical net-
works can be reduced to nonlocal Riemann-Stieltjes integral boundary value problems, a
lot of work has been carried out to deal with the existence of solutions of nonlocal bound-
ary value problems by using techniques of functional analysis (see [–]). In [], the
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existence and uniqueness of positive solutions for the following nonlocal BVP:

{
–x′′(t) = f (t, x(t)) – kx,  < t < ,
x() = , x() =

∫ 
 x(s) dA(s),

is investigated by using the monotone iterative technique, where dA is allowed to be a
signed measure. The same problem was studied by Webb and Zima [] and the existence
of multiple positive solutions under suitable conditions on f (t, x) was established.

On the other hand, fractional differential operator is nonlocal and thus fractional dif-
ferential equations serve as an excellent tool for the description of hereditary properties
of various materials and processes and many physical phenomena in natural sciences and
engineering, such as earthquake, traffic flow, measurement of viscoelastic material prop-
erties, electrodynamics of a complex medium, polymer rheology (see [–]). Recently,
Ahmad and Nieto [] discussed the nonlinear Dirichlet boundary value problems of
sequential fractional integro-differential equations in the sense of the Caputo fractional
derivative, and the existence results are established by means of some standard tools of
fixed point theory. Some special cases of the BVP () were also studied, for example, Salm
[] studied the case of multi-point boundary vale problems when x() =

∑m–
i= ζix(ηi) and

g(t, x(t)) ≡ , and Zhang and Han [] considered a singular (n – , n) conjugate-type frac-
tional differential equation

{
–Dα

+x(t) = f (t, x(t)),  < t < ,α ∈ (n – , n],α ≥ ,
x() = x′() = · · · = x(n–)() = , x() =

∫ 
 x(s) dA(s),

and the existence and uniqueness of the positive solutions was obtained provided that
f (t, x) satisfies some growth conditions.

Motivated by the work mentioned above, we focus on the existence and uniqueness of
positive solutions for the nonlocal BVP () based on a fixed point theorem of a sum opera-
tor. Our work presented in this work has the following new features. Firstly, the existence
and uniqueness of positive solutions are obtained, which possess a nice estimate, i.e., there
exist λ > μ >  such that μtα– ≤ x∗(t) ≤ λtα–; secondly, the boundary conditions are non-
local which involve the Riemann-Stieltjes integral of x with respect to A, moreover, dA can
be a signed measure, this implies that it can cover the multi-point and integral boundary
value problems as special cases; thirdly, we also construct an iterative sequence to approx-
imate the positive solution.

The rest of this paper is organized as follows. In Section , we recall some definitions
and facts. In Section , the main results are discussed by using the properties of the Green
function and a fixed point theorem of a sum operator. Finally, in Section , an illustrative
example is also presented.

2 Preliminaries
We use the following notations in this paper:

� =
∫ 


tα– dA(t), �(α) =

∫ ∞


tα–e–t dt.

Now we begin this section with some preliminaries of cone and fractional calculus. Recall
that a non-empty closed convex set P ⊂ E is called a cone if it satisfies
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(i) x ∈ P, λ ≥  ⇒ λx ∈ P, and
(ii) x ∈ P, –x ∈ P ⇒ x = θ ,

where (E,‖ · ‖) is a real Banach space with partially ordered by a cone P ⊂ E, i.e., x ≤ y if
and only if y – x ∈ P. Cone P is called normal if there exists a constant N >  such that, for
all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, and N is called the normal constant. If x, y ∈ E,
the set [x, y] = {z ∈ E | x ≤ z ≤ y} is called the order interval, and denote x ∼ y if there exist
λ >  and μ >  such that λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ

(i.e., h ≥ θ and h �= θ ), let Ph = {x ∈ E | x ∼ h}.
We say that an operator A : E → E is increasing (decreasing) if x ≤ y implies Ax ≤ Ay

(Ax ≥ Ay).

