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Abstract
In this paper we start by giving a new definition of weak Caputo derivative in the
sense of distributions, and we give a variational formulation to a fractional diffusion
equation with Caputo derivative. We prove the existence and uniqueness of the
solution to this weak formulation and use it to obtain a result on optimal control.

MSC: 37L05; 47J30

Keywords: fractional diffusion equation; distributional weak Caputo derivative;
fractional Sobolev space

1 Introduction
In this paper we study fractional diffusion equations with controls by the method of an ab-
stract variational formulation. For a comprehensive treatment of the subject of fractional
calculus and fractional differential equations we refer to Kilba et al. []. There has been a
large and fast increasing literature on diffusion equations with time fractional derivatives
[–]. An important obstacle to study solutions in fractional Sobolev spaces is that the Ca-
puto derivative was not clearly defined when the first order derivative does not exist in the
strong sense. In the recent work of Gorenflo et al. [], they gave a definition of the Caputo
derivative in fractional Sobolev space. In this paper we attempt to give a new definition of
the weak fractional Caputo derivative via distribution theory and an integration by parts
formula. This definition makes it very natural to adopt the theory of operational differ-
ential equations (Lions []) and gives an abstract variational formulation of the fractional
diffusion equation.

We will study this weak formulation with the classic Faedo-Galerkin method. This is
essentially a Hilbert space method []. We adopt it for fractional diffusion equations by
using energy estimate inequalities and lemmas on weak convergence.

We note that the integration by parts technique has been developed and extensively used
in the theory of fractional calculus of variations, of which we refer to the monograph of
Malinowska and Torres [].

We obtain a solution in the functional setting of a fractional Sobolev space due to the
following fact: the L-fractional derivative is the fractional power of the realization of a
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derivative in L space []. For a detailed analysis and characterization of the fractional
power of differential operator in the setting of Sobolev space, we refer to [, ].

Using the fractional integration by parts formula, we can also construct the adjoint sys-
tem to our variational (weak) formulation. By a classic result of convex analysis we can
characterize the optimal control of a system of partial differential equations and inequal-
ities, which can be applied to concrete fractional diffusion equations.

Consider the following fractional diffusion equation: Let � be a bounded open subset
of Rn with sufficiently regular boundary �, with cylinder defined as

Q = � × ], T[, � = � × ], T[.

We will study the system with Dirichlet boundary condition:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂α
t y –

∑n
i,j=

∂
∂xi

(aij(x, t) ∂y
∂xj

) = f in Q, t ∈ (, T],

y =  on �,

y(x, ) =  in �,

(.)

and the system with distributed control:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂α
t y(u) –

∑n
i,j=

∂
∂xi

(aij(x, t) ∂y(u)
∂xj

) = f + u in Q, t ∈ (, T],

y =  on �,

y(x, ) =  in �,

(.)

here y(t, x; u) and u denote the state and control, respectively, α ∈ (, ).
We assume the conditions for the coefficient:

aij ∈ L∞(Q) and symmetric,  ≤ i, j ≤ n. (.)

Also ∃θ > , such that ∀ξ ∈R
n,

n∑

i,j=

aij(x, t)ξiξj ≥ θ

n∑

i=

ξ 
i , a.e. in Q. (.)

Our approach has the following novelties:
. We define the notion of a weak Caputo derivative and prove that it has similar

properties to the weak derivative defined in [] (norm equivalence with the inverse of
Riemann-Liouville operator).

. The variational method allows us to consider fractional diffusion equation where the
coefficient aij(x, t) of the diffusion operator depends on time.

. The variational method allows us to consider f taken in a larger space than L(Q).
. Our weak formulation provides the start of a theory for control problems of

fractional diffusion equations, which is natural and analogous to control theory of
partial differential equations (with time derivative of integer order).
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2 Preliminaries
H is a separable Hilbert space. V is a dense subspace of H with continuous injection:

V ↪→ H ;

as usual, H is identified with its dual H ′. We denote the evolution triple {V , H , V ′} with
embeddings:

V ↪→ H ↪→ V ′ (.)

being continuous and dense.
We introduce the vector valued space L(, T ; V ) such that y ∈ L(, T ; V ) if

(∫ T



∥
∥y(t)

∥
∥

V dt
)/

< ∞.

