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Abstract
Spectral analysis of a boundary value problem (BVP) consisting of a second-order
quantum difference equation and boundary conditions depending on an eigenvalue
parameter with spectral singularities was first studied by Aygar and Bohner (Appl.
Math. Inf. Sci. 9(4):1725-1729, 2015). The main goal of this paper is to construct the
principal vectors corresponding to the eigenvalues and the spectral singularities of
this BVP. These vectors are important to get the spectral expansion formula for this
BVP.

1 Introduction
Many areas including mathematical physics, engineering, economics, and quantum me-
chanics need the spectrum of differential and discrete operators to solve some problems.
Therefore, many authors have investigated the spectral analysis of differential and discrete
operators [–]. Because of the developments in quantum calculus, quantum difference
equations became a popular topic for mathematicians. In addition to differential and dis-
crete equations, the spectral theory of quantum difference equations has been treated in
the last decade [–]. Hereafter, we let q >  and use the notation qN := {qn : n ∈ N},
where N denotes the set of nonnegative integers. Let us consider the BVP consisting of
the second-order q-difference equation

qa(t)y(qt) + b(t)y(t) + a
(

t
q

)
y
(

t
q

)
= λy(t), t ∈ qN,

and the boundary conditions

(γ + γλ)y(q) + (β + βλ)y() = , γβ – γβ �= , γ �= β

a()
,

where {a(t)}t∈qN and {b(t)}t∈qN are complex sequences, λ is a spectral parameter, a(t) �= 
for all t ∈ qN and γi,βi ∈C, i = , . We will introduce the Hilbert space of complex-valued
functions satisfying 〈f , f 〉q < ∞, with respect to the inner product

〈f , g〉q :=
∑
t∈qN

μ(t)f (t)g(t), f , g : qN → C,

© 2015 Aygar. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-015-0587-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0587-3&domain=pdf
mailto:yaygar@science.ankara.edu.tr


Aygar Advances in Difference Equations  (2015) 2015:249 Page 2 of 9

by �(qN), where μ(t) = (q – )t for all t ∈ qN. Furthermore, we will denote the q-difference
operator generated in �(qN) by q-difference expression

(ly)(t) := qa(t)y(qt) + b(t)y(t) + a
(

t
q

)
y
(

t
q

)
, t ∈ qN, (.)

with the boundary conditions

(γ + γλ)y(q) + (β + βλ)y() = , γβ – γβ �= , γ �= β

a()
, (.)

by L. In [], it is proved that the operator L has a finite number of eigenvalues and spectral
singularities with finite multiplicities under the condition

sup
t∈qN

{
exp

[
ε

(
ln t
ln q

)δ](∣∣ – a(t)
∣∣ +

∣∣b(t)
∣∣)} < ∞, ε > ,




≤ δ ≤ . (.)

The set up of this paper which is an extension of [], settled as follows: Section  is about
the results which are proved in [] and will be used in next section. In Section , we obtain
principal vectors corresponding to eigenvalues and spectral singularities of L, and give
some properties of them. This paper will be valuable for readers because principal vectors
that we obtained corresponding to the eigenvalues and spectral singularities are important
to find the spectral expansion of the operator L. It is also important to investigate the
effects of spectral singularities to this expansion of L.

2 Properties of eigenvalues and spectral singularities of L
Assume (.), then the equation (ly)(t) := λy(t), t ∈ qN has the solution

e(t, z) = α(t)
ei ln t

ln q z

√
μ(t)

(
 +

∑
r∈qN

A(t, r)ei ln r
ln q z

)
, t ∈ qN (.)

for λ = √q cos z and z ∈ C+ := {z ∈ C : Im ≥ }, where α(t) and A(t, r) are expressed in
terms of {a(t)} and {b(t)} as

α(t) =
∏

s∈[t,∞)∩qN

[
a(s)

]–, A(t, q) = –
√q

∑
s∈[qt,∞)∩qN

b(s),

A
(
t, q) =

∑
s∈[qt,∞)∩qN

{
 – a(s) +

b(s)
q

∑
p∈[qs,∞)∩qN

b(s)
}

, (.)

