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Abstract
In this paper, we discuss the existence and uniqueness of solutions for a boundary
value problem of nonlinear Hadamard fractional differential equations and nonlocal
non-conserved boundary conditions in terms of Hadamard integral. Our results are
new in the present configuration and are based on some classical ideas of fixed point
theory. We present several examples for the illustration of main results. A companion
problem has also been studied. The paper concludes with some interesting
observations.
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1 Introduction
In this paper, we study the following boundary value problem:

⎧
⎨

⎩

Dαx(t) = f (t, x(t)),  < t < e,  < α ≤ ,

x() = , A
�(γ )

∫ η

 (log η

s )γ – x(s)
s ds + Bx(e) = c, γ > ,  < η < e,

(.)

where Dα is the Hadamard fractional derivative of order α, f : [, e] × R → R is a given
continuous function, and A, B, c are real constants.

It is well known that the conserved quantities play a key role in understanding important
mathematical and physical concepts such as differential equations, laws of conservation of
energy, and quantum mechanics [–]. The nonlocal non-conserved boundary condition
in (.) can be interpreted as sum of a scalar multiple of the average value of the unknown
function over the given interval of an arbitrary length (,η) (in the sense of Hadamard)
and a scalar multiple of the value of the unknown function at the right end-point (t = e) of
the given interval remains constant. In case of B = , c = , this condition reduces to


�(γ )

∫ η



(

log
η

s

)γ – x(s)
s

ds = ,

which can be conceived as a conserved nonlocal boundary condition of Hadamard type.
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The recent studies on fractional differential equations indicate that a variety of inter-
esting and important results concerning existence and uniqueness of solutions, stability
properties of solutions, analytic and numerical methods of solutions of these equations
have been obtained, and the surge in investigating more and more results is underway [,
]. The tools of fractional calculus have played a significant role in improving the mod-
eling techniques for several real world problems. Nowadays fractional-order differential
equations appear extensively in a variety of applications such as diffusion processes, chaos,
thermo-elasticity, biomathematics, fractional dynamics, etc. [–]. One of the character-
istics of operators of fractional-order is their nonlocal nature accounting for the hereditary
properties of many phenomena and processes involved. For the recent development of the
topic, we refer the reader to a series of books and papers [–]. However, it has been
noticed that most of the work on the topic is based on Riemann-Liouville and Caputo
type fractional differential equations. Another kind of fractional derivatives that appears
side by side to Riemann-Liouville and Caputo derivatives in the literature is the fractional
derivative due to Hadamard introduced in  []. Details and properties of Hadamard
fractional derivative and integral can be found in [, –].

The objective of this paper is to investigate a fractional integral boundary value prob-
lem involving Hadamard fractional derivative and integral. We organize the rest of the
manuscript as follows. Section  contains some preliminary concepts and a supporting
lemma to define the solution for the problem at hand, while the main results are studied
in Section . A companion problem is discussed in Section .

2 Preliminaries
Definition . [] The Hadamard derivative of fractional order q for a function g :
[,∞) →R is defined as

Dqg(t) =


�(n – q)

(

t
d
dt

)n ∫ t



(

log
t
s

)n–q– g(s)
s

ds, n –  < q < n, n = [q] + ,

where [q] denotes the integer part of the real number q and log(·) = loge(·).

Definition . [] The Hadamard fractional integral of order q for a function g is defined
as

Iqg(t) =


�(q)

∫ t



(

log
t
s

)q– g(s)
s

ds, q > ,

provided the integral exists.

Lemma . Given y ∈ C([, e],R), the unique solution of the problem

⎧
⎨

⎩

Dαx(t) = y(t),  < t < e,  < α ≤ ,

x() = , AIγ x(η) + Bx(e) = c,  < η < e,
(.)

is given by

x(t) = Iαy(t) + (log t)α– c – AIγ +αy(η) – BIαy(e)
B + A�(α)

�(γ +α) (logη)γ +α–
, (.)
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where I(·) denotes the Hadamard fractional integral (see Definition .).

Proof As argued in [], the solution of Hadamard differential equation in (.) can be
written as

x(t) = Iαy(t) + c(log t)α– + c(log t)α–. (.)

