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Abstract

Spectral analysis of a boundary value problem (BVP) consisting of a second-order
quantum difference equation and boundary conditions depending on an eigenvalue
parameter with spectral singularities was first studied by Aygar and Bohner (Appl.
Math. Inf. Sci. 9(4):1725-1729, 2015). The main goal of this paper is to construct the
principal vectors corresponding to the eigenvalues and the spectral singularities of
this BVP. These vectors are important to get the spectral expansion formula for this
BVP.

1 Introduction

Many areas including mathematical physics, engineering, economics, and quantum me-
chanics need the spectrum of differential and discrete operators to solve some problems.
Therefore, many authors have investigated the spectral analysis of differential and discrete
operators [1-10]. Because of the developments in quantum calculus, quantum difference
equations became a popular topic for mathematicians. In addition to differential and dis-
crete equations, the spectral theory of quantum difference equations has been treated in
the last decade [11-13]. Hereafter, we let ¢ > 1 and use the notation g™ := {g" : n € Ny},
where Ny denotes the set of nonnegative integers. Let us consider the BVP consisting of
the second-order g-difference equation

qa(®)y(qt) + bOy(®) + a(é)y(é) S a0, teq,

and the boundary conditions

(Yo + nA)y(g) + (Bo + BrA)y(1) = 0, YoP1—y1Bo 70, n7 aﬁ_i)’

where {a(t)},. i and {b(£)},¢,n are complex sequences, A is a spectral parameter, a(¢) # 0

forallt € ¢"0 and y;, B; € C, i = 0,1. We will introduce the Hilbert space of complex-valued
functions satisfying (f,f), < 0o, with respect to the inner product

(f.g)q:= > n)f(gl), f.g:q"—C,

tegN
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by £5(¢q"), where u(t) = (g—1)t for all € g"'. Furthermore, we will denote the g-difference

operator generated in £5(g") by g-difference expression

(1) = qa®)y(qt) + bOy(E) + a(f])y(é) teq, (L1)

with the boundary conditions

o+ niMy(g) + (Bo+ Bir)y1) =0,  whi-nPo#0, n# % (12)
by L. In [11], it is proved that the operator L has a finite number of eigenvalues and spectral

singularities with finite multiplicities under the condition

s
sup{exp[e(%) i|(‘1—a(t)‘ + |b(t)})} <00, &> O,% <5<l 1.3)

tEqN

The set up of this paper which is an extension of [11], settled as follows: Section 2 is about
the results which are proved in [11] and will be used in next section. In Section 3, we obtain
principal vectors corresponding to eigenvalues and spectral singularities of L, and give
some properties of them. This paper will be valuable for readers because principal vectors
that we obtained corresponding to the eigenvalues and spectral singularities are important
to find the spectral expansion of the operator L. It is also important to investigate the

effects of spectral singularities to this expansion of L.

2 Properties of eigenvalues and spectral singularities of L
Assume (1.3), then the equation (Iy)(t) := Ay(¢), t € ¢" has the solution

cnr
e(t,2) = a(t) 1+ ) At r)elw), teqh (21)
req

eillir]‘—;z
vV i(2) (

for A =2,/qcosz and z € C, := {z € C:Im > 0}, where «(t) and A(t,r) are expressed in
terms of {a(t)} and {b(t)} as

aw= ] [a0)], A(t,q)=—% S b,

se(t,00)NgN selgt,00)NgN
2 2 b(s)
A(t,q ) = Z 1-a’(s)+ — Z b(s) ¢, (2.2)
se[qt,00)ngN pElgs,00)ng

A(t, rq2) =A(qt,r) + Z (1 - az(s))A(qs, r)— %A(s, qr)}

segt,00)NgN

for r € g" and t € g0, Moreover, A(t, r) satisfies

Agnl<c > (L-al)]+ |bes)
se[thZ]'n_“qu

), (2.3)

,00)NgN
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Inr lnr

2In
with respect tozinC,:={zeC: Im z > 0} and continuous in C,. Let us define the function

f using (2.1) and the boundary condition (1.2)

where | 57 J is the integer part of 5 and C > 0 is a constant. Therefore, e(-, z) is analytic

f(2) = (yo + 2/gn cosz)e(q, z) + (Bo + 2./q B cos z)e(1, z). (2.4)

