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Abstract
This paper introduces a type of modified generalized projective synchronization with
complex transformation matrix (CMGPS) for fractional-order complex chaos and real
chaos with the same dimension and different structures. The transformation matrix in
this type of chaos synchronization is a non-diagonal square matrix, and its elements
are complex numbers. Based on the stability theory of fractional-order systems,
necessary and sufficient criteria are established to guarantee CMGPS for the
fractional-order complex chaos and fractional-order real chaos, and for two
fractional-order complex chaotic systems, respectively. Numerical examples are
provided to illustrate the feasibility and effectiveness of our theoretical results.
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1 Introduction
In the last thirty years, with the development of interdisciplinary applications, it was found
that many systems in interdisciplinary fields can be elegantly described with the help
of fractional derivatives, for instance, viscoelastic systems [], dielectric polarization [],
quantitative finance [], quantum evolution of complex systems [], and so forth. Due to
the above wide scope of applications, many researchers devoted much effort to chaotic
behaviors, chaotic control, and synchronization of fractional-order dynamical systems in
a real space. For example, Hartley et al. introduced the fractional-order continuous Chua-
Hartley’s system [], Arena et al. considered the fractional-order cellular neural network
[], Gao and Yu presented the fractional continuous Duffing’s systems [], Wu et al. ad-
dressed discrete chaos and synchronization of the fractional logistic, sine and standard
maps recently [–]. The projective synchronization (PS) [] has been especially exten-
sively studied because it can be used to obtain faster communication with its proportional
feature, and the unpredictability of the scaling factor can additionally enhance the security
of communication. In [], Wu and Lu presented a modified projective synchronization
(MPS) method for fractional-order Chen hyperchaotic systems, which associates with the
projective synchronization and the generalized one, where the drive and response systems
could be synchronized up to scaling factors δi. Liu et al. [] introduced modified general-
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ized projective synchronization (MGPS) of fractional-order chaotic systems with different
structure, where the drive and response systems could be asymptotically synchronized up
to a desired non-diagonal transformation matrix.

In , several research results were proposed about the dynamic properties and syn-
chronization of fractional-order chaotic systems in a complex space. The fractional-order
complex Lorenz system was proposed and dynamics of the system was investigated in
detail []. Luo and Wang introduced the fractional-order complex Chen system and its
application to digital secure communication, the complex variables (doubling the number
of variables) increase the content of transmitting information signals and enhance their
security further [].

However, all the scaling factors in the above synchronization are real numbers. That
is to say, the drive and response systems evolve in the same or inverse direction simul-
taneously. In fact, for complex dynamical systems, the scaling factors can be complex
[–], the drive and response systems may evolve in different directions with a con-
stant intersection angle, for example, ζ = ρejγ η, where ρejγ = ρ(cosγ + j sinγ ), ζ and η

denote the complex state variables of drive and response systems, respectively, ρ >  de-
notes the zoom rate, γ ∈ [, π ) denotes the rotate angle. Moreover, as the complex scal-
ing factors are arbitrary and more unpredictable than real scaling factors and the oper-
ations of complex numbers are complicated, the possibility that an interceptor extracts
the information from the transmitted signal is greatly less than real scaling factors, which
will also increase security and variety of communications. However, complex synchro-
nization of fractional-order complex chaos and fractional-order real chaos is less. Only
in [], Liu introduced modified hybrid projective synchronization with complex trans-
formation matrix (CMHPS) for different dimensional fractional-order complex chaos and
fractional-order real hyper-chaos. Naturally, a question may be put forth: Does there exist
another kind of complex synchronization, where the same dimensional fractional-order
complex chaos and real chaos could be synchronized up to a non-diagonal complex trans-
formation matrix � = �r + j�i? In the practical applications, there does exist this type
of synchronization, called modified generalized projective synchronization with complex
transformation matrix (CMGPS). By means of the complex state transformation matrix,
every state variable in the response system will be involved in multiple state variables of
the drive system, which will increase the complexity of the synchronization and further
increase the diversity and the security of communications. Therefore, it is interesting and
significant to study CMGPS of two fractional-order complex chaotic systems and that of
fractional-order complex chaos and real chaos. However, to the best of our knowledge,
this type of CMGPS for fractional-order chaotic systems has rarely been reported.