The first boundary condition gives c = . Note that

Iγ x(η) = Iγ +αy(η) +
c

�(γ )

∫ η



(

log
η

s

)γ – (log s)α–

s
ds

= Iγ +αy(η) + c
�(α)

�(γ + α)
(logη)γ +α–.

Using the second boundary condition, we get

AIγ +αy(η) + Ac
�(α)

�(γ + α)
(logη)γ +α– + BIαy(e) + Bc = c,

which gives

c =
c – AIγ +αy(η) – BIαy(e)
B + A�(α)

�(γ +α) (logη)γ +α–
.

Substituting the values of c and c in (.), we obtain (.). This completes the proof. �

In view of Lemma ., the integral solution of problem (.) can be written as

x(t) =


�(α)

∫ t



(

log
t
s

)α– f (s, x(s))
s

ds

+
(log t)α–

�

{

c –
A

�(γ + α)

∫ η



(

log
η

s

)γ +α– f (s, x(s))
s

ds

–
B

�(α)

∫ e



(

log
e
s

)α– f (s, x(s))
s

ds
}

, t ∈ [, e], (.)

where

� = B +
A�(α)

�(γ + α)
(logη)γ +α–.

3 Main results
We define an operator Q : C([, e],R) → C([, e],R) by

Qx(t) =


�(α)

∫ t



(

log
t
s

)α– f (s, x(s))
s

ds

+
(log t)α–

�

{

c –
A

�(γ + α)

∫ η



(

log
η

s

)γ +α– f (s, x(s))
s

ds

–
B

�(α)

∫ e



(

log
e
s

)α– f (s, x(s))
s

ds
}

, t ∈ [, e]. (.)
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Notice that problem (.) is equivalent to the fixed point operator equation Qx = x, and
the existence of a fixed point of the operator Q implies the existence of a solution of prob-
lem (.).

In the next we give some existence and uniqueness results by using a variety of fixed
point theorems.

3.1 Existence and uniqueness result via Banach’s fixed point theorem
First of all, we present the existence and uniqueness result for problem (.). This result is
based on using Banach’s fixed point theorem.

For the sake of computational convenience, we set

ω =


�(α + )
+


|�|

{ |A|(logη)γ +α

�(γ + α + )
+

|B|
�(α + )

}

. (.)

Theorem . Let f : [, e] ×R → R be a continuous function satisfying the following con-
dition:

(H) There exists a constant L >  such that |f (t, x) – f (t, y)| ≤ L|x – y| for each t ∈ [, e]
and x, y ∈R.

If

Lω < , (.)

then the Hadamard fractional boundary value problem (.) has a unique solution in [, e].

Proof Fixing maxt∈[,e] |f (t, )| = M < ∞, we define Br = {x ∈ C([, e],R) : ‖x‖ ≤ r}, where
r ≥ Mω+|c|/�

–Lω
. We show that the set Br is invariant with respect to the operator Q, that is,

QBr ⊂ Br .

‖Qx‖ ≤ max
t∈[,e]

{


�(α)

∫ t



(

log
t
s

)α– |f (s, x(s))|
s

ds

+
(log t)α–

|�|
[

|c| +
A

�(γ + α)

∫ η



(

log
η

s

)γ +α– |f (s, x(s))|
s

ds

–
B

�(α)

∫ e



(

log
e
s

)α– |f (s, x(s))|
s

ds
]}

≤ max
t∈[,e]

{


�(α)

∫ t



(

log
t
s

)α– (|f (s, x(s)) – f (s, )| + |f (s, )|)
s

ds

+
(log t)α–

|�|

×
[

|c| +
|A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– (|f (s, x(s)) – f (s, )| + |f (s, )|)
s

ds

+
|B|

�(α)

∫ e



(

log
e
s

)α– (|f (s, x(s)) – f (s, )| + |f (s, )|)
s

ds
]}

≤ (Lr + M) max
t∈[,e]

{


�(α)

∫ t



(

log
t
s

)α– 
s

ds
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+
(log t)α–

|�|
[ |A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– 
s

ds +
|B|

�(α)

∫ e



(

log
e
s

)α– 
s

ds
]}

+
|c|(log t)α–

|�|

≤ (Lr + M)
[


�(α + )