Definition . ([]) Let x : [a,∞) → R and α >  with α ∈ R. Then the Riemann-Liouville
fractional integral is defined to be

Iα
+x(t) =


�(α)

∫ t

a
(t – s)α–x(s) ds,

whenever the right side is defined. Similarly, α >  with α ∈ R, we define the αth Riemann-
Liouville fractional derivative to be

Dα
+x(t) =


�(n – α)

(
d
dt

)(n) ∫ t

a
(t – s)n–α–x(s) ds,

where n ∈ N is the unique positive integer satisfying n –  ≤ α < n and t > a.

Proposition . ([]) The equality

Dα
+Iα

+f (x) = f (x), α > ,

holds for f ∈ L(a, b).

In [], the authors obtained the following results.

Lemma . ([]) Given y ∈ C[, ]. Then the BVP:

{
Dα

+x(t) + y(t) = ,  < t < , n –  < α ≤ n, n ≥ ,
x() = x′() = · · · = x(n–)() = , x() = ,

()

has a unique solution

x(t) =
∫ 


G(t, s)y(s) ds,

where

G(t, s) =

{
[t(–s)]α–

�(α) ,  ≤ t ≤ s ≤ ,
[t(–s)]α––(t–s)α–

�(α) ,  ≤ s ≤ t ≤ ,

is the Green function of BVP ().
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Lemma . ([]) The Green function G(t, s) satisfies the following properties:
() G(t, s) > , for all t, s ∈ (, );
()

( – t)tα–s( – s)α– ≤ �(α)G(t, s) ≤ (α – )( – t)tα–, for t, s ∈ [, ].

The following lemmas are obtained by Zhang and Han [].

Lemma . ([]) Given y ∈ L[, ]. Then the BVP:

{
Dα

+x(t) + y(t) = ,  < t < , n –  < α ≤ n, n ≥ ,
x() = x′() = · · · = x(n–)() = , x() =

∫ 
 x(s) dA(s),

()

has a unique solution

x(t) =
∫ 


H(t, s)y(s) ds,

where H(t, s) is the Green function of BVP () and is given by

H(t, s) =
tα–

 – �
GA(s) + G(t, s), GA(s) =

∫ 


G(t, s) dA(t). ()

Lemma . Let  ≤ � <  and GA(s) ≥  for s ∈ [, ]. Then the Green function defined by
() satisfies the following properties:

() H(t, s) > , for all t, s ∈ (, );
()


 – �

tα–GA(s) ≤ H(t, s) ≤
(‖GA(s)‖

 – �
+


�(α – )

)
tα–, for t, s ∈ [, ].

We recall the following lemmas and definitions which are important to prove our main
results.

Definition . ([]) An operator A : E → E is said to be positive homogeneous if it sat-
isfies A(tx) = tAx, ∀t > , x ∈ E. An operator A : P → P is said to be sub-homogeneous if it
satisfies

A(tx) ≥ tAx, ∀t ∈ (, ), x ∈ P.

Definition . ([]) Let r be a real number with  ≤ r < . An operator A : P → P is said
to be r-concave if it satisfies

A(tx) ≥ trAx, ∀t ∈ (, ), x ∈ P.

Lemma . ([]) Let h > θ and β ∈ (, ), A : P × P → P is a mixed monotone operator
satisfying

A
(
tx, t–y

) ≥ tβA(x, y), ∀t ∈ (, ), x, y ∈ P, ()
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and B : P → P is an increasing sub-homogeneous operator. Assume that
(i) there is a h ∈ Ph such that A(h, h) ∈ Ph and Bh ∈ Ph;

(ii) there exists a constant δ >  such that A(x, y) ≥ δBx, ∀x, y ∈ P.
Then

() A : Ph × Ph → Ph, B : Ph → Ph;
() there exist u, v ∈ Ph and γ ∈ (, ) such that

γ v ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v, u) + Bv ≤ v;

() the operator equation A(x, x) + Bx = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,

then xn → x∗ and yn → x∗ as n → ∞.

Lemma . ([]) Let A : P → P be an increasing γ -concave operator and B : P → P is an
increasing sub-homogeneous operator. Assume that

(i) there exists a h > θ such that Ah ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ >  such that Ax ≥ δBx, ∀x ∈ P.

Then the operator equation Ax + Bx = x has a unique solution x∗ in Ph. Moreover, for any
initial value y ∈ Ph, constructing successively sequences yn = Ayn– +Byn–, n = , , . . . , then
yn → x∗ as n → ∞.