Motivated by the above discussion, CMGPS is addressed for fractional-order complex
chaos and real chaos with the same dimension and different structures based on the sta-
bility theory of fractional-order systems. In addition, CMGPS will contain MPS with real
constant scaling matrix and MGPS with real transformation matrix and extend previous
works.

The rest of this paper is organized as follows. In Section , a brief review of the fractional
derivative and numerical algorithm and the stability theory of the fractional-order system
is given. General methods of CMGPS for the fractional-order real chaotic drive system
and the complex chaotic response system, for the fractional-order complex chaotic drive
system and the real chaotic response system, and for two fractional-order complex chaotic
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systems are presented in Section , Section  and Section , respectively. Three numerical
examples are provided in Section . Finally, some conclusions are drawn in Section .

Notations R
n stands for n-dimensional real vector space, Cn stands for n-dimensional

complex vector space. If z ∈ C
n is a complex vector, then z = zr + jzi, j =

√
– is the imag-

inary unit, superscripts r and i stand for the real and imaginary parts of z, respectively,
zT are the transpose of z, respectively, and ‖z‖ implies the -norm of z. If z is a complex
scalar, z̄ is the conjugate of z.

Assume α > , then �α� is just the value α rounded up to the nearest integer, Jα denotes
Riemann-Liouville type fractional integral of order α, Dα denotes Riemann-Liouville type
fractional derivative of order α, Dα∗ denotes Caputo type fractional derivative of order α,

(·) denotes the gamma function 
(x) =

∫ ∞
 tx–e–t dt, x > .

2 Preliminaries
2.1 The definition of fractional derivative
There are many definitions of fractional derivative []. The definition of the Riemann-
Liouville derivative is given as

Dαf (t) =
dm

dtm Jm–αf (t), ()

where α > , m := �α�, Jβ is the β-order Riemann-Liouville integral operator as described
by

Jβ f (t) =



(β)

∫ t



f (τ )
(t – τ )–β

dτ , ()

where  < β ≤ .
The Caputo fractional derivative is defined as

Dα
∗ f (t) =

dm

dtm Jm–αf (t) =

{



(m–q)
∫ t


f (m)(τ )

(t–τ )(q–m+) dτ , m –  < q < m,
dm

dtm f (t), q = m,
()

where α > , m := �α�.
Generally speaking, there are two numerical methods suitable for chaos synchronization

of fractional differential systems. One is the frequency-domain method [], another is
the time-domain method. Here, the Caputo version and an improved predictor-corrector
algorithm, i.e., the Adams-Bashforth-Moulton predictor-correctors scheme are chosen
for fractional differential equations, where the numerical approximation is a time-domain
approach that is more accurate, and the computational cost is greatly reduced [, ].

2.2 Numerical algorithms
The fractional predictor-corrector algorithm [] is based on the analytical property of
the following fractional differential equation:

{
Dα∗x(t) = f (t, x(t)),  ≤ t ≤ T ,
x(k)() = x(k)

 , k = , , . . . , m –  (m = �α�),
()
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which is equivalent to the Volterra integral equation

x(t) =
m–∑

k=

x(k)


tk

k!
+



(α)

∫ t



f (τ , x(τ ))
(t – τ )–α

dτ . ()

Now, set h = T/N , tn = nh (n = , , , . . . , N ∈ Z+). Equation () can be written as

xh(tn+) =
m–∑

k=

x(k)


tk
n+
k!

+
hα


(α + )
f
(
tn+, xθ

h(tn+)
)

+
hα


(α + )
∑

aj,n+f
(
tj, xh(tj)

)
, ()

where the predicted value xθ
h(tn+) is determined by

xθ
h(tn+) =

m–∑

k=

x(k)


tk
n+
k!