+


|�|
{ |A|(logη)γ +α

�(γ + α + )
+

|B|
�(α + )

}]

+
|c|
|�|

= (Lr + M)ω +
|c|
|�| ≤ r,

which proves that QBr ⊂ Br .
Now let x, y ∈ C([, e],R). Then, for t ∈ [, e], we have

∣
∣(Qx)(t) – (Qy)(t)

∣
∣

≤ max
t∈[,e]

{


�(α)

∫ t



(

log
t
s

)α– |f (s, x(s)) – f (s, y(s))|
s

ds

+
(log t)α–

|�|
[ |A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– |f (s, x(s)) – f (s, y(s))|
s

ds

+
|B|

�(α)

∫ e



(

log
e
s

)α– |f (s, x(s)) – f (s, y(s))|
s

ds
]}

≤ L‖x – y‖ max
t∈[,e]

{


�(α)

∫ t



(

log
t
s

)α– 
s

ds

+
(log t)α–

|�|
[ |A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– 
s

ds +
|B|

�(α)

∫ e



(

log
e
s

)α– 
s

ds
]}

= Lω‖x – y‖.

Therefore,

‖Qx – Qy‖ ≤ Lω‖x – y‖.

It follows from assumption (.) that Q is a contraction. In consequence, it follows by
Banach’s fixed point theorem that the operator Q has a fixed point which corresponds to
the unique solution of problem (.). This completes the proof. �

3.2 Existence result via Krasnoselskii’s fixed point theorem
Lemma . (Krasnoselskii’s fixed point theorem []) Let M be a closed, bounded, convex,
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax + By ∈
M whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.

Theorem . Let f : [, e] ×R → R be a continuous function satisfying (H). In addition,
we assume that

(H) |f (t, x)| ≤ μ(t), ∀(t, u) ∈ [, e] ×R, and μ ∈ C([, e],R+).
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Then problem (.) has at least one solution on [, e] if


|�|

{ |A|(logη)γ +α

�(γ + α + )
+

|B|
�(α + )

}

< . (.)

Proof We define supt∈[,e] |μ(t)| = ‖μ‖ and choose a suitable constant r as

r ≥ ‖μ‖|ω| +
|c|
�

,

where ω is defined by (.). We define the operators P and Q on Br = {x ∈ C([, e],R) :
‖x‖ ≤ r} as

(Px)(t) =


�(α)

∫ t



(

log
t
s

)α– f (s, x(s))
s

ds,

(Qx)(t) =
(log t)α–

�

[

c –
A

�(γ + α)

∫ η



(

log
η

s

)γ +α– f (s, x(s))
s

ds

–


�(α)

∫ e



(

log
e
s

)α– f (s, x(s))
s

ds
]

.

For x, y ∈ Br , we find that

‖Px + Qy‖

≤ ‖μ‖
{


�(α)

∫ t



(

log
t
s

)α– 
s

ds +
(log t)α–

|�|
[ |A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– 
s

ds

+
|B|

�(α)

∫ e



(

log
e
s

)α– 
s

ds
]}

+
(log t)α–|c|

|�|

≤ ‖μ‖ω +
|c|
|�|

≤ r.

Thus, Px + Qy ∈ Br . It follows from assumption (H) together with (.) that Q is a
contraction mapping. Continuity of f implies that the operator P is continuous. Also, P
is uniformly bounded on Br as

‖Px‖ ≤ ‖μ‖
�(α + )

.

Now we prove the compactness of the operator P .
We define sup(t,x)∈[,e]×Br

|f (t, x)| = f < ∞, τ, τ ∈ [, e] with τ < τ, and consequently we
have

∣
∣(Px)(τ) – (Px)(τ)

∣
∣ ≤ f

�(α)

∣
∣
∣
∣

∫ τ



(

log
τ

s

)α– 
s

ds –
∫ τ



(

log
τ

s

)α– 
s

ds
∣
∣
∣
∣

≤ f
�(α)

∣
∣
∣
∣

∫ τ



[(

log
τ

s

)α–

–
(

log
τ

s

)α–]
s

ds
∣
∣
∣
∣

+
f

�(α)