In the same way we can define L(, T ; H), L(, T ; V ′). We have the following.
Let E, E be two Banach spaces, L(E, E) denotes the space of continuous linear map-

ping of E → E. A(t) is an unbounded operator in H , and continuous linear operator in
V itself, such that

A ∈L
(
L(, T ; V ), L(, T ; V ′)), A(t) ∈L

(
V , V ′).

We denote (A(t)y(t), v) = a(t; y(t), v) for all v ∈ V , and give the following conditions:
(A) a(t; y(t), v) ≤ μ‖y(t)‖‖v‖, where μ is a constant independent of t ∈ [, T], y, v ∈ V .
(A) t → a(t; y(t), v) is measurable in ], T[ for all y(t), v ∈ V .
(A) ∃θ >  independent of t, Re a(t; v, v) ≥ θ‖y‖, ∀v ∈ V . Hence a(t; y(t), v) is coercive

uniformly in t.
To avoid confusion, we clarify here that we use Dom or D to denote the domain of an

operator, and R denotes the range.

Definition . The left and right Caputo derivative are defined, for  < t ≤ T ,  < α < ,
by

∂α
t y(t) = C

 Dα
t y(t) =


�( – α)

∫ t


(t – s)–α ∂y

∂s
(s) ds,

C
t Dα

T y(t) =


�( – α)

∫ T

t
(s – t)–α ∂y

∂s
(s) ds.

From this definition we see that for ∂α
t y(t) to be well defined, ∂y/∂t must be well defined.

This is quite restrictive in applications, hence motivating our study of the weak Caputo
derivative.

Next we define left and right Riemann-Liouville integrals, for  ≤ t ≤ T ,  < α ≤ :

(
Jαy

)
(t) = Iα

t y(t) =


�(α)

∫ t


(t – s)α–y(s) ds, J = I,

tIα
T y(t) =


�(α)

∫ T

t
(s – t)α–y(s) ds.
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When y ∈ L(, T), the left Riemann-Liouville integral can also be defined via a convolu-
tion ((.), p., []):

(
Jαy

)
(t) =

(
gα ∗ y

)
(t),

where

gα(t) =

⎧
⎨

⎩


�(α) tα–, t > ,

, t ≤ .

We denote by Hα(, T) the fractional Sobolev space of order α on (, T).

Hα(, T) =
{

y ∈ Hα(, T) : y() = 
}

.

For details of these definitions we refer to Section ., Chapter  of [].
It has been verified in previous literature that the Riemann-Liouville integral operator

is injective [], hence we can define a new operator J–α as the inverse operator of Jα . By
definition, D(J–α) = R(Jα).

We use the following result regarding a solution to a fractional differential equation []:

∂α
t y = f , f ∈ L,

is given by u = Jαf with the range of this operator Jα being

R
(
Jα

)
=

⎧
⎪⎪⎨

⎪⎪⎩

Hα(, T),  ≤ α < 
 ,

Hα(, T), 
 < α ≤ ,

{y ∈ H 
 (, T) :

∫ T
 t–|y(t)| dt < ∞}, α = 

 .

(.)

In the literature of interpolation theory, one sometimes denotes (Remark ., [])

[

H(, T), H(, T)
]




= H



 (, T) =
{

y ∈ H

 (, T) : t


 y ∈ L(, T)

}
.

With the above definitions we have the following result.

Lemma . (Theorem ., []) The norms ‖J–αy‖L and ‖y‖Hα (,T) are equivalent for y ∈
R(Jα).

We denote by Hα(, T ; V , V ′) the vector valued fractional Sobolev space.
W α,p(, T ; V , V ′) is the restriction on (, T) of W α,p(–∞,∞; V , V ′) given by the Fourier

transform and

Hα
(
, T ; V , V ′) = W α,(, T ; V , V ′).

Next we give a lemma from Simon [], which gives the embedding between fractional
Sobolev spaces and spaces of continuous functions, for vector spaces on an interval.