+
hα


(α + )
f
(
tn+, xθ

h(tn+)
)

+
hα


(α + )
∑

bj,n+f
(
tj, xh(tj)

)
, ()

and

aj,n+ =

{
nα+ – (n – α)(n + )α+, j = ,
(n – j + )α+ + n – jα+ – (n – j + )α+,  ≤ j ≤ n,

()

bj,n+ =
hα

α

(
(n – j + )α – (n – j)α

)
. ()

The estimation error in this method is

ε = max
(∣
∣x(tj) – xh(tj)

∣
∣
)

= O
(
hθ

)
(j = , , . . . , N), ()

where θ = min(,  + α).

2.3 The stability of fractional-order systems
For a given fractional-order linear time-invariant system

Dα
∗x = Mx ()

with x() = x, where  < α <  and x ∈ Rn, M is a constant matrix.

Lemma  ([]) System () is
(i) asymptotically stable if and only if

∣
∣arg

(
λ�(M)

)∣∣ >
απ


(� = , , . . . , n), ()

where arg(λ�(M)) denotes the argument of the eigenvalue λ� of M. In this case, each
component of the states decays toward  like t–α .



Liu et al. Advances in Difference Equations  (2015) 2015:274 Page 5 of 16

(ii) stable if and only if

∣
∣arg

(
λ�(M)

)∣
∣ ≥ απ


(� = , , . . . , n), ()

and those critical eigenvalues λi that satisfy |arg(λ�(M))| = απ/ (� = , , . . . , n),
have geometric multiplicity one.

Fractional-order differential equations are at least as stable as their integer order coun-
terpart because systems with memory are typically more stable than those without mem-
ory [].

3 CMGPS scheme of fractional-order chaotic real drive system and complex
response system

3.1 Mathematical model and problem descriptions
First, a class of n-dimensional fractional-order chaotic real drive systems is considered as

Dα
∗x = Mx + h(x), ()

where x = (x, x, . . . , xn)T ∈ R
n is a real state vector, M ∈R

n×n is the coefficient matrix of x,
while h = (h, h, . . . , hn)T is a vector of complex nonlinear function.

The fractional-order complex chaotic response system with the controller is written as

Dα
∗w = Dα

∗wr + jDα
∗wi = Bw + g(w) + v, ()

where w = wr + jwi ∈ C
n and wr = (wr

, wr
, . . . , wr

n)T ∈ R
n, wi = (wi

, wi
, . . . , wi

n)T ∈ R
n,

B ∈ R
n×n is the coefficient matrix of w, while g = (g, g, . . . , gn)T is a vector of complex

nonlinear function, v = vr + jvi ∈C
n is the controller to be designed.

Next the definition of CMGPS with complex transformation matrix is introduced for the
fractional-order real chaotic drive system and the complex chaotic response system based
on that of MGPS with real transformation matrix for two fractional-order real chaotic
systems [].

Definition  For the fractional-order real chaotic drive system () and the complex
chaotic response system (), it is said to be CMGPS with complex constant matrix
� = �r + j�i between x(t) and w(t) if there exists a controller v = vr + jvi ∈C

n such that

lim
t→+∞

∥
∥w(t) – �x(t)

∥
∥ = , ()

i.e.,

lim
t→+∞

∥
∥wr(t) – �rx(t)

∥
∥ = ,

and

lim
t→+∞

∥
∥wi(t) – �ix(t)

∥
∥ = ,

while the matrix � ∈C
n×n is defined as a complex transformation matrix of the fractional-

order real chaotic drive system ().
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If the error of CMGPS is defined as

e(t) = er(t) + jei(t) = w(t) – �x(t), ()

then

{
er(t) = wr(t) – �rx(t),
ei(t) = wi(t) – �ix(t),

()

the objective of this section is to design a controller v to ensure that synchronization error
tends to zero asymptotically, i.e.,

lim
t→+∞

∥
∥er(t)

∥
∥ = ,

and

lim
t→+∞

∥
∥ei(t)

∥
∥ = .

Remark  Most of the classical fractional-order real chaotic systems can be formed as
system (), such as fractional-order real Chua-Hartley’s system [], fractional-order real
chaotic Lorenz-like system [, –], and most of the classical fractional-order complex
chaotic systems can be formed as system (), such as fractional-order complex Lorenz
system [], fractional-order complex Chen system [].