The function f is analytic in C,, f(z) = f(z + 2), and continuous in C,. If we define semi-
strips P = {z€ C, : -7 <Rez < 37”} and P = PyU[-Z, 3Z] then we get the Green function

20 2
of L as
B(r2)e(t;2) _ sk
Gole) = | o> 7=t 5K SN0,
’ e(r2)¢(t:2) — ok
— ey = ke N

for all z € P with f(z) # 0 [11], and from the definition of eigenvalues and spectral singu-
larities [4], we have

o4(L) = {A: A =2/gcosz,z € Py,f(z) =0}

T 3w (2.5)

ogs(L) = {x A= 2\/§cosz,z€|:—§ 7} z):O}\{O},

where 0,4(L) and oy;(L) denote the set of eigenvalues and spectral singularities of L, respec-
tively. Using (2.1) and (2.4), we obtain

fre* + alg) L+ (1)
-1 Va-1 Va-1

q
Yo [ 4q iz
+ (“(Q)m +a(l) F'Bl)e

4 Za(l)

f2) = a(l)

,31A (1, r)eing V2

+ Ot(q)

+ 3 ( ) +a(l) %A(L r))e"f'ﬁ—?ﬁ

regN

+ Z (a(q) A(q, r)+a(l) l ﬂlA(l r)) lnq+1)z

* Z a(q) A(q, el 2z,

If we define F(z) := f(z)e?, then the function F is also analytic in C, and continuous in C,,
and F(z) = F(z + 2m). It follows from (2.5) and the definition of F that

o4(L) = {A: 1 =2./gcosz,z € Py,F(z) =0},
37 (2.6)
og(L) = {A A=2./qcosz,z € |:—§ 7:| F(z) = }\{0}

Definition 2.1 The multiplicity of a zero of F in P is called the multiplicity of the corre-
sponding eigenvalue or spectral singularity of L.
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It was found in [11] that under the condition (1.3), F has a finite number of zeros in P
with finite multiplicities, i.e., the operator L has a finite number of eigenvalues and spectral
singularities with finite multiplicities.

3 Principal vectors of L

Let us define the functions E(£, A) := e(¢, arccos 2\/_) and B(A) := F(arccos ). Using (2.1)
+a/M2-4q . v
and arccos 5= f —iln ( NG ), we obtain

E(t,k):;%(kJr\z/T) ( ZA(t )(“@)lﬁ_‘;).

Since A = 2,/gcosz maps Py to the domain A := C\[-2,/g,2,/4], the function E(}) :=
{E(t,)\)}teqN is analytic in A, and continuous up to the interval [-2,/g,2,/q], under the
condition (1.3). From (2.5), we can write

o4(L)={r € A:B() =0},
oss(L) = {1 € [-2/2,2/q] : B(A) = 0}\{0}.

The properties of the function F in P, which were obtained in [11], give the following.

Remark 3.1 Under the condition (1.3), the function B has a finite number of zeros in A
and in [-2,/4,2./q], and each of them is of finite multiplicity.

Let A1, Ag,...,As and Agy1, Agea,..., A, denote the zeros of B in A (which are eigenval-
ues of L), and in [-2,/q,2,/q] (which are spectral singularities of L) with multiplicities
my, My, ..., Mg and Mg, Mgy, ..., M, respectively.

Definition 3.2 Let Ao be an eigenvalue of L. If the vectors y*) = {y(k)(t)}teqw for k =
1,2,...,n satisfy

(BO)(E) = 2oy (1) = 0 61

BOY®) - 20y®(6) =y * V(@) =0, k=1,2,...,mneq", '
then the vector y© is called the eigenvector corresponding to the eigenvalue Aq of L.
The vectors yV,y?, ..., y" are called the associated vectors corresponding to A = Aq. The
eigenvector and the associated vectors corresponding to A are called the principal vec-
tors of the eigenvalue A = 1q. The principal vectors of the spectral singularities of L are
defined similarly.