Tang and Ma Advances in Difference Equations  (2015) 2015:283 Page 5 of 14

Lemma . ((.), []) Denote by Cu(, T ; H) the space of uniformly continuous functions
from (, T) into H . Suppose α > /p ( < α < ,  < p ≤ ∞). Then

W α,p(, T ; V , V ′) ↪→ Cu(, T ; H) with compact embedding.

Lemma . ((.), []) Let α, p and q satisfy:
if α > /p then p ≤ q ≤ ∞,
if α = /p then p ≤ q < ∞,
if α < /p then p ≤ q ≤ p∗, where α – /p = –/p∗, that is, p∗ = p/( – αp) ( < α < ,
 ≤ p ≤ q ≤ ∞).

Then

W α,p(, T ; V , V ′) ↪→ Lq(, T ; H) with compact embedding. (.)

In order to use the theory of operational differential equations, we need to interpret
the weak Caputo derivative in the sense of distributions, through fractional integration by
parts in the formula (() in [])

∫ T



(
∂α

t y(t),ψ(t)
)

dt =
∫ T



(
y, C

t Dα
Tψ(t)

)
dt +

[
tI–α

T ψ(t) · y(t)
]T

 . (.)

For y() = , ψ(T) = , we have

[
tI–α

T ψ(t) · y(t)
]T

 = .

Hence we can proceed to the construction of a weak Caputo derivative in the sense of
distributions (Schwartz []), note that if a distribution function is infinitely differentiable
then its Caputo fractional derivative must also exist. It greatly simplifies the situation since
we have the initial condition y() = y = .

We denote byD(], T[) the space of infinitely differentiable functions in ], T[ with com-
pact support. We call every continuous linear mapping of D(], T[) into E a vectorial dis-
tribution over ], T[ with values in a Banach space E, and we denote

D′(], T[; E
)

= L
(
D

(
], T[

)
; E

)
.

Definition . Define the test function ϕ ∈D(], T[) for the function y such that y() = ,
we call ∂α

t y a distributional weak Caputo derivative if it is a linear functional on D(], T[)
that sends ϕ into

∫ T
 (y, C

t Dα
Tϕ(t)).

Our new definition of a weak Caputo derivative generalizes the (left) Caputo derivative
(Definition .) since it is well defined even when ∂y/∂s does not exist in the strong sense.
It coincides with the Caputo derivative if ∂y/∂s does exist.

Lemma . ∂α
t (y(·), v) = 〈∂α

t y(·), v〉 in D′(], T[), for y ∈ Hα(, T ; V , V ′), v ∈ V . Here ( , )
denotes duality in H , 〈 , 〉 denotes a duality pairing of V ′ and V . Moreover, the weak Caputo
derivative ∂α

t y = J–αy in L for y ∈R(Jα).
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Proof Denote the function ϕ ∈D(], T[). For all t, ϕ(t) is a scalar. We can write v(t) = ϕ(t)v.
Observe y(t), v ∈ V ⊂ H and the duality 〈 , 〉 is compatible with the identification of H with
its dual. This implies

〈
v, y(t)

〉
=

(
v, y(t)

)
=

(
y(t), v

)
.

From Definition . and (.) we obtain

∫ T



〈
∂α

t y(t), v
〉
ϕ(t) dt =

∫ T



〈
v, y(t)

〉C
t Dα

Tϕ(t) dt

=
∫ T



(
y(t), v

)C
t Dα

Tϕ(t) dt

=
∫ T


∂α

t
(
y(t), v

)
ϕ(t) dt,

hence ∂α
t (y(·), v) = 〈∂α

t y(·), v〉 in D′(], T[).
Since the Sobolev space H(, T) is dense in R(Jα), for each y ∈R(Jα) we can construct

an approximating sequence φn such that

lim
n→∞φn = y, φn ∈ H(, T).

By the Hahn-Banach theorem we can uniquely extend the domain of linear operator
y �→ ∂α

t y from H(, T) to R(Jα). From [] (Lemma .) we know

∂α
t φn = J–αφn, φn ∈ H(, T),

hence we obtain

∫ T



(
∂α

t y,ϕ
)

dt =
∫ T



(
J–αy,ϕ

)
dt, y ∈R

(
Jα

)
.