A
(
t, rq) = A(qt, r) +

∑
s∈[qt,∞)∩qN

{(
 – a(s)

)
A(qs, r) –

b(s)√q
A(s, qr)

}

for r ∈ qN and t ∈ qN . Moreover, A(t, r) satisfies

∣∣A(t, r)
∣∣ ≤ C

∑
s∈[tq

� ln r
 ln q 

,∞)∩qN

(∣∣ – a(s)
∣∣ +

∣∣b(s)
∣∣), (.)
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where � ln r
 ln q  is the integer part of ln r

 ln q and C >  is a constant. Therefore, e(·, z) is analytic
with respect to z inC+ := {z ∈C : Im z > } and continuous inC+. Let us define the function
f using (.) and the boundary condition (.)

f (z) = (γ + 
√

qγ cos z)e(q, z) + (β + 
√

qβ cos z)e(, z). (.)

The function f is analytic in C+, f (z) = f (z + π ), and continuous in C+. If we define semi-
strips P = {z ∈C+ : – π

 ≤ Re z ≤ π
 } and P = P ∪ [– π

 , π
 ] then we get the Green function

of L as

Gt,z(z) :=

⎧⎨
⎩

– φ(r,z)e(t,z)
qa()f (z) , r = tq–k , k ∈N,

– e(r,z)φ(t,z)
qa()f (z) , r = tqk , k ∈N

for all z ∈ P with f (z) �=  [], and from the definition of eigenvalues and spectral singu-
larities [], we have

σd(L) =
{
λ : λ = 

√
q cos z, z ∈ P, f (z) = 

}

σss(L) =
{
λ : λ = 

√
q cos z, z ∈

[
–

π


,

π



]
, f (z) = 

}∖{},
(.)

where σd(L) and σss(L) denote the set of eigenvalues and spectral singularities of L, respec-
tively. Using (.) and (.), we obtain

f (z) = α()
√

q
q – 

βe–iz + α(q)
γ√
q – 

+ α()
β√
q – 

+
(

α(q)
γ√

q(q – )
+ α()

√
q

q – 
β

)
eiz

+ α(q)
γ√
q – 

eiz +
∑
r∈qN

α()
√

q
q – 

βA(, r)ei( ln r
ln q –)z

+
∑
r∈qN

(
α(q)

γ√
q – 

A(q, r) + α()
β√
q – 

A(, r)
)

ei ln r
ln q z

+
∑
r∈qN

(
α(q)

γ√
q(q – )

A(q, r) + α()
√

q
q – 

βA(, r)
)

ei( ln r
ln q +)z

+
∑
r∈qN

α(q)
γ√
q – 

A(q, r)ei( ln r
ln q +)z.

If we define F(z) := f (z)eiz , then the function F is also analytic in C+ and continuous in C+,
and F(z) = F(z + π ). It follows from (.) and the definition of F that

σd(L) =
{
λ : λ = 

√
q cos z, z ∈ P, F(z) = 

}
,

σss(L) =
{
λ : λ = 

√
q cos z, z ∈

[
–

π


,

π



]
, F(z) = 

}∖{}.
(.)

Definition . The multiplicity of a zero of F in P is called the multiplicity of the corre-
sponding eigenvalue or spectral singularity of L.
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It was found in [] that under the condition (.), F has a finite number of zeros in P
with finite multiplicities, i.e., the operator L has a finite number of eigenvalues and spectral
singularities with finite multiplicities.

3 Principal vectors of L
Let us define the functions E(t,λ) := e(t, arccos λ

√q ) and B(λ) := F(arccos λ
√q ). Using (.)

and arccos λ
√q = –i ln( λ+

√
λ–q

√q ), we obtain

E(t,λ) =
α(t)√
μ(t)

(
λ +

√
λ – q

√q

) ln t
ln q

(
 +

∑
r∈qN

A(t, r)
(

λ +
√

λ – q
√q

) ln r
ln q

)
.

Since λ = √q cos z maps P to the domain � := C\[–√q, √q], the function E(λ) :=
{E(t,λ)}t∈qN is analytic in �, and continuous up to the interval [–√q, √q], under the
condition (.). From (.), we can write

σd(L) =
{
λ ∈ � : B(λ) = 

}
,

σss(L) =
{
λ ∈ [–

√
q, 

√
q] : B(λ) = 

}\{}.

The properties of the function F in P, which were obtained in [], give the following.