Remark . If operator B ≡ , Lemma ., and Lemma . still hold.

Lemma . ([]) Let h > θ and α ∈ (, ). A : P × P → P is a mixed monotone operator
and satisfies

A
(
tx, t–y

) ≥ tA(x, y), ∀t ∈ (, ), x, y ∈ P. ()

B : P → P is an increasing α-concave operator. Assume that
(i) there is a h ∈ Ph such that A(h, h) ∈ Ph and Bh ∈ Ph;

(ii) there exists a constant δ >  such that A(x, y) ≤ δBx, ∀x, y ∈ P.
Then

() A : Ph × Ph → Ph and B : Ph → Ph;
() there exist u, v ∈ Ph and γ ∈ (, ) such that

γ v ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v, u) + Bv ≤ v;

() the operator equation A(x, x) + Bx = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.
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Lemma . Assume that f [, ] × [,∞) × [,∞) → [,∞) and g : [, ] × [,∞) →
[,∞) are continuous. Then the BVP () has a unique solution

x(t) =
∫ 


H(t, s)

[
f
(
s, x(s), x(s)

)
+ g

(
s, x(s)

)]
ds,

where H(t, s) is defined by ().

Proof By using similar method to Lemma . and standard arguments, we can show the
conclusion. �

3 Main results
The basic space used in this paper is the space C[, ], it is a Banach space if it is endowed
with the norm ‖x‖ = sup{|x(t)| : t ∈ [, ]} for any x ∈ C[, ], and E can equip with a partial
order x, y ∈ C[, ], x ≤ y ⇐⇒ x(t) ≤ y(t) for t ∈ [, ]. Let P = {x ∈ C[, ] | x(t) ≥ , t ∈
[, ]}. Clear P is a normal cone in C[, ] and the normality constant is .

First, we give the existence and uniqueness of positive solutions to the BVP ().

Theorem . Assume that

(H) A is a function of bounded variation such that GA(s) ≥  for s ∈ [, ] and � ∈ [, );
(H) f (t, x, y) : [, ] × [, +∞) × [, +∞) → [, +∞) is continuous and increasing in x and

y decreasing, and there exists a constant γ ∈ (, ) such that

f
(
t,λx,λ–y

) ≥ λγ f (t, x, y), ∀t ∈ [, ], x, y ∈ [, +∞);

(H) g(t, x) : [, ] × [, +∞) → [, +∞) is continuous and increasing in x ∈ [, +∞),
g(t,λx) ≥ λg(t, x) for λ ∈ (, ), (t, x) ∈ [, ] × [, +∞), and g(t, ) �≡ ;

(H) there exists a constant δ >  such that f (t, x, y) ≥ δg(t, x), t ∈ [, ], x, y ≥ .

Then the BVP () has a unique positive solution x∗ in Ph, where h(t) = tα–, t ∈ [, ]. And
for any initial value x, y ∈ Ph, constructing successively the sequences

xn(t) =
∫ 


H(t, s)

[
f
(
s, xn–(s), yn–(s)

)
+ g

(
s, xn–(s)

)]
ds, n = , , . . . ,

yn(t) =
∫ 


H(t, s)

[
f
(
s, yn–(s), xn–(s)

)
+ g

(
s, yn–(s)

)]
ds, n = , , . . . ,

we have xn(t) → x∗(t) and yn(t) → x∗(t) as n → ∞.

Proof Applying Lemma ., BVP () is equivalent to the integral equation

x(t) =
∫ 


H(t, s)

[
f
(
s, x(s), x(s)

)
+ g

(
s, x(s)

)]
ds.

Let A : P × P → E be the operator defined by

A(x, y)(t) =
∫ 


H(t, s)f

(
s, x(s), y(s)

)
ds,
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and B : P → E be the operator defined by

(Bx)(t) =
∫ 


H(t, s)g

(
s, x(s)

)
ds.

It is simple to show that x is the solution of BVP () if and only if x solves the operator
equation x = A(x, x) + Bx. From (H) and (H) we know that A : P × P → P and B : P → P.
We shall prove the theorem through two steps.