From Definition . and the fact that ϕ ∈D(], T[) ⊂ L(, T) we obtain the weak Caputo
derivative ∂α

t y = J–αy in L for y ∈R(Jα). �

From Lemma . and Lemma . we obtain the following: suppose we have a sequence of
approximating solutions ym ∈R(Jα); if we have a priori estimates independent of m, such
that ym(t) ∈ L(, T ; V ) and ∂α

t ym(t) ∈ L(, T ; V ′), then we have ym(t) ∈ Hα(, T ; V , V ′).

Definition . We define the variational fractional equation (we also call it a fractional
operational differential equation). Suppose f ∈ L(, T ; V ′),

⎧
⎪⎪⎨

⎪⎪⎩

∂α
t (y(t), v) + a(t; y(t), v) = 〈f (t), v〉 in D′(], T[), t ∈ (, T],

∀v ∈ V ,

y = .

(.)

Here ∂α
t y is defined in the weak sense (Definition .).
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From Lemma . we see that the first equation of (.) is equivalent to

∂α
t y + A(t)y = f in the sense of L(, T ; V ′), t ∈ (, T].

Definition . y is a (distributional) weak solution to system (.); it satisfies (.) with

y ∈

⎧
⎪⎪⎨

⎪⎪⎩

Hα(, T ; V , V ′),  ≤ α < 
 ,

Hα(, T ; V , V ′), 
 < α ≤ ,

{u ∈ H 
 (, T ; V , V ′) :

∫ T
 t–|y(t)| dt < ∞}, α = 

 ,

(.)

and V = H
(�).

3 Main results
3.1 Existence and uniqueness of solution to the variational formulation
Theorem . For y() = , f ∈ L(, T ; V ′), conditions (A) to (A) are satisfied, suppose
(.) has a solution y ∈ L(, T ; V ), then it is unique.

Proof Uniqueness. Suppose there exist two different solutions y and y, y = y – y, then

∂α
t y + A(t)y = ,

∫ T



(
∂α

t y(t), y(t)
)

dt +
∫ T


a
(
t; y(t), y(t)

)
dt = .

Suppose y(t) ∈ V ⊂ H , we know the following inequality (inequality (.), []):

∫ T



(
d
dt

(
g–α ∗ y(t)

)
, y(t)

)

H
dt ≥ g–α(T)

∫ T



∥
∥y(t)

∥
∥

H dt. (.)

Since y is a weak solution hence by Definition . and Lemma . we have

∂α
t y(t) =

d
dt

(
J–αy(t)

)
=

d
dt

(
g–α ∗ y(t)

)
.

Hence we have

∫ T



(
∂α

t y(t), y(t)
)

dt ≥ g–α(T)
∫ T



∥
∥y(t)

∥
∥

H dt,

and from condition (A) we obtain

g–α(T)
∫ T



∥
∥y(t)

∥
∥

H dt + θ

∫ T



∥
∥y(t)

∥
∥

V dt ≤ ,

hence ‖y(t)‖V =  and the solution to (.) is unique.
Existence. We proceed by constructing a Galerkin approximation of the equation. Recall

that V is a separable Hilbert space. Let {Vm} be a family of finite dimensional spaces, and
denote

dm = dim Vm, {Ujm}, j = , . . . , dm, a basis of Vm.
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From this we derive a finite dimensional approximation ym(t) =
∑dn

j= bjm(t)Ujm:

⎧
⎨

⎩

(∂α
t ym(t), Ujm) + a(t; ym(t), Ujm) = (f (t), Ujm),  ≤ j ≤ dm,

ym() = .
(.)

The domain of um is

Dom
(
J–α

)
=

⎧
⎪⎪⎨

⎪⎪⎩

Hα(, T ; Vm),  ≤ α < 
 ,

Hα(, T ; Vm), 
 < α ≤ ,

{u ∈ H 
 (, T ; Vm) :

∫ T
 t–|y(t)| dt < ∞}, α = 

 .

(.)

