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Abstract
This research aims to investigate the strategy of fair insurance premium actuarial
approach for pricing currency option, when the value of foreign currency option
follows the mixed fractional Brownian motion with jumps and the European call and
put currency option are presented. It has certain reference significance to avoiding
foreign exchange risk.
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1 Introduction
A currency option is a contract that gives the holder the right to buy or sell a certain
amount of foreign currency at a fixed exchange rate (exercise price) upon exercise of the
option. American options are options that can be exercised at any time before they expire.
European options can be exercised only during a specified period immediately before ex-
piration.

Option pricing was introduced by Black-Scholes in  []. In a work by Garman and
Kohlhagen (GK) [], the Black-Scholes model was developed in order to evaluate Eu-
ropean currency option. However, some researchers (see []) pointed to the evidences,
which reflect the mispriced currency options by the GK model. The significant causes of
why this model is not suitable for stock markets are due to the fact that the currencies
are different from the stocks in main respects, and geometric Brownian motion is unable
to resolve the conduct of the currency return [, ]. Since then, in order to tackle these
problems, many systems for pricing currency options have been proposed using the ex-
tensions of the GK model [–]. Since fractional Brownian motion (FBM) includes two
prominent properties: long-range correlation and self-similarity, it can get the typical tail
behavior from stock markets.

Unfortunately, owing to the fact that FBM is neither a Markov process nor a semi-
martingale, we are unable to employ the prevalent stochastic calculus to analyze it []. To
resolve these problems, with respect to the long memory feature and to capture the fluc-
tuations from stock markets, the mixed fractional Brownian motion (MFBM) has been
introduced [, ]. Cheridito [] had proved that, for H ∈ ( 

 , ), the mixed model with
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dependent Brownian motion (BM) and FBM was equivalent to one with BM. Therefore,
we assume that H ∈ ( 

 , ). Moreover, the empirical studies demonstrate that discontin-
uous or jumps are vital components for analyzing financial data (see [–]). Then, we
present the combination of Poisson jump process and MFBM in order to highlight all
these properties. Actuarial approach to option pricing was put forward in  by Bladt
and Rydberg []. In this study, we assess the actuarial approach for pricing currency op-
tions, whose price is governed by jump process and MFBM. In this model, we propose the
actuarial approach to pricing currency options into a problem of equivalent of fair insur-
ance premium. No economic assumptions are considered in the actuarial approach, and
it is not only valid in complete, arbitrage-free and equilibrium markets but also reliable in
incomplete, arbitrage and non-equilibrium markets.

Definition . A MFBM of parameters ε, α and H is a linear compound of different FBMs
under probability space (�, F , P) for any t ∈ R+ by

MH
t = εB(t) + αBH(t), ()

where B(t) is a BM, BH (t) is an independent FBM with Hurst parameter H ∈ (, ), ε and α

are two real constants such that (ε,α) �= (, ); to get more information about MFBM you
can see [, ].

The MFBM has the following properties:
. MH

t is a centered Gaussian process and not a Markovian one for H ∈ (, ) \ 
 ;

. MH
 =  P-almost surely;

. The covariation function of MH
t (α,β) and MH

t (a, b) for any t, s ∈ R+ is given by

Cov
(
MH

t , MH
s
)

= α(t ∧ s) +
β


(
tH + sH – |t – s|H)

, ()

where ∧ denotes the minimum of two numbers;
. The increments of MH

t (α,β) are stationary and mixed-self similar for any h > 

MH
ht(α,β) � MH

t
(
αh


 ,βhH)

, ()

where � means ‘to same law’;
. The increments of MH

t are positively correlated if 
 < H < , uncorrelated if H = 


and are negatively correlated if  < H < 

 ;
. The increments of MH

t are long range dependent if and only if H > 
 ;

. For all t ∈ R+, we have

E
[(

MH
t (α,β)

)n] =

⎧
⎨

⎩
, n = l + ,
(l)!
l l! (αt + βtH )l, n = l.

()

To derive a MFBM with jumps model for pricing currency options, the greater attention
should be paid to the following conditions:

(i) No transaction expenses or taxes should be determined and all securities are
perfectly divisible;
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(ii) Safety trading is continuous;
(iii) The domestics interest rate rd and foreign interest rate rf in the short-term are

defined and stable over time;
(iv) There are no risk-free arbitrage opportunities.
The spot exchange rate in the MFBM with jumps model is given by

dS(t) = S(t)(μ – λμJ(t)) dt + σS(t) dB̂(t) + σS(t) dB̂H(t)

+ S(t)
(
eJ(t) – 

)
dNt ,  < t ≤ T , S() = S > . ()

Suppose that Bd
t and Bf

t show the domestic and foreign price of risk-free bond, respec-
tively. Thus, Bd

t and Bf
t satisfy in Equations () and ():

dBd
t = Bd

t rd dt, Bd
T = Bd

t = e–rd(T–t), ()

dBf
t = Bf

t rf dt, Bf
T = Bf

t = e–rf (T–t), ()

where S(t) denotes the spot exchange rate at time t of one unit of the foreign currency
measured in the domestic currency; the drift μ and volatility σ are supposed to be con-
stants; B̂(t) and B̂H (t) are a BM and a FBM, respectively; Nt is a Poisson process with rate
λ; (eJ(t) – ) is jump size at t which is a sequence of independent identically distributed and
J(t) ∼ N(–

σ
J
 ,σ 

J ). Moreover, all three sources of randomness, the FBM, B̂H(t), the Poisson
process Nt and the jump size eJ(t) – , are supposed to be independent.