Remark  Several types of synchronization are special cases of CMGPS, such as com-
plex modified projective synchronization (CMPS), complex projective synchronization
(CPS), modified generalized projective synchronization (MGPS), modified projective syn-
chronization (MPS), projective synchronization (PS), anti-synchronization (AS), com-
plete synchronization (CS); see Table .

Therefore, the CMGPS will contain most existing works and extend previous works.

Remark  In particular, if the transformation matrix � is zero, the CMGPS problem de-
generates to the control problem of the fractional-order complex chaotic system ().

Table 1 Types of synchronization

Settings of the matrix� Synchronization type

� =�r + j�i ∈ C
n×n , non-diagonal CMGPS

� = diag{δ1,δ2, . . . ,δn} ∈ C
n×n CMPS

� = diag{δ,δ, . . . ,δ} ∈ C
n×n CPS

� ∈ R
n×n , non-diagonal MGPS

� = diag{δ1,δ2, . . . ,δn} ∈ R
n×n MPS

� = diag{δ,δ, . . . ,δ} ∈ R
n×n PS

� = diag{–1, –1, . . . , –1} AS
� = diag{1, 1, . . . , 1} CS
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3.2 General method of CMGPS
Theorem  For the given complex transformation matrix � = �r + j�i and initial condi-
tions x(), w(), if the controller is designed as

v = vr + jvi = (�M – B�)x – g(w) + �h(x) – Ke

=
((

�rM – B�r)x – gr(w) + �rh(x) – Ker)

+ j
((

�iM – B�i)x – gi(w) + �i + h(x) – Kei), ()

then CMGPS between the fractional-order complex chaotic response system () and the
real chaotic drive system () can be achieved with the desired complex transformation
matrix � asymptotically if and only if all the eigenvalues of B – K satisfy |arg(λ�(B – K))| >
απ
 (� = , , . . . , n), where K ∈R

n×n is the control gain matrix.

Proof Equation () can be written as

e(t) = er(t) + jei(t) =
(
wr(t) – �rx(t)

)
+ j

(
wi(t) – �ix(t)

)
. ()

Substituting Eq. () and Eq. () into Eq. (), one can get the derivative of the error
system

Dα
∗e = Dα

∗er + jDα
∗ei

=
(
Dα

∗wr(t) – �rDα
∗x(t)

)
+ j

(
Dα

∗wi(t) – �iDα
∗x(t)

)

=
(
Bwr + gr(w) – �r(Mx + h(x)

)
+ vr)

+ j
(
Bwi + gi(w) – �i(Mx + h(x)

)
+ vi). ()

Insertion of () into Eq. () and separation of the real and imaginary parts give
{

Dα∗er = (B – K)er ,
Dα∗ei = (B – K)ei.

()

Due to Lemma , the error system () is asymptotically stable if and only if all the
eigenvalues of B – K satisfy |arg(λ�(B – K))| > απ

 (� = , , . . . , n), where K ∈ R
n×n is the

control gain matrix. That is, limt→+∞ ‖er(t)‖ = , and limt→+∞ ‖ei(t)‖ = . Therefore,
limt→+∞ ‖e(t)‖ = , CMGPS between the fractional-order systems () and () is real-
ized. This completes the proof. �

4 CMGPS scheme of fractional-order chaotic complex drive system and real
response system

4.1 Mathematical model and problem descriptions
Now, a class of n-dimensional fractional-order complex chaotic drive systems is consid-
ered as

Dα
∗z = Dα

∗zr + jDα
∗zi = Az + f (z), ()

where z = zr + jzi ∈ C
n and zr = (zr

, zr
, . . . , zr

n)T ∈ R
n, zi = (zi

, zi
, . . . , zi

n)T ∈ R
n, A ∈ R

n×n

are the coefficient matrix of z, while f = (f, f, . . . , fn)T is a vector of complex nonlinear
function.
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The fractional-order real chaotic response system with the controller is written as

Dα
∗y = Hy + p(y) + v, ()

where y = (y, y, . . . , yn)T ∈R
n is a real state vector, H ∈R

n×n is the coefficient matrix of y,
while p = (p, p, . . . , pn)T is a vector of complex nonlinear function, v = (v, v, . . . , vn)T ∈
R

n is the controller to be designed.
Next the definition of CMGPS with complex transformation matrix is introduced for the

fractional-order complex chaotic drive system and the real chaotic response system based
on that of MGPS with real transformation matrix for two fractional-order real chaotic
systems [].