Step . We assert that A is a mixed monotone operator and satisfies () and B is an in-
creasing sub-homogeneous operator. In fact, for xi, yi ∈ P, i = ,  with x ≥ x, y ≤ y,
we know that x(t) ≥ x(t) and y(t) ≤ y(t) for all t ∈ [, ]. It follows from (H), (H), and
Lemma . that

A(x, y)(t) =
∫ 


H(t, s)f

(
s, x(s), y(s)

)
ds

≥
∫ 


H(t, s)f

(
s, x(s), y(s)

)
ds

= A(x, y)(t), ()

which implies that A(x, y) ≥ A(x, y). Similar to the argument of (), we get Bx ≥ Bx.
For any λ ∈ (, ) and x, y ∈ P, together with (H), we obtain

A
(
λx,λ–y

)
(t) =

∫ 


H(t, s)f

(
s,λx(s),λ–y(s)

)
ds

≥ λγ

∫ 


H(t, s)f

(
s, x(s), y(s)

)
ds

= λγ A(x, y)(t).

This means A(λx,λ–y) ≥ λγ A(x, y) holds for λ ∈ (, ), x, y ∈ P. Therefore the operator A
satisfies (). Also, for any λ ∈ (, ), x ∈ P, by (H), we get

B(λx)(t) =
∫ 


H(t, s)g

(
s,λx(s)

)
ds ≥ λ

∫ 


H(t, s)g

(
s, x(s)

)
ds = λBx(t),

that is, B(λx) ≥ λB(x) for any λ ∈ (, ), x ∈ P. Hence the operator B is sub-homogeneous.
Step . Now we verify that conditions (i) and (ii) of Lemma .. First, we prove that

A(h, h) ∈ Ph and Bh ∈ Ph. It is enough to address the following conclusions:
(a) there exist a, a >  such that ah(t) ≤ A(h, h)(t) ≤ ah(t), t ∈ [, ];
(b) there exist b, b >  such that bh(t) ≤ Bh(t) ≤ bh(t), t ∈ [, ].

Let

a =
∫ 



(‖GA(s)‖
 – �

+


�(α – )

)
f (s, , ) ds,

a =


 – �

∫ 


GA(s)f (s, , ) ds.
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It follows from (H) and Lemma . that, for any t ∈ [, ],

A(h, h)(t) =
∫ 


H(t, s)f

(
s, h(s), h(s)

)
ds

≤
∫ 



(‖GA(s)‖
 – �

+


�(α – )

)
tα–f (s, , ) ds

= ah(t)

and

A(h, h)(t) ≥ 
 – �

tα–
∫ 


GA(s)f (s, , ) ds = ah(t).

According to (H)-(H), we get

f (s, , ) ≥ f (s, , ) ≥ δg(s, ) ≥ .

Due to g(t, ) �≡ , we obtain

∫ 


f (s, , ) ds ≥

∫ 


f (s, , ) ds ≥ δ

∫ 


g(s, ) ds > ,

and in consequence, a >  and a > . Thus, ah(t) ≤ A(h, h)(t) ≤ ah(t), t ∈ [, ], and
hence we get (a). An argument similar to the one used in (a) shows that (b) holds with

b =
(‖GA(s)‖

 – �
+


�(α – )

)∫ 


g(s, ) ds, b =


 – �

∫ 


GA(s)g(s, ) ds.

Hence the condition (i) of Lemma . is proved. It remains to show that the condition (ii)
of Lemma . is satisfied. For x ∈ P, and for any t ∈ [, ], taking (H) into consideration,
we get

A(x, y)(t) =
∫ 


H(t, s)f

(
s, x(s), y(s)

)
ds ≥ δ

∫ 


H(t, s)g

(
s, x(s)

)
ds = δBx(t),

in other words, A(x, y) ≥ δBx, ∀x ∈ P. Therefore, an application of Lemma . implies: the
operator equation x = A(x, x) + Bx has a unique positive solution x∗(t) in Ph. Consequently,
BVP () has a unique positive solution x∗(t) in Ph. Moreover, for any initial value x, y ∈ Ph,
constructing successively the sequence

xn(t) =
∫ 


H(t, s)