Now, we define the vectors for A =2, /gcosz, z € P,

dk
VO, x) = { E(m)} , k=0,1,...,m-1j=1,2,...,s
7k ok ey !
and
@ 1( d* ,
V(L) = a d)LkE(t)L) , k=0,1,...,m—-Lj=s+1s+2,...,v.

)\.=A./'
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Furthermore, if y(1) = {y(¢, )\.)}teqN is a solution (fy)(¢) = Ay(t), then we get

dk dr t\ d& /¢
qa(t)my(qt,)n) + b(t)my(t,)») + a(;) Wy(;,k)

k-1

d
=k

Wy (£, \). (3.2)

dk
(t, )\.) +A m‘y

Using (3.1) and (3.2), we have, for k=0,1,...,m;—1landj=1,2,...,v,

IVOuN®) =1 VO)(E) =0,

(3.3)
AVOQNE) = 1 VPO(E) = VED Q) () = 0.

So, the vectors VX (£,4)), k=0,1,...,m;—1;j=1,2,...,s,and VO(£, 1)), k = 0,1,...,m; — 1;
j=s+1,s+2,...,v are the principal vectors of eigenvalues and spectral singularities of L,
respectively.

Theorem 3.3 Under the condition (1.3), V(k)(t,kj) € Uy(q"V) for k = 0,1,....m -1 j=
L,2,...,s, but V®(t, 1)) ¢ £(q"Y) fork=0,1,...,m;—L;j=s+1,5+2,...,v.

Proof By using E(t, 1) = e(t, arccos %ﬁ), we find

dk
[ 5

where A; =2,/gcoszj, zi € P, j=1,2,...,v, and C,, is a constant depending on ;. From
(2.1), we get

d” o) itz Inz " In(er)\"™ iz
{d)\—me(t,z)}zzz.— me {(llnq) +r§q;,<l lnq) A(t,r)e } (3.5)

]

k a4
= Zcm{ We(t,z)} : (3.4)
m=0

)\.z)\.j z=zj

forallt € ¢V andj=1,2,...,v. For the principal vectors V®O(¢, 1)), k = 0,1,...,m; - 1;j =

1,2,...,s, corresponding to the eigenvalues A; = 2, /g cos z; of L, we obtain

dk k alt) me, [ Int\"” In(tr)\” jnr
—E(t, A = ' mgg ) (i — ; A(t,r)e'ma¥ |,
{dk" (¢ )} E C e g {(ll ) + EN(L Ing ) (¢, r)e ma }
req

A=Aj =0 M(t) nq
then
k m m
1 at) jne, Int In(tr) jInr
VO = =3 Cu—mme e (i > (i Alt,r)e'mi¥ 3.6
(& A) P> M(t)e llnq + ) i ng (t,r)e (3.6)
m= req

fork=0,1,...,m;—1andj=1,2,...,s. Now define the functions

k m
1 at) e, ([ Int
gi(t,z) = — E Cn e ’(l—)
k! — /1 (£) Ing
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and

-2Yo

— ,U«(t

Ing

m
) il 3 (iln(tr)) Alt, r)e i
regN

forj=1,2,...,s. Since Imz; > O for the eigenvalues A; =2, /g cosz;,j = 1,2,..

2
Z,u(t lai(, z)| P {ZZIC |e(t)]e” lnqlmz,<lnt) ]

In
tegN tegh m=0 1

k2
{Ze l"qlmz][ Int LU (lnt> :“
Ing Ing
A A b
H(k+1)2[29 ing ! Z/<n—) ] <00,
- Ing
teq

where H is a constant. Using (3.7), we also have

In(tr)|™
Ing

” Im zj

|A (t,7) ’e ‘“q

k
C ||Ol(t)| —I"—tImz
g tz < E / E
’ ’ m=0 /‘L(t

reg

< |C | | (t)| —mlmz]Z‘A t}" ‘e lanmZJ

vV iu(2) reg

|O[(t)| _InL 1y g ln(tr) 2L Imz;
+HGl— g |A(t )|e! g 5
o IRT

u(t)

reg

|Ol( )| ——Imz (11’1(“")) L Imz;
( k / A lnq /
| ]| /M(t) Z lnq ’ t r |e

req

~ In¢
< Ce g Imz,

where C = max{|Col, |Cy, ..., |Ck|} 12

forj=1,2,...,s,
Zu(t lg2(t,2)| Z T2 2 ™ ¢ o,
tegh

It follows from (3.8) and (3.9) that

V(k)(t, )»}) €ty (qN)