∣
∣
∣
∣

∫ τ

τ

(

log
τ

s

)α– 
s

ds
∣
∣
∣
∣
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=
f

�(α + )
[∣
∣(log τ)α + (log τ – log τ)α – (log τ)α

∣
∣

+
∣
∣(log τ – log τ)α

∣
∣
]
,

which is independent of x and tends to zero as τ – τ → . Thus, P is equicontinuous. So
P is relatively compact on Br . Hence, by the Arzelá-Ascoli theorem, P is compact on Br .
Thus all the assumptions of Lemma . are satisfied. So the conclusion of Lemma .
implies that the fractional boundary value problem (.) has at least one solution on [, e].
The proof is completed. �

3.3 Existence result via Leray-Schauder’s nonlinear alternative
Lemma . (Nonlinear alternative for single-valued maps []) Let E be a Banach space,
C be a closed, convex subset of E, U be an open subset of C and  ∈ U . Suppose that F :
U → C is a continuous, compact (that is, F(U) is a relatively compact subset of C) map.
Then either

(i) F has a fixed point in U , or
(ii) there is u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Theorem . Let f : [, e] ×R→R be a continuous function. Assume that:

(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
p ∈ C([, e],R+) such that

∣
∣f (t, u)

∣
∣ ≤ p(t)ψ

(‖u‖) for each (t, u) ∈ [, e] ×R;

(H) there exists a constant M >  such that

M
ψ(M)‖p‖ω + |c|

|�|
> .

Then the fractional boundary value problem (.) has at least one solution on [, e].

Proof We complete the proof in several steps. We begin by showing that Q maps bounded
sets (balls) into bounded sets in C([, e],R). For a positive number r, let Br = {u ∈
C([, e],R) : ‖u‖ ≤ r} be a bounded ball in C([, e],R). Then, for t ∈ [, e], we have

∣
∣Qx(t)

∣
∣ ≤ max

t∈[,e]

{


�(α)

∫ t



(

log
t
s

)α– |f (s, x(s))|
s

ds

+
(log t)α–

|�|
[

|c| +
|A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– |f (s, x(s))|
s

ds

+
|B|

�(α)

∫ e



(

log
e
s

)α– |f (s, x(s))|
s

ds
]}

≤ max
t∈[,e]

ψ
(‖x‖)‖p‖

{


�(α)

∫ t



(

log
t
s

)α– 
s

ds

+
(log t)α–

|�|
[ |A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– 
s

ds
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+
|B|

�(α)

∫ e



(

log
e
s

)α– 
s

ds
]}

+
(log t)α–|c|

|�|

≤ ψ
(‖x‖)‖p‖ω +

|c|
|�| .

Consequently,

‖Qx‖ ≤ ψ(r)‖p‖ω +
|c|
|�| .

Next we show that Q maps bounded sets into equicontinuous sets of C([, e],R). Let
τ, τ ∈ [, e] with τ < τ and x ∈ Br . Then we have

∣
∣(Qx)(τ) – (Qx)(τ)

∣
∣

≤ ψ(r)‖p‖
�(α)

∣
∣
∣
∣

∫ τ



(

log
τ

s

)α– 
s

ds –
∫ τ



(

log
τ

s

)α– 
s

ds
∣
∣
∣
∣

+
ψ(r)‖p‖|(log τ)α– – (log τ)α–|

|�|
[ |A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– 
s

ds

+
|B|

�(α)

∫ e



(

log
e
s

)α– 
s

ds
]

+
|(log τ)α– – (log τ)α–||c|

|�|

≤ ψ(r)‖p‖
�(α)

∣
∣
∣
∣

∫ τ



[(

log
τ

s

)α–

–
(

log
τ

s

)α–]
s

ds
∣
∣
∣
∣

+
ψ(r)‖p‖

�(α)

∣
∣
∣
∣

∫ τ

τ

(

log
τ

s

)α– 
s

ds
∣
∣
∣
∣

+
ψ(r)‖p‖|(log τ)α– – (log τ)α–|

|�|
[ |A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– 
s

ds

+
|B|

�(α)

∫ e



(

log
e
s

)α– 
s

ds
]

+
|(log τ)α– – (log τ)α–||c|

|�| .