Remark . Under the condition (.), the function B has a finite number of zeros in �

and in [–√q, √q], and each of them is of finite multiplicity.

Let λ,λ, . . . ,λs and λs+,λs+, . . . ,λν denote the zeros of B in � (which are eigenval-
ues of L), and in [–√q, √q] (which are spectral singularities of L) with multiplicities
m, m, . . . , ms and ms+, ms+, . . . , mν , respectively.

Definition . Let λ be an eigenvalue of L. If the vectors y(k) = {y(k)(t)}t∈qN for k =
, , . . . , n satisfy

⎧⎨
⎩

(ly())(t) – λy()(t) = ,

(ly(k))(t) – λy(k)(t) – y(k–)(t) = , k = , , . . . , n; n ∈ qN,
(.)

then the vector y() is called the eigenvector corresponding to the eigenvalue λ of L.
The vectors y(), y(), . . . , y(n) are called the associated vectors corresponding to λ = λ. The
eigenvector and the associated vectors corresponding to λ are called the principal vec-
tors of the eigenvalue λ = λ. The principal vectors of the spectral singularities of L are
defined similarly.

Now, we define the vectors for λ = √q cos z, z ∈ P,

V (k)(t,λj) =

k!

{
dk

dλk E(t,λ)
}

λ=λj

, k = , , . . . , mj – ; j = , , . . . , s

and

V (k)(t,λj) =

k!

{
dk

dλk E(t,λ)
}

λ=λj

, k = , , . . . , mj – ; j = s + , s + , . . . ,ν.
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Furthermore, if y(λ) = {y(t,λ)}t∈qN is a solution (ly)(t) = λy(t), then we get

qa(t)
dk

dλk y(qt,λ) + b(t)
dk

dλk y(t,λ) + a
(

t
q

)
dk

dλk y
(

t
q

,λ
)

= k
dk–

dλk– y(t,λ) + λ
dk

dλk y(t,λ). (.)

Using (.) and (.), we have, for k = , , . . . , mj –  and j = , , . . . ,ν ,

⎧⎨
⎩

(lV ()(λj))(t) – λjV ()(λj)(t) = ,

(lV (k)(λj))(t) – λjV (k)(λj)(t) – V (k–)(λj)(t) = .
(.)

So, the vectors V (k)(t,λj), k = , , . . . , mj – ; j = , , . . . , s, and V (k)(t,λj), k = , , . . . , mj – ;
j = s + , s + , . . . ,ν are the principal vectors of eigenvalues and spectral singularities of L,
respectively.

Theorem . Under the condition (.), V (k)(t,λj) ∈ �(qN) for k = , , . . . , mj – ; j =
, , . . . , s, but V (k)(t,λj) /∈ �(qN) for k = , , . . . , mj – ; j = s + , s + , . . . ,ν .

Proof By using E(t,λ) = e(t, arccos λ
√q ), we find

{
dk

dλk E(t,λ)
}

λ=λj

=
k∑

m=

Cm

{
dm

dλm e(t, z)
}

z=zj

, (.)

where λj = √q cos zj, zj ∈ P, j = , , . . . ,ν , and Cm is a constant depending on λj. From
(.), we get

{
dm

dλm e(t, z)
}

z=zj

=
α(t)√
μ(t)

ei ln t
ln q zj

{(
i
ln t
ln q

)m

+
∑
r∈qN

(
i
ln(tr)
ln q

)m

A(t, r)ei ln r
ln q zj

}
(.)

for all t ∈ qN and j = , , . . . ,ν . For the principal vectors V (k)(t,λj), k = , , . . . , mj – ; j =
, , . . . , s, corresponding to the eigenvalues λj = √q cos zj of L, we obtain

{
dk

dλk E(t,λ)
}

λ=λj

=
k∑

m=

Cm
α(t)√
μ(t)

ei ln t
ln q zj

{(
i
ln t
ln q

)m

+
∑
r∈qN

(
i
ln(tr)
ln q

)m

A(t, r)ei ln r
ln q zj

}
;

then

V (k)(t,λj) =

k!

k∑
m=

Cm
α(t)√
μ(t)

ei ln t
ln q zj

{(
i
ln t
ln q

)m

+
∑
r∈qN

(
i
ln(tr)
ln q

)m

A(t, r)ei ln r
ln q zj

}
(.)