We proceed to establish a prior estimate independent of m; by the fact f ∈ L(I; V ′), using
again inequality (.) and condition (A) we obtain

g–α(T)
∫ T



∥
∥ym(t)

∥
∥

H dt + θ

∫ T



∥
∥ym(t)

∥
∥

V dt ≤ θ



∫ T



∥
∥ym(t)

∥
∥

V dt +


θ

∫ T



∥
∥f (t)

∥
∥

V ′ dt,

g–α(T)
∫ T



∥
∥ym(t)

∥
∥

H dt +
θ



∫ T



∥
∥ym(t)

∥
∥

V dt ≤ 
θ

∫ T



∥
∥f (t)

∥
∥

V ′ dt,

hence we obtain ym ∈ L(, T ; V ),

{ym} is a bounded sequence in L(, T ; V ).

By the condition on the unbounded linear operator we obtain

{Aum} is a bounded sequence in L(, T ; V ′).

Since f ∈ L(, T ; V ′) from the form of the equation

∂α
t ym = f – A(t)ym,

we have ∂α
t ym ∈ L(, T ; V ′). From Lemma . and Lemma . and the boundedness of

{ym} we obtain ym ∈ Hα(, T ; V , V ′).
By definition V is a reflexive Banach space (naturally V ′ as well), then the unit balls of

L(, T ; V ) and L(, T ; V ′) are weakly compact, hence we obtain

⎧
⎨

⎩

(i) ym ⇀ yi weakly in L(, T ; V ),

(ii) Aym ⇀ Ayi weakly in L(, T ; V ′).
(.)

Consider ϕ ∈D(], T[) and v ∈ V , there exists a sequence {vm}, vm ∈ Vm, such that vm → v
strongly in V . Define

⎧
⎨

⎩

ψm = ϕ ⊗ vm (i.e. ψm(t) = ϕ(t)vm),

ψ = ϕ ⊗ v.
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By the formula of the derivation of a tensor product [],

dψm(t)
dt

=
dϕ(t)

dt
⊗ vm,

dψ(t)
dt

=
dϕ(t)

dt
⊗ v,

and Definition . we obtain

C
t Dα

Tψ(t) =


�( – α)

∫ T

t
(s – t)–α ∂ψ

∂s
(s) ds

=


�( – α)

∫ T

t
(s – t)–α ∂ϕ

∂s
(s)v ds = C

t Dα
Tϕ(t) ⊗ v

and

C
t Dα

Tψm(t) = C
t Dα

Tϕ(t) ⊗ vm.

Hence C
t Dα

Tψm(t) → C
t Dα

Tψ(t) strongly in V , and we obtain

⎧
⎨

⎩

(i) ψm → ψ in L(, T ; V ) strongly,

(ii) C
t Dα

Tψm → C
t Dα

Tψ in L(, T ; H) strongly.
(.)

Consider the approximating equation (〈 , 〉 denotes the duality of V ′ and V , 〈 , 〉V ′ denotes
the duality of V and V ′)

∫ T



(
ym(t), C

t Dα
Tψm(t)

)
dt +

∫ T


a
(
t; ym(t),ψm(t)

)
dt =

∫ T



〈
f (t),ψm(t)

〉
dt.

We know, for m → ∞, from (.(i)):

∫ T



〈
f (t),ψm(t)

〉
dt →

∫ T



〈
f (t),ψ(t)

〉
dt,

from (.(i)) and (.(ii)):

∫ T



(
ym(t), C

t Dα
Tψm(t)

)
dt →

∫ T



〈
y(t), C

t Dα
Tψ(t)

〉

V ′ dt,

from (.(ii)) and (.(i)):

∫ T


a
(
t; ym(t),ψm(t)

)
dt →

∫ T


a
(
t; y(t),ψ(t)

)
dt.

Then we can pass to the limit and obtain

∫ T



(
y(t), v

)C
t Dα

Tϕ(t) dt +
∫ T


a
(
t; y(t), v

)
ϕ(t) dt =

∫ T



〈
f (t), v

〉
ϕ(t) dt,

∫ T



(
y(t), v

)C
t Dα

Tϕ(t) dt =
∫ T



〈
f (t), v

〉
ϕ(t) dt –

∫ T


a
(
t; y(t), v

)
ϕ(t) dt (.)