Obviously the right-hand side of the above inequality tends to zero independently of
x ∈ Br as τ – τ → . As Q satisfies the above assumptions, therefore it follows by the
Arzelá-Ascoli theorem that Q : C([, e],R) → C([, e],R) is completely continuous.

Let x be a solution. Then, for t ∈ [, e], as in the first step, we have

‖x‖ ≤ ψ
(‖x‖)‖p‖ω +

|c|
|�| ,

which implies that

‖x‖
ψ(‖x‖)‖p‖ω + |c|

|�|
≤ .

In view of (H), there exists M such that ‖u‖ 
= M. Let us set

U =
{

u ∈ C
(
[, e],R

)
: ‖u‖ < M

}
.

Note that the operator Q : U → C([, e],R) is continuous and completely continuous.
From the choice of U , there is no u ∈ ∂U such that u = λQu for some λ ∈ (, ). Con-
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sequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we deduce
that Q has a fixed point u ∈ U which is a solution of problem (.). This completes the
proof. �

3.4 Existence results via Leray-Schauder degree
Theorem . Let f : [, e] ×R→ R be a continuous function. Assume that

(H) there exist constants  ≤ κ < ω– and M >  such that

∣
∣f (t, x)

∣
∣ ≤ κ|x| + M for all (t, x) ∈ [, e] ×R.

Then the fractional boundary value problem (.) has at least one solution on [, e].

Proof We define an operator Q : C([, e],R) → C([, e],R) as in (.) and consider the fixed
point problem

u = Qu. (.)

We are going to prove that there exists a fixed point u ∈ C([, e],R) satisfying (.). It is
sufficient to show that Q : BR → C([, e],R) satisfies

x 
= λQx, ∀x ∈ ∂BR,∀λ ∈ [, ], (.)

where BR = {x ∈ C([, e],R) : maxt∈[,e] |x(t)| < R, R > }. We define

H(λ, x) = λQx, u ∈ C
(
[, e],R

)
,λ ∈ [, ].

As shown in Theorem ., we have that the operator Q is continuous, uniformly bounded,
and equicontinuous. Then, by the Arzelá-Ascoli theorem, a continuous map hλ defined by
hλ(x) = u – H(λ, x) = x – λQx is completely continuous. If (.) is true, then the following
Leray-Schauder degrees are well defined, and by the homotopy invariance of topological
degree it follows that

deg(hλ, BR, ) = deg(I – λQ, BR, ) = deg(h, BR, )

= deg(h, BR, ) = deg(I, BR, ) =  
= ,  ∈ BR, (.)

where I denotes the identity operator. By the nonzero property of Leray-Schauder degree,
h(x) = x – Qx =  for at least one x ∈ BR. In order to prove (.), we assume that x = λQx
for some λ ∈ [, ] and for all t ∈ [, e]. Then, with ‖x‖ = supt∈[,e] |x(t)|, we have

∣
∣Qx(t)

∣
∣ ≤ max

t∈[,e]

{


�(α)

∫ t



(

log
t
s

)α– |f (s, x(s))|
s

ds

+
(log t)α–

|�|
[

|c| +
|A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– |f (s, x(s))|
s

ds

+
|B|

�(α)

∫ e



(

log
e
s

)α– |f (s, x(s))|
s

ds
]}
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≤ (
κ‖x‖ + M

)
{


�(α)

∫ t



(

log
t
s

)α– 
s

ds

+
(log t)α–

|�|
[ |A|

�(γ + α)

∫ η



(

log
η

s

)γ +α– 
s

ds

+
|B|

�(α)

∫ e



(

log
e
s

)α– 
s

ds
]}

+
|c|
|�|

≤ (
κ‖x‖ + M

)
ω +

|c|
|�| ,

which, on solving for ‖x‖, yields

‖x‖ ≤ Mω + (|c|/|�|)
 – κω

.

If R = Mω+(|c|/|�|)
–κω

+ , inequality (.) holds. This completes the proof. �

3.5 Examples
Example . Consider the problem

⎧
⎨

⎩

D/x(t) = L
 (sin x + |x|

+|x| ) +
√

t+
e ,  < t < e,

x() = , I/x() + x(e) = .
(.)