for k = , , . . . , mj –  and j = , , . . . , s. Now define the functions

g(t, z) :=

k!

k∑
m=

Cm
α(t)√
μ(t)

ei ln t
ln q zj

(
i
ln t
ln q

)m
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and

g(t, z) :=

k!

k∑
m=

Cm
α(t)√
μ(t)

ei ln t
ln q zj

∑
r∈qN

(
i
ln(tr)
ln q

)m

A(t, r)ei ln r
ln q zj (.)

for j = , , . . . , s. Since Im zj >  for the eigenvalues λj = √q cos zj, j = , , . . . , s of L, we get

∑
t∈qN

μ(t)
∣∣g(t, z)

∣∣ ≤ 
(k!)

{∑
t∈qN

k∑
m=

|Cm|∣∣α(t)
∣∣e– ln t

ln q Im zj

(
ln t
ln q

)m
}

≤ H
{∑

t∈qN
e– ln t

ln q Im zj

[
 +

ln t
ln q

+ · · · +
(

ln t
ln q

)k]}

≤ H(k + )
[∑

t∈qN
e– ln t

ln q Im zj

(
ln t
ln q

)k]

< ∞, (.)

where H is a constant. Using (.), we also have

∣∣g(t, z)
∣∣ ≤

k∑
m=

|Cm||α(t)|√
μ(t)

e– ln t
ln q Im zj

∑
r∈qN

∣∣∣∣ ln(tr)
ln q

∣∣∣∣
m∣∣A(t, r)

∣∣e– ln r
ln q Im zj

≤ |C| |α(t)|√
μ(t)

e– ln t
ln q Im zj

∑
r∈qN

∣∣A(t, r)
∣∣e– ln r

ln q Im zj

+ |C| |α(t)|√
μ(t)

e– ln t
ln q Im zj

∑
r∈qN

ln(tr)
ln q

∣∣A(t, r)
∣∣e– ln r

ln q Im zj

+ · · · + |Ck| |α(t)|√
μ(t)

e– ln t
ln q Im zj

∑
r∈qN

(
ln(tr)
ln q

)k∣∣A(t, r)
∣∣e– ln r

ln q Im zj

≤ C̃e– ln t
ln q Im zj ,

where C̃ = max{|C|, |C|, . . . , |Ck|} |α(t)|√
μ(t)

∑
r∈qN

∑k
m= |A(t, r)|( ln(tr)

ln q )ke– ln r
ln q Im zj . Then we get,

for j = , , . . . , s,

∑
t∈qN

μ(t)
∣∣g(t, z)

∣∣ ≤
∑
t∈qN

C̃e– ln t
ln q Im zj < ∞. (.)

It follows from (.) and (.) that

V (k)(t,λj) ∈ �
(
qN

)

for k = , , . . . , mj –  and j = , , . . . , s. Now, we will use (.) for the principal vectors
corresponding to the spectral singularities of L for λj = √q cos zj and j = s + , s + , . . . ,ν .
Then we have

V (k)(t,λj) =

k!

k∑
m=

Cm
α(t)√
μ(t)

ei ln t
ln q zj

{(
i
ln t
ln q

)m

+
∑
r∈qN

(
i
ln(tr)
ln q

)m

A(t, r)ei ln r
ln q zj

}
(.)
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for k = , , . . . , mj –  and j = s + , s + , . . . ,ν . Since Im zj =  for the spectral singularities
λj = √q cos zj, j = s + , s + , . . . ,ν of L, we find that


k!

∑
t∈qN

μ(t)

∣∣∣∣∣
k∑

m=

Cm
α(t)√
μ(t)

ei ln t
ln q zj

(
i
ln t
ln q

)m
∣∣∣∣∣


= ∞. (.)