By using the fractional Girsanov equation and the following variables change

B(t) + BH (t) =
μ – λμJ(t) + rf – rd

σ
t + B̂(t) + B̂H (t), ()

Equation () is transformed to the following equation:

dS(t) = St(rd – rf ) dt + σS(t) dB(t) + σS(t) dBH(t)

+ S(t)
(
eJ(t) – 

)
dNt ,  < t ≤ T , S() = S > . ()

Lemma . By applying the Ito formula, the solution for the stochastic differential Equa-
tion () (see []) is given by

S(t) = S exp

[

(rd – rf )t + σB(t) + σBH(t) –


σ t –



σ tH +

Nt∑

i=

J(ti)

]

()

and the mean

E
(
S(t)

)

= E

[

S exp

(

(rd – rf )t + σB(t) + σBH(t) –


σ t –



σ tH +

Nt∑

i=

J(ti)

)]

= S exp

(
(rd – rf )t –



σ t –



σ tH

)
E
[
exp

(
σB(t) + σBH(t)

)]
E

[

exp

( Nt∑

i=

J(ti)

)]
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= S exp

(
(rd – rf )t –



σ t –



σ tH

)
exp

(


σ t –



σ tH

)
exp

(



nσ 
J t

)

= S exp

[(
(rd – rf ) +




nσ 
J

)
t
]

. ()

2 Actuarial approach for pricing currency option
This section deals with the new pricing model for the currency options using the actuarial
approach, when the spot exchange rate follows the MFBM with jumps process. This model
can be applied to different financial markets, for example, in the arbitrage-free, equilib-
rium and complete markets and also in the arbitrage, non-equilibrium and incomplete
markets.

Definition . ([]) The expectation return rate θ (t) of St on t ∈ [, T] is defined
∫ T

 θ (s) ds as follows:

E(S(t))
S()

= exp

(∫ T


θ (s) ds

)
. ()

Definition . Suppose that C(K , T) and P(K , T) show the European call and put cur-
rency options, respectively, whose spot exchange rate is S(t), the exercise price is K and
the time maturity is T . Thus, the value of European option by actuarial approach can be
written as follows:

C(K , T) = E
[(

exp

(
–

∫ T


θ (t) dt

)
S(T)Bf

 – KBd


)
IA

]
, ()

P(K , T) = E
[(

KBd
 – exp

(
–

∫ T


θ (t) dt

)
S(T)Bf



)
IB

]
. ()

The essential condition for performing the European call and put currency options on the
expiry date are, respectively,

exp

(
–

∫ T


θ (t) dt

)
S(T)Bf

 > KBd
,

KBd
 > exp

(
–

∫ T


θ (t) dt

)
S(T)Bf

.
()

Theorem . Let the spot exchange rate S(t) satisfy Equation (). Thus, the value of the
European call and put currency option at time t =  is as follows, respectively:

C(K , T) = E
[(

exp

(
–

∫ T


θ (t) dt

)
S(T)Bf

 – KBd


)
IA

]

= E
[(

exp

(
–(rd – rf )T –

NTσ 
J


T

)
S(T)Bf

 – KBd


)
IA

]
, ()

C(K , T) = SBf


∞∑

n=

[
(λT)n

n!
exp

( n∑

i=

J(ti) – λT –
nσ 

J


T

)]

	(bn)

– KBd


∞∑

n=

e–λT (λT)n

n!
	

(
b′

n
)
, ()
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P(K , T) = E
[(

KBd
 – exp

(
–

∫ T


θ (t) dt

)
S(T)Bf



)
IB

]

= E
[(

KBd
 – exp

(
–(rd – rf )T –

Ntσ

J


T

)
S(T)Bf



)
IB

]

= KBd


∞∑

n=

e–λT (λT)n

n!
	

(
–b′

n
)

– SBf


×
∞∑

n=

[
(λT)n

n!
exp

( n∑

i=

J(ti) – λT –
nσ 

J


T

)]

	(–bn), ()

here

yn =
m –

∑n
i= J(ti) +

nσ
J


σ

, m = ln
KBd



SBf


+


σ T +



σ TH , ()

bn =
σT + σTH – yn√

T + TH
, b′

n =
–yn√

T + TH
. ()

Proof From Lemma . we have

S(T) = S exp

[

(rd – rf )T + σB(T) + σBH(T) –


σ T –



σ TH +

NT∑

i=

J(ti)

]

. ()

The exp(–
∫ T

 θ (t) dt)S(T)Bf
 > KBd

 is equivalent to the following equation:

exp

(
–(rd – rf )T –

NTσ 
J


T

)
× S exp

[

(rd – rf )T + σB(T) + σBH(T)

–


σ T –



σ TH +

NT∑

i=

J(ti)

]

× Bf
 > KBd

. ()

Then we have σB(T) + σBH(T) +
∑NT

i= J(ti) –
NT σ

J
 T > m.