[
f
(
s, xn–(s), yn–(s)

)
+ g

(
s, xn–(s)

)]
ds, n = , , . . . ,

yn(t) =
∫ 


H(t, s)

[
f
(
s, yn–(s), xn–(s)

)
+ g

(
s, yn–(s)

)]
ds, n = , , . . . ,

we have xn(t) → x∗(t), yn(t) → x∗(t) as n → ∞. �

Remark . In Theorem ., we cannot only obtain the existence of unique positive solu-
tion, but also construct an iterative sequence for approximate the unique positive solution
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for any initial value in Ph. Moreover, the estimate of unique positive solution is derived
with μtα– ≤ x∗(t) ≤ λtα– for some λ > μ > . Thus the property of the unique positive
solution is more clear.

If g(t, x(t)) ≡ , from Remark ., we have the following corollary.

Corollary . Assume that (H) and (H) hold. If f (t, ) �≡ .
Then the problem

{
–Dα

+x(t) = f (t, x(t), x(t)),  < t < , n –  < α ≤ n, n ≥ ,
x(k)() = ,  ≤ k ≤ n – , x() =

∫ 
 x(s) dA(s),

has a unique positive solution x∗ in Ph, where h(t) = tα–, t ∈ [, ]. Moreover, constructing
successively the sequence

xn(t) =
∫ 


H(t, s)f

(
s, xn–(s), yn–(s)

)
ds, n = , , . . . ,

yn(t) =
∫ 


H(t, s)f

(
s, yn–(s), xn–(s)

)
ds, n = , , . . . ,

for any initial value x, y ∈ Ph, we have xn(t) → x∗(t), yn(t) → x∗(t) as n → ∞.

If the nonlinear term f (t, x, x) is replaced by f (t, x), we can get the following results.

Theorem . Assume that (H) and (H) hold and

(H) f (t, x) : [, ] × [, +∞) → [, +∞) is continuous and increasing with respect to the
second argument, and there exists a constant γ ∈ (, ) such that f (t,λx) ≥ λγ f (t, x),
∀t ∈ [, ], λ ∈ (, ), x ∈ [,∞);

(H) there exists a constant δ >  such that f (t, x) ≥ δg(t, x) for t ∈ [, ], x ≥ .

Then the BVP

{
–Dα

+x(t) = f (t, x(t)) + g(t, x(t)),  < t < , n –  < α ≤ n, n ≥ ,
xk() = ,  ≤ k ≤ n – , x() =

∫ 
 x(s) dA(s),

()

has a unique positive solution x∗ in Ph, where h(t) = tα–, t ∈ [, ]. Moreover, for any initial
value y ∈ Ph, constructing successively the sequences

yn(t) =
∫ 


H(t, s)

[
f
(
s, yn–(s)

)
+ g

(
s, yn–(s)

)]
ds, n = , , . . . ,

we have yn(t) → x∗(t) as n → ∞.

Proof Applying Lemma ., BVP () is equivalent to the integral formulation given by

x(t) =
∫ 


H(t, s)

[
f
(
s, x(s)

)
+ g

(
s, x(s)

)]
ds.
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Let A : P → E be the operator defined by

(Ax)(t) =
∫ 


H(t, s)f

(
s, x(s)

)
ds

and B : P → E be the operator defined by

(Bx)(t) =
∫ 


H(t, s)g

(
s, x(s)

)
ds.

It is simple to show that x∗ is the solution of BVP () if and only if x∗ solves the operator
equation x = Ax + Bx. Similar to the proof of Theorem ., we know A is an increasing
γ -concave operator and B is an increasing sub-homogeneous operator.

Take

a =
∫ 



(‖GA(s)‖
 – �

+


�(α – )

)
f (s, ) ds,

a =


 – �

∫ 


GA(s)f (s, ) ds,

b =
∫ 



(‖GA(s)‖
 – �

+


�(α – )

)
g(s, ) ds,

b =


 – �

∫ 


GA(s)g(s, ) ds.