Here, α = /, γ = /, η = , A = , B = , c = , and f (t, x) = L
 (sin x + |x|

+|x| ) +
√

t+
e . With

the given values, we find that

� = B +
A�(α)

�(γ + α)
(logη)γ +α– �  +

√
π log

√
 ≈ .,

ω =


�(α + )
+


�

( |A|(logη)γ +α

�(γ + α + )
+

|B|
�(α + )

)

≈ .,

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ L



∣
∣
∣
∣sin x +

|x|
 + |x| – sin y –

|y|
 + |y|

∣
∣
∣
∣ ≤ L|x – y|.

With L < 
ω

≈ ., all the assumptions of Theorem . are satisfied. Hence, problem
(.) has a unique solution on [, e].

Example . Consider problem (.) with

f (t, x) =
e–t



(
( + x)

 + ( + x) + x
)

. (.)

Clearly |f (t, x)| ≤ 
e ( + ‖x‖). By assumption (H),

M
ψ(M)‖p‖ω + |c|

|�|
> ,

we find that M > .. Thus, by Theorem ., there exists at least one solution for
problem (.) with f (t, x) given by (.).
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Example . Consider problem (.) with

f (t, x) = sin(ax) +
√

log(t) + , a > . (.)

It is obvious that |f (t, x)| = | sin(ax) +
√

log(t) + | ≤ a|x| + . With a < /ω ≈ ., the
assumptions of Theorem . are satisfied, and in consequence problem (.) with f (t, x)
given by (.) has a solution on [, e].

4 A companion problem
In this section, we consider a companion boundary value problem by replacing the non-
local integral boundary condition in (.) by AIγ x(e) + Bx(η) = c. Precisely we consider the
following problem:

⎧
⎨

⎩

Dαx(t) = f (t, x(t)),  < t < e,  < α ≤ ,

x() = , AIγ x(e) + Bx(η) = c,  < η < e.
(.)

In this case, we have an operator of the form T : C([, e],R) → C([, e],R) by

T x(t) =


�(α)

∫ t



(

log
t
s

)α– f (s, x(s))
s

ds

+
(log t)α–

�

{

c –
A

�(γ + α)

∫ e



(

log
e
s

)γ +α– f (s, x(s))
s

ds

–
B

�(α)

∫ η



(

log
η

s

)α– f (s, x(s))
s

ds
}

, t ∈ [, e], (.)

where

� = B(logη)α– +
A

�(γ + )
.

The existence results (Theorems ., ., ., .) for problem (.) can be obtained using
the strategy followed in Section  by replacing the value of ω with the following one:

ω =


�(α + )
+


|�|

{ |A|
�(γ + α + )

+
|B|(logη)α

�(α + )

}

. (.)

5 Conclusions
We have investigated the existence and uniqueness of solutions for a semi-linear
Hadamard type fractional differential equation supplemented with nonlocal non-
conserved boundary conditions involving Hadamard integral. The uniqueness result is
proved by applying Banach’s fixed point theorem, while the three existence results are
established by means of Krasnoselskii’s fixed point theorem, Leray-Schauder’s nonlinear
alternative, and Leray-Schauder degree, respectively. We have also discussed a compan-
ion problem (.) by replacing the condition AIγ x(η) + Bx(e) = c with AIγ x(e) + Bx(η) = c
in problem (.). The results presented in this paper are more general and correspond to
several known and new results by fixing the parameters involved in problem (.) appro-
priately. For instance, we have:
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• By taking A = , c = , B 
= , our results correspond to the ones for Hadamard type
fractional differential equations with Dirichlet boundary conditions.

• Letting A = , B = –, c = , and η → e in the results of this paper, we obtain the ones
presented in [].

• With A 
= , B = , c = , our problem becomes an ‘average type’ nonlocal boundary
value problem in the sense of Hadamard integral (in the classical sense for γ = ). This
reduced integral condition can also be termed as a ‘conserved’ condition in the sense
of Hadamard. In this case, the operator Q : C([, e],R) → C([, e],R) takes the form

Qx(t) =


�(α)

∫ t



(

log
t
s

)α– f (s, x(s))
s

ds

–
A(log t)α–

��(γ + α)

∫ η



(

log
η

s

)γ +α– f (s, x(s))
s

ds, t ∈ [, e].

In relation to problem (.), we can make similar observations.
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