Definition  For the fractional-order complex chaotic drive system () and the real
chaotic response system (), it is said to be CMGPS with constant matrix � = �r + j�i

between z(t) and y(t) if there exists a controller v such that

lim
t→+∞

∥
∥y(t) – �rzr(t) + �izi(t)

∥
∥ = , ()

while the matrix � ∈C
n×n is defined as a complex transformation matrix of the fractional-

order complex chaotic drive system ().

If the error of CMGPS is defined as

e(t) = y(t) – �rzr(t) + �izi(t), ()

the objective of this section is to design a controller v to ensure that synchronization error
() tends to zero asymptotically, i.e.,

lim
t→+∞

∥
∥e(t)

∥
∥ = .

4.2 General method of CMGPS
Theorem  For the given complex transformation matrix � = �r + j�i and initial condi-
tions z(), y(), if the designed controller is

v =
(
�rA – H�r)zr –

(
�iA – H�i)zi – p(y) + �rf r(z) – �if i(z) – Ke, ()

then CMGPS between the fractional-order real chaotic response system () and the com-
plex drive system () can be achieved with the desired complex transformation matrix
� asymptotically if and only if all the eigenvalues of H – K satisfy |arg(λ�(H – K))| > απ


(� = , , . . . , n), where K ∈R

n×n is the control gain matrix.

Proof Substituting Eq. () and Eq. () into Eq. (), one can get the derivative of the
error system

Dα
∗e = Dα

∗y – �rDα
∗zr + �iDα

∗zi = Hy + p(y) + v – �r(Azr + f r(z)
)

+ �i(Azi + f i(z)
)

= He + H
(
�rzr – �izi) + p(y) + v – �r(Azr + f r(z)

)
+ �i(Azi + f i(z)

)
. ()
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Insertion of Eq. () into Eq. () gives

Dα
∗e = (H – K)e. ()

Due to Lemma , the error system () is asymptotically stable if and only if all the eigen-
values of H – K satisfy |arg(λ�(H – K))| > απ

 (� = , , . . . , n), where K ∈R
n×n is the control

gain matrix. That is, limt→+∞ ‖e(t)‖ = , the fractional-order real chaotic response sys-
tem () and the complex chaotic drive system () realize CMGPS . This completes the
proof. �

5 CMGPS scheme of two fractional-order chaotic complex systems
5.1 Mathematical model and problem descriptions
Now, the definition of CMGPS with complex transformation matrix is introduced for two
fractional-order complex chaotic systems based on that of MGPS with real transformation
matrix for two fractional-order real chaotic systems [].

Definition  For the fractional-order complex chaotic drive system () and the response
system (), it is said to be CMGPS with complex matrix � = �r + j�i between z(t) and
w(t) if there exists a controller v = vr + jvi ∈ C

n such that

lim
t→+∞

∥
∥w(t) – �z(t)

∥
∥ = , ()

i.e.,

lim
t→+∞

∥
∥wr(t) – �rzr(t) + �izi(t)

∥
∥ = ,

and

lim
t→+∞

∥
∥wi(t) – �rzi(t) – �izr(t)

∥
∥ = ,

while the matrix � ∈C
n×n is defined as a complex transformation matrix of the fractional-

order complex chaotic drive system ().

If the error of CMGPS is defined as

e(t) = er(t) + jei(t) = w(t) – �z(t), ()

then
{

er(t) = wr(t) – �rzr(t) + �izi(t),
ei(t) = wi(t) – �rzi(t) – �izr(t),

()

the objective of this section is to design a controller v to ensure that synchronization error
tends to zero asymptotically, i.e.,

lim
t→+∞

∥
∥er(t)

∥
∥ = ,
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and

lim
t→+∞

∥
∥ei(t)

∥
∥ = .