If we define the function h as

h(t, z) :=
k∑

m=

∑
r∈qN

(
i
ln(tr)
ln q

)m

A(t, r)ei ln r
ln q zj ,

then using (.) and (.), we obtain

∣∣h(t, z)
∣∣ ≤

k∑
m=

∑
r∈qN

(
ln(tr)
ln q

)m∣∣A(t, r)
∣∣

≤
k∑

m=

∑
r∈qN

(
ln(tr)
ln q

)m

C
∑

s∈[tq
� ln r

 ln q 
,∞)∩qN

Q(s)

≤ C
k∑

m=

∑
r∈qN

(
ln(tr)
ln q

)m ∑
s∈[tq

� ln r
 ln q 

,∞)∩qN

exp

[
–ε

(
ln s
ln q

)δ]
exp

[
ε

(
ln s
ln q

)δ]
Q(s)

≤ C
k∑

m=

∑
r∈qN

(
ln(tr)
ln q

)m

exp

{
–ε

[(
ln t
ln q

)δ

+
(

ln r
ln q

)δ]}
P(s)

≤ C

k∑
m=

∑
r∈qN

(
ln(tr)
ln q

)m

exp

{
–ε



[(
ln t
ln q

)δ

+
(

ln r
ln q

)δ]}

= C exp

[
–ε



(
ln t
ln q

)δ] k∑
m=

∑
r∈qN

(
ln(tr)
ln q

)m

exp

[
–ε



(
ln r
ln q

)δ]

= C exp

[
–ε



(
ln t
ln q

)δ] ∑
r∈qN

k∑
m=

(
ln(tr)
ln q

)m

exp

[
–ε



(
ln r
ln q

)δ]

= D exp

[
–ε



(
ln t
ln q

)δ]

and


k!

∑
t∈qN

∣∣∣∣ α(t)√
μ(t)

ei ln t
ln q zj h(t, z)

∣∣∣∣


μ(t) ≤ 
k!

∑
t∈qN

α(t)De– ε
 ( ln t

ln q )δ < ∞, (.)

where

Q(s) =
(∣∣ – a(s)

∣∣ +
∣∣b(s)

∣∣), P(s) =
∑

s∈[tq
� ln r

 ln q 
,∞)∩qN

exp

[
ε

(
ln s
ln q

)δ]
Q(s),

D = C
∑
r∈qN

k∑
m=

(
ln(tr)
ln q

)m

exp

[
–ε



(
ln r
ln q

)δ]
,
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and 
 ≤ δ ≤ . It follows from (.), (.), and (.) that

V (k)(t,λj) /∈ �
(
qN

)

for k = , , . . . , mj –  and j = s + , s + , . . . ,ν . �

Let us introduce Hilbert spaces,

Hk
(
qN

)
:=

{
y = y(t)t∈qN : ‖y‖k < ∞}

and

H–k
(
qN

)
:=

{
u = u(t)t∈qN : ‖u‖–k < ∞}

for k ∈N with the norms

‖y‖
k =

∑
t∈qN

μ(t)
(

 +
ln t
ln q

)k∣∣y(t)
∣∣

and

‖u‖
–k =

∑
t∈qN

μ(t)
(

 +
ln t
ln q

)–k∣∣u(t)
∣∣,

respectively. It is obvious that H(qN) = �(qN) and

Hk+
(
qN

)
� Hk

(
qN

)
� �

(
qN

)
� H–k

(
qN

)
� H–(k+)

(
qN

)
, k = , , , . . . .

Theorem . V (k)(t,λj) ∈ Hk+(qN) for k = , , . . . , mj –  and j = s + , s + , . . . ,ν .

Proof Using (.), we get

∑
t∈qN

μ(t)
(

 +
ln t
ln q

)–(k+)
∣∣∣∣∣


k!

k∑
m=

Cm
α(t)√
μ(t)

(
i
ln t
ln q

)m

ei ln t
ln q zj

∣∣∣∣∣


< ∞

and

∑
t∈qN

μ(t)
(

 +
ln t
ln q

)–(k+)
∣∣∣∣∣


k!

k∑
m=

Cm
α(t)√
μ(t)

ei ln t
ln q zj

∑
r∈qN

(
ln(tr)
ln q

)m

A(t, r)ei ln r
ln q zj

∣∣∣∣∣


< ∞

for k = , , . . . , mj –  and j = s + , s + , . . . ,ν . This completes the proof. �

Let us choose m = max{ms+, ms+, . . . , mν}. Now, we can give the following theorem as
a result of Theorem ..

Theorem . V (k)(t,λj) ∈ Hm (qN) for k = , , . . . , mj –  and j = s + , s + , . . . ,ν .
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