(3.7)

.,s of L, we get

(3.8)

x/— ZreqN Zm 0 lA(, )|( tr))k “ing 1 . Then we get,

(3.9)

for k =0,1,...,m;—1and j = 1,2,...,5. Now, we will use (3.6) for the principal vectors

corresponding to the spectral singularities of L for ; =2,/gcosz;andj=s+1,5+2,...,v

Then we have

k

1 a(t) e, [/ Int\” In(er)\"™ jnr .
VO@E) = =Y Cp—e'mad (i — A(t,r)e'ma? 3.10
(%)) k!; M(t)e {(llnq> + 2;;(1 g (t,r)e (3.10)

req

Page 6 of 9
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fork=0,1,...,mj—1landj=s+1,s+2,...,v. Since Imz; = 0 for the spectral singularities

Aj=2,/qcoszj,j=s+1,5+2,...,v of L, we find that

a(t) bt (e \"
Ing

If we define the function % as

h(t,z) := Z Z( Infe )mA(t, r)e'hid,

m= Oreq

teq

then using (1.3) and (2.3), we obtain

W) <3 Z(“‘ )m|A(t,r)|

m=0 pegN

_Zz<lnq) Qe

m=0 N Inr
1 seltg 2lng! ,00)NgN

seltq 21“‘7J,c>o)ﬁqN

el () ) o
ol 7l ()

_
5=
A
S
\—/

IA
Qa
]~
™
>
=| £
s|g
N———"

m:OrEqN
—e (It < In(tr)\ "™ —& (Inr)’
=C = I e
onl 5 (ing) | R 050) o5 (09)
m=0 N

and
1 O{(t) lrl]n_zzl_ 2 7 ]“—)
= | ——=¢'m h(t,z) (£) < 'Za ()D%e < o0,
ki tegN' V u(t) kt teqV

where

8
Q) = (|1-als)| + [b)]),  Pls) = exp| e[ 22) e,
Ing

lnrj
seltq 214" 00)ngN

o E) <[]

reqN m=0

In(tr)\"™ Ins\® Ins
) 2 o) Jeol (g
L nr

(3.11)

)l

(3.12)
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and % < 8 < 1. It follows from (3.10), (3.11), and (3.12) that
VO, 1) ¢ (q"Y)
fork=0,1,...,mj—landj=s+15+2,...,v.
Let us introduce Hilbert spaces,
Hi(q") = {y = 9@ : Iy llk < 00}
and
H_ i (q") = {u= u(t) e : el k< oo}

for k € Ny with the norms

lt2k
nM=Zm%u§ﬁ}wW

tegN

and

Int
Nl =S M(t)(l + 127,) Ju(t)

tEqN

respectively. It is obvious that Hy(g") = £2(¢") and

Hia(4") S Hi(q") S 6(4") S Ha(q") S Howan(4Y), k=0,1,2,....

Theorem 3.4 V(k)(t,kj) € Hya(qY) for k=0, L...mj—landj=s+1,s+2,...

Proof Using (3.10), we get

Int —2(k+1)
S o)
! Ing

m=0

fork=0,1,...,mj—1andj=s+1,5+2,...,v. This completes the proof.

k " 2
1 alt) it (ln(tr)) jlnr
—_ Cm—e Ing<J A(t’ r)e Ing~
k! 2 V@) gq,% Ing

V.

<00

O

Let us choose my = max{m;,1, Ms.2,...,m,}. Now, we can give the following theorem as

a result of Theorem 3.4.

Theorem 3.5 V(k)(t,kj) eHmO(qN)fork =0,1,...,mj-landj=s+1,5s+2,..

T

Page 8 of 9
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