C(K , T) = E
[

exp

(
–

∫ T


θ (t) dt

)
S(T)Bf

I
exp(–

∫ T
 θ (t) dt)S(T)Bf

>KBd


]

= E

{

exp

(
–(rd – rf )T –

NTσ 
J


T

)

× S exp

[

(rd – rf )T + σB(T) + σBH(T) –


σ T –



σ TH +

NT∑

i=

J(ti)

]

× Bf
I

σB(T)+σBH (T)+
∑NT

i= J(ti)–
NT σ

J
 T>m

}

= SBf
 exp

[
–



σ T –



σ TH

]

× E

[

exp

(

σB(T) + σBH(T) +
NT∑

i=

J(ti) –
NTσ 

J


T

)
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× I
σB(T)+σBH (T)+

∑NT
i= J(ti)–

NT σ
J

 T>m

]

= SBf
 exp

[
–



σ T –



σ TH

]

× E

[

E

[

exp

(

σB(T) + σBH(T) +
NT∑

i=

J(ti) –
NTσ 

J


T

)

× I
σB(T)+σBH (T)+

∑NT
i= J(ti)–

NT σ
J

 T>m

∣
∣∣
∣NT

]]

= SBf
 exp

[
–



σ T –



σ TH

] ∞∑

n=

P(NT = n)

× E

[

exp

(

σB(T) + σBH(T) +
NT∑

i=

J(ti) –
NTσ 

J


T

)

× I
σB(T)+σBH (T)+

∑NT
i= J(ti)–

NT σ
J

 T>m

∣∣∣
∣n

]

= SBf
 exp

[
–



σ T –



σ TH

] ∞∑

n=

[
(λT)n

n!
exp

( n∑

i=

J(ti) – λT –
nσ 

J


T

)]

× E
[
exp

(
σB(T) + σBH(T)

)
I
σB(T)+σBH (T)+

∑NT
i= J(ti)–

NT σ
J

 T>m

]

= SBf


∞∑

n=

[
(λT)n

n!
exp

( n∑

i=

J(ti) – λT –
nσ 

J


T

)]


√
π (T + TH )

×
∫ +∞

yn

e
– (x–σT–σTH )

(T+TH ) dx

= SBf


∞∑

n=

[
(λT)n

n!
exp

( n∑

i=

J(ti) – λT –
nσ 

J


T

)]

P(Z > yn), ()

C(K , T) = SBf


∞∑

n=

[
(λT)n

n!
exp

( n∑

i=

J(ti) – λT –
nσ 

J


T

)]

× P
(

Z – σT – σTH
√

T + TH
>

yn – σT – σTH
√

T + TH

)

= SBf


∞∑

n=

[
(λT)n

n!
exp

( n∑

i=

J(ti) – λT –
nσ 

J


T

)]

	(bn). ()

Moreover,

C(K , T) = E
[
KBd

I
exp(–

∫ T
 θ (t) dt)S(T)Bf

>KBd


]

= KBd
P

[

σB(T) + σBH(T) +
NT∑

i=

J(ti) –
NTσ 

J


T > m

]

= KBd


∞∑

n=

P(NT = n)P

[

σB(T) + σBH(T) +
NT∑

i=

J(ti) –
nσ 

J


T > m

]
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= KBd


∞∑

n=

e–λT (λT)n

n!
P
[

B(T) + BH(T)√
T + TH

>
yn√

T + TH

]

= KBd


∞∑

n=

e–λT (λT)n

n!
	

(
–

yn√
T + TH

)

= KBd


∞∑

n=

e–λT (λT)n

n!
	

(
b′

n
)
, ()

where

yn =
m –

∑n
i= J(ti) +

nσ
J


σ

, m = ln
KBd



SBf


+


σ T +



σ TH , ()

bn =
σT + σTH – yn√

T + TH
, b′

n =
–yn√

T + TH
, ()

and 	(·) is the cumulative normal distribution. From Equation () we can get

C(K , T) = E
[(

exp

(
–

∫ T


θ (t) dt

)
S(T)Bf

 – KBd


)
IA

]

= C(K , T) – C(K , T)

= SBf


∞∑

n=

[
(λT)n

n!
exp

( n∑

i=

J(ti) – λT –
nσ 

J


T

)]

	(bn)

– KBd


∞∑

n=

e–λT (λT)n

n!
	

(
b′

n
)
. ()

The proof of Equation () is the same way. �

3 Conclusion
In the actuarial approach, we do not need the economic knowledge of financial data in
which the outcome is accurate in all kinds of markets. It is important to note that our
model in this study is easy to use against the Black-Scholes model because there is no need
to investigate an equivalent martingale measure. In addition, in this paper, we supposed
that the spot price follows the MFBM with jumps is a clear reference, which is important
to eschewing foreign exchange risk.
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