Combining the proof of Theorem . with (H), (H), (H), and Lemma ., the conditions
(i) and (ii) of Lemma . are satisfied. Therefore, an application of Lemma . implies:
the operator equation x = Ax + Bx has a unique positive solution x∗ in Ph. Consequently,
BVP () has a unique positive solution x∗ in Ph. Moreover, constructing successively the
sequence

yn(t) = Ayn–(t) + Byn–(t)

=
∫ 


H(t, s)

[
f
(
s, yn–(s)

)
+ g

(
s, yn–(s)

)]
ds, n = , , . . . ,

for any initial value y ∈ Ph, we have yn(t) → x∗(t) as n → ∞. �

Corollary . Assume that (H) and (H) hold.
Then the problem

{
–Dα

+x(t) = f (t, x(t)),  < t < , n –  < α ≤ n, n ≥ ,
x(k)() = ,  ≤ k ≤ n – , x() =

∫ 
 x(s) dA(s),

has a unique positive solution x∗ in Ph, where h(t) = tα–, t ∈ [, ]. Moreover, for any initial
value y ∈ Ph, constructing successively the sequences

yn(t) =
∫ 


H(t, s)f

(
s, yn–(s)

)
ds, n = , , . . . ,

we have yn(t) → x∗(t) as n → ∞.
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From the proof of Theorem . and using Lemma ., we can prove the following con-
clusion.

Theorem . Assume that (H) holds and

(H) f (t, x, y) : [, ] × [, +∞) × [, +∞) → [, +∞) is continuous and increasing in x ∈
[, +∞) for fixed t ∈ [, ], y ∈ [, +∞) decreasing in y ∈ [, +∞) for fixed t ∈ [, ],
x ∈ [, +∞), and f (t,λx,λ–y) ≥ λf (t, x, y), ∀t ∈ [, ], x, y ∈ [, +∞);

(H) g(t, x) : [, ] × [, +∞) → [, +∞) is continuous and increasing in x ∈ [, +∞) for
fixed t ∈ [, ], and there exists a constant γ ∈ (, ) such that g(t,λx) ≥ λγ g(t, x) for
λ ∈ (, ), t ∈ [, ], u ∈ [, +∞) and g(t, ) �≡ ;

(H) there exists a constant δ >  such that f (t, x, y) ≤ δg(t, x), t ∈ [, ], x, y ≥ .

Then BVP () has a unique positive solution x∗ in Ph and for any x, y ∈ Ph, constructing
successively the sequences

xn(t) =
∫ 


G(t, s)

[
f
(
s, xn–(s), yn–(s)

)
+ g

(
s, xn–(s)

)]
ds, n = , , . . . ,

yn(t) =
∫ 


G(t, s)

[
f
(
s, yn–(s), xn–(s)

)
+ g

(
s, yn–(s)

)]
ds, n = , , . . . ,

we have xn(t) → x∗(t) and yn(t) → x∗(t) as n → ∞.

If the nonlocal boundary condition x() =
∫ 

 x(s) dA(s) replace by local boundary condi-
tion u() = , we can obtain the following results.

Corollary . Assume that (H)-(H) hold. Then the problem
{

–Dα
+x(t) = f (t, x(t), x(t)) + g(t, x(t)),  < t < , n –  < α ≤ n, n ≥ ,

x(k)() = ,  ≤ k ≤ n – , x() = ,

has a unique positive solution x∗ in Ph, where h(t) = ( – t)tα–, t ∈ [, ]. Moreover, for any
initial value x, y ∈ Ph, constructing successively the sequences

xn(t) =
∫ 


G(t, s)

[
f
(
s, xn–(s), yn–(s)

)
+ g

(
s, xn–(s)

)]
ds, n = , , . . . ,

yn(t) =
∫ 


G(t, s)

[
f
(
s, yn–(s), xn–(s)

)
+ g

(
s, yn–(s)

)]
ds, n = , , . . . ,

we have xn(t) → x∗(t) and yn(t) → x∗(t) as n → ∞.