5.2 General method of CMGPS
Theorem  For the given complex transformation matrix � = �r + j�i and initial condi-
tions z(), w(), if the controller is designed as

v = vr + jvi

= (�A – B�)z – g(w) + �f (z) – Ke

=
(
�rA – B�r)zr –

(
�iA – B�i)zi – gr(w) + �rf r(z) – �if i(z) – Ker

+ j
((

�iA – B�i)zr +
(
�rA – B�r)zi – gi(w) + �if r(z) + �rf i(z) – Kei), ()

then CMGPS between the fractional-order complex chaotic response system () and the
drive system () can be achieved with the desired complex transformation matrix �

asymptotically if and only if all the eigenvalues of B – K satisfy |arg(λ�(B – K))| > απ


(� = , , . . . , n), where K ∈R
n×n is the control gain matrix.

Proof It is similar to the proof in Theorem  and thus is omitted. �

Corollary  If the structure of systems () and () is identical, i.e., A = B, and f = g , and
the controller is designed as

v = vr + jvi = (�A – A�)z – f (w) + �f (z) – Ke

=
(
�rA – A�r)zr –

(
�iA – A�i)zi – f r(w) + �rf r(z) – �if i(z) – Ker

+ j
((

�iA – A�i)zr +
(
�rA – A�r)zi – f i(w) + �if r(z) + �rf i(z) – Kei), ()

then CMGPS between the fractional-order complex chaotic response system () and the
drive system () can be achieved with the desired complex transformation matrix �

asymptotically if and only if all the eigenvalues of B – K satisfy |arg(λ�(B – K))| > απ


(� = , , . . . , n), where K ∈R
n×n is the control gain matrix.

Remark  In particular, if the transformation matrix � = diag{, , . . . , }, then CMGPS
in Corollary  is reduced to complete synchronization (CS) of identical fractional-order
complex chaotic systems in [].

6 Numerical examples
Now, three examples are worked out to illustrate the theoretical results in this paper.

6.1 CMGPS of fractional-order chaotic real Chua-Hartley’s drive system and
complex Lorenz response system

In order to illustrate CMGPS behaviors of a fractional-order real chaotic drive system
and a complex chaotic response system, it is assumed that the fractional-order chaotic
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(a) The chaotic attractor of system () when α = . (b) The chaotic attractor of system () when α = .

(c) The chaotic attractor of system () when α = . (d) The dynamics of CMGPS error when α = .

Figure 1 The CMGPS of fractional-order real chaotic Chua-Hartley’s drive system (35) and complex
chaotic Lorenz response system (36).

real Chua-Hartley’s system [] drives the fractional-order chaotic complex Lorenz system
[]. Therefore, the drive system is given in the form

⎧
⎪⎨

⎪⎩

Dα∗x = m(x + x–x


 ),
Dα∗x = x – x + x,
Dα∗x = –mx,

()

where x = (x, x, x)T ∈R
 is a real state vector. When m = ., m = 

 , the fractional
order Chua-Hartley’s system () is chaotic as in Figure (a) and Figure (b) at α = .
and α = ., respectively.

The response system with the controller is written in the form

⎧
⎪⎨

⎪⎩

Dα∗w = b(w – w) + v,
Dα∗w = bw – w – ww + v,
Dα∗w = –bw + (/)(w̄w + ww̄) + v,

()

where w = wr
 + jwi

, w = wr
 + jwi

 are complex state variables, and w is a real state variable.
System () is chaotic when b = , b = , b = , α = . and in the absence of the
controller v = vr + jvi as in Figure (c), see [] for more details.
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The complex transformation matrix can be taken as

� =

⎛

⎜
⎝

 – j  
  + j 
  –

⎞

⎟
⎠ =

⎛

⎜
⎝

  
  
  –

⎞

⎟
⎠ + j

⎛

⎜
⎝

–  
  
  

⎞

⎟
⎠ , ()

and the error system e(t) = w(t) – �x(t) is obtained as

⎧
⎪⎨

⎪⎩

e = w – ( – j)x = (wr
 – x) + j(wi

 + x),
e = w – ( + j)x = (wr

 – x) + j(wi
 – x),

e = w – x + x.

The control gain matrix is chosen as

K =

⎛

⎜
⎝

  
  

  

⎞

⎟
⎠ ,

and the controller is designed according to () in Theorem  as follows:

v =

⎛

⎜
⎝

(b + m
 )x – (b – m)x – 

 mx
 – er

 – er


( – b)x + x + wr
w – er

 – er


x + (b – m – )x + ( – b)x – (wr
w

r + wi
w

i)

⎞

⎟
⎠

+ j

⎛

⎜
⎝

–(b + m
 )x – (b + m)x + 

 mx
 – ei

 – ei


( + b)x + x + wi
w – ei

 – ei




⎞

⎟
⎠ . ()

The parameters of drive system () and response system () are selected as α = .,
m = ., m = 

 , and b = , b = , b = , respectively. The initial values are
randomly chosen as x = (., –., .)T and w = wr

 + jwi
 = (– + j, – + j, –)T ,

respectively. Therefore, all of the eigenvalues of B – K are λ = – + j, λ = – – j,
λ = –, which satisfies |arg(λ�(B – K))| > απ

 (� = , , ). The errors of CMGPS converge
asymptotically to zero as in Figure (d). Hence, CMGPS has been achieved between the
fractional-order real chaotic Chua-Hartley’s drive system () and the complex chaotic
Lorenz response system ().

6.2 CMGPS of fractional-order chaotic complex Chen drive system and real
Chua-Hartley’s response system

In order to illustrate CMGPS behaviors of a fractional-order complex chaotic drive sys-
tem and a real chaotic response system, it is assumed that the fractional-order complex
chaotic Chen system [] drives the fractional-order real chaotic Chua-Hartley’s system
[]. Therefore, the drive system is written in the form

⎧
⎪⎨

⎪⎩

Dα∗z = a(z – z),
Dα∗z = (a – a)z + az – zz,
Dα∗z = –az + (/)(z̄z + zz̄),

()
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(a) The chaotic attractor of system () (b) The dynamics of CMGPS error

Figure 2 The CMGPS of fractional-order complex chaotic Chen drive system (39) and real chaotic
Chua-Hartley’s response system (40) when α = 0.96.

where z = zr
 + jzi

, z = zr
 + jzi

 are complex state variables and z is a real state variable.
System () is chaotic when a = , a = , a = , α = . in Figure (a), see [] for
more details.

The response system with the controller is given in the form

⎧
⎪⎨

⎪⎩

Dα∗y = h(y + y–y


 ) + v,
Dα∗y = y – y + y + v,
Dα∗y = –hy + v,

()

where y = (y, y, y)T ∈ R
 is a real state vector, v = (v, v, v)T ∈R

 is the controller.
The complex transformation matrix can be taken as

� =

⎛

⎜
⎝

  
 –j 
j  –

⎞

⎟
⎠ =

⎛

⎜
⎝

  
  
  –

⎞

⎟
⎠ + j

⎛

⎜
⎝

  
 – 
  

⎞

⎟
⎠ , ()

and the error system e(t) = y(t) – �rzr(t) + �izi(t) is obtained as

⎧
⎪⎨

⎪⎩

e = y – zr
,

e = y + zi
,

e = y – zi
 + z.

The control gain matrix is chosen as

K =

⎛

⎜
⎝

.
 . 
  
 – 

 

⎞

⎟
⎠ ,

and the real controller is designed according to () in Theorem  as follows:

⎧
⎪⎨

⎪⎩

v = –( 
 h + a)zr

 + azr
 + hzi

 + 
 hy

 – .
 e – .e,

v = –zr
 – (a – a + )zi

 – (a + )zi
 + zi

z + z – e – e,
v = –azi

 + (a – h)zi
 + az – (zr

zr
 + zi

zi
) + 

 e – e.
()
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The parameters of drive system () and response system () are selected as α = .,
a = , a = , a = , and h = ., h = 

 , respectively. The initial values are ran-
domly chosen as z = zr

 + jzi
 = ( + j,  + j, )T and y = (., –., .)T , respectively.