Corollary . Assume that (H) holds. Then the problem
{

–Dα
+x(t) = f (t, x(t), x(t)),  < t < , n –  < α ≤ n, n ≥ ,

x(k)() = ,  ≤ k ≤ n – , x() = ,

has a unique positive solution x∗ in Ph, where h(t) = ( – t)tα–, t ∈ [, ]. Moreover, for any
initial value x, y ∈ Ph, constructing successively the sequences

xn(t) =
∫ 


G(t, s)f

(
s, xn–(s), yn–(s)

)
, n = , , . . . ,
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yn(t) =
∫ 


G(t, s)f

(
s, yn–(s), xn–(s)

)
ds, n = , , . . . ,

we have xn(t) → x∗(t) and yn(t) → x∗(t) as n → ∞.

Corollary . Assume that (H), (H), and (H) hold. Then the problem
{

–Dα
+x(t) = f (t, x(t)) + g(t, x(t)),  < t < , n –  < α ≤ n, n ≥ ,

x(k)() = ,  ≤ k ≤ n – , x() = ,

has a unique positive solution x∗ in Ph, where h(t) = ( – t)tα–, t ∈ [, ]. Moreover, for any
initial value y ∈ Ph, constructing successively the sequences

yn(t) =
∫ 


G(t, s)

[
f
(
s, yn–(s)

)
+ g

(
s, yn–(s)

)]
ds, n = , , . . . ,

we have yn(t) → x∗(t) as n → ∞.

Corollary . Assume that (H) holds. Then the problem
{

–Dα
+x(t) = f (t, x(t)),  < t < , n –  < α ≤ n, n ≥ ,

x(k)() = ,  ≤ k ≤ n – , x() = ,

has a unique positive solution x∗ in Ph, where h(t) = ( – t)tα–, t ∈ [, ]. Moreover, for any
initial value y ∈ Ph, constructing successively the sequences

yn(t) =
∫ 


G(t, s)

[
f
(
s, yn–(s)

)
+ g

(
s, yn–(s)

)]
ds, n = , , . . . ,

we have yn(t) → x∗(t) as n → ∞.

4 Example
Consider the following boundary value problem:

{
–D



+x = x 

 + y– 
 + arctan x + t + t + π

 ,  < t < ,
x() = x′() = , x() = x( 

 ) – x( 
 ).

()

In this case, α = 
 . Problem () can be regard as a boundary value problem of form ()

with

f (t, x) = x

 + y– 

 + t +
π


()

and

g(t, x) = arctan x + t. ()

Now we verify that conditions (H)-(H) are satisfied. By a simple computation, we have

G(t, s) =

⎧⎪⎨
⎪⎩

[t(–s)]



�( 
 )

,  ≤ t ≤ s ≤ ,

[t(–s)]

 –(t–s)




�( 
 )

,  ≤ s ≤ t ≤ ,
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and

GA(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[ 
 (–s)]


 –( 

 –s)



�( 
 )

– [ 
 (–s)]


 –( 

 –s)



�( 
 )

,  ≤ s < 
 ,

[ 
 (–s)]




�( 
 )

– [ 
 (–s)]


 –( 

 –s)



�( 
 )

, 
 ≤ s ≤ 

 ,

[ 
 (–s)]




�( 
 )

– [ 
 (–s)]




�( 
 )

, 
 < s ≤ .

Then � ≈ . and GA(s) ≥  for all s ∈ [, ]. This implies that (H) holds. From ()
and () we have f and g are continuous and increasing in x ∈ [,∞) for fixed t ∈ [, ].
Moreover, for any λ ∈ (, ), t ∈ [, ], x ∈ (,∞), we get arctan(λx) ≥ λ arctan x. Therefore

f
(
t,λx,λ–y

)
= λ


 x


 + λ


 y– 

 + t +
π


≥ λ




(
x


 + y– 

 + t +
π



)
= λγ f (t, x, y)

and

g(t,λx) = arctan(λx) + t ≥ λ
(
arctan x + t) = λg(t, x),

where γ = 
 . Thus (H) and (H) are proved and g(t, ) = t �≡ . It remains to show that

(H) holds. Take δ ∈ (, ], and we obtain

f (t, x, y) = x

 + y– 

 + t +
π


≥ t +

π


≥ t + arctan x ≥ δ

(
t + arctan x

)
= δg(t, x).

Therefore, all of the conditions in Theorem . are satisfied. By using Theorem ., we
know that the BVP () has a unique positive solution in Ph with h(t) = t 

 .
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