Therefore, all of the eigenvalues of H – K are λ = – + j, λ = – – j, λ = –, which satisfies
|arg(λ�(H – K))| > απ

 (� = , , ). The errors of CMGPS converge asymptotically to zero as
in Figure (b). Hence, CMGPS has been achieved between the fractional-order complex
chaotic Chen drive system () and the real chaotic Chua-Hartley’s response system ().

6.3 CMGPS of fractional-order chaotic complex Chen drive system and complex
Lorenz response system

In order to illustrate CMGPS behaviors of two fractional-order chaotic complex sys-
tems, it is assumed that the fractional-order complex chaotic Chen system () drives
the fractional-order complex chaotic Lorenz system (). The parameters of drive system
() and response system () are selected as α = ., a = , a = , a = , and b = ,
b = , b = , respectively.

The complex transformation matrix can be taken as

� =

⎛

⎜
⎝

–j  
– j 
  –

⎞

⎟
⎠ =

⎛

⎜
⎝

  
–  
  –

⎞

⎟
⎠ + j

⎛

⎜
⎝

–  
  
  

⎞

⎟
⎠ , ()

and the error system e(t) = w(t) – �z(t) is obtained as

⎧
⎪⎨

⎪⎩

e = w – (–j)z = (wr
 – zi

) + j(wi
 + zr

),
e = w + z – jz = (wr

 + zr
 + zi

) + j(wi
 + zi

 – zr
),

e = w + z.

The control gain matrix is chosen as

K =

⎛

⎜
⎝

– . 
  
  

⎞

⎟
⎠ ,

and the complex controller is designed according to () in Theorem  as follows:

v =

⎛

⎜
⎝

zr
 – zi

 + zi
 + er

 – .er


zr
 – zi

 – zr
 – zi

 + zi
z + wr

w – er


z – (zr
zr

 + zi
zi

) – (wr
wr

 + wi
wi

)

⎞

⎟
⎠

+ j

⎛

⎜
⎝

zr
 + zi

 – zr
 + ei

 – .ei


zr
 + zi

 + zr
 – zi

 – zr
z + wi

w – ei
)



⎞

⎟
⎠ . ()

The initial values are randomly chosen as z = (+j, +j, )T and w = wr
 + jwi

 = (–+
j, –+j, –)T , respectively. Therefore, all of the eigenvalues of B–K are λ = –+j, λ =
– – j, λ = –, which satisfies |arg(λ�(B – K))| > απ

 (� = , , ). The errors of CMGPS
converge asymptotically to zero as in Figure , where the blue line shows the real parts of
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Figure 3 The CMGPS error dynamics of
fractional-order chaotic complex Chen drive
system (39) and complex Lorenz response system
(36) with the controller (44) when α = 0.96.

the errors and the red line presents the imaginary parts of the errors. Hence, CMGPS has
been achieved between the fractional-order chaotic complex Chen drive system () and
the complex Lorenz response system ().

7 Conclusions
In this paper, the definitions of modified generalized projective synchronization with com-
plex transformation matrix (CMGPS) are introduced, where the drive and response sys-
tems could be asymptotically synchronized up to a desired complex transformation ma-
trix, not a diagonal matrix. Moreover, general methods of CMGPS are designed for the
fractional-order real chaotic drive system and the complex chaotic response system, and
for the fractional-order complex chaotic drive system and the real chaotic response sys-
tem, and for two fractional-order complex chaotic systems, respectively. It should be no-
ticed that the Lyapunov function is not required to be calculated in this scheme; it is really
simple and feasible in practical applications. Three numerical examples are worked out to
illustrate the feasibility and effectiveness of the theoretical results.

The complex transformation matrix not only establishes a link between fractional-order
real chaotic systems and complex chaotic systems, but also sets up a bridge between two
fractional-order complex chaotic systems. It increases the range of choosing fractional-
order chaotic generators in the transmitters and receivers, thus an interceptor is harder to
crack information sources.
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