=
∫ T



〈
f (t) – A(t)y(t), v

〉
ϕ(t) dt.
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For α ∈ ( 
 , ), y ∈ Hα(, T ; V , V ′) is (apart from a set of measure zero) equal to a continuous

function from [, T] → H .
Finally we have to verify the initial condition y =  for α ∈ ( 

 , ): since y() = 

∫ T



〈
∂α

t y(t),ϕ(t)v
〉
dt =

∫ T



(
y(t), v

)C
t Dα

Tϕ(t) dt

and
∫ T



(
∂α

t ym(t), vm
)
ϕ(t) dt =

∫ T



(
ym(t), vm

)C
t Dα

Tϕ(t) dt + (ym, v)I–α
T ϕ().

Passing to the limit, we have as m → ∞
∫ T



(
∂α

t ym(t), vm
)
ϕ(t) dt =

∫ T



〈
f (t), v

〉
ϕ(t) dt –

∫ T


a(t; y, v)ϕ(t) dt, (.)

∫ T



(
∂α

t ym(t), vm
)
ϕ(t) dt =

∫ T



(
y(t), v

)C
t Dα

Tϕ(t) dt + (y, v)I–α
T ϕ(). (.)

From (.), (.), and (.) we obtain

(y, v)I–α
T ϕ() = , ∀v ∈ V ,

so that y = . �

3.2 Optimal control of variational formulation
Denote by U the Hilbert space of controls. We define the control operator B ∈ L(U ;
L(, T ; V ′)). Consider the system

⎧
⎪⎪⎨

⎪⎪⎩

∂α
t y(u) + A(t)y(u) = f + Bu in D′(], T[), t ∈ (, T], f ∈ L(, T ; V ′),

y(u) = ,

y(u) ∈ L(, T ; V ).

(.)

Define observation Cy(u) such that C ∈ L(L(, T ; V ′);H). H is a Hilbert space. N is
given as N ∈L(U ;U ) and

(Nu, u)U ≥ ν‖u‖
U , ν > . (.)

Define the cost function:

J(u) =
∥
∥Cy(u) – zd

∥
∥
H + (Nu, u)U . (.)

Uad is a closed convex subset of U (set of admissible controls), zd ∈H. The optimal control
problem is to find w ∈ Uad such that

J(w) = inf
u∈U

J(u).

From the fact that the affine map u → y(u) is continuous and (.), by Theorem . of
[], there exists a unique optimal control w ∈ Uad for (.) with cost function given as
(.).
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Lemma . (Lemma ., []) w ∈ Uad is optimal if and only if

J ′(w) · (u – w) ≥ , ∀u ∈ Uad. (.)

From (.) and (.) we see that (.) is equivalent to

〈
Cy(w) – zd, C

(
y(u) – y(w)

)〉

H + 〈Nw, u – w〉U ≥ , ∀u ∈ Uad. (.)

Denote by � (and �U ) the canonical isomorphism of H onto H′ (and of U onto U ′).
Then it reduces to

〈
C∗�

(
y(w) – zd

)
, y(u) – y(w)

〉
+ 〈Nw, u – w〉U ≥ , ∀u ∈ Uad. (.)

We introduce the adjoint system:

⎧
⎪⎪⎨

⎪⎪⎩

C
t Dα

T p(u) + A∗(t)y(u) = C∗�(Cy(u) – zd), t ∈ (, T],

p(T ; u) = ,

p(u) ∈ L(, T ; V ).

(.)

Theorem . The optimal control w ∈ U is characterized by systems of partial differential
systems and inequality:

⎧
⎨

⎩

∂α
t y(w) + A(t)y(w) = f + Bw in D′(], T[), t ∈ (, T],

y(; w) = ,
(.)

⎧
⎨

⎩

C
t Dα

T p(w) + A∗(t)y(w) = C∗�(Cy(w) – zd), t ∈ (, T],

p(T ; w) = ,
(.)

(
�–

U B∗p(w) + Nw, u – w
)

U ≥ , ∀u, w ∈ Uad, (.)
⎧
⎨

⎩

y(w) ∈ L(, T ; V ),

p(w) ∈ L(, T ; V ).
(.)

Here ( , )U denotes the scalar product between U ′ and U .

Proof From C∗ ∈L(H ′; L(, T ; V ′)) we see that (.) is equivalent to

∫ T



〈
C∗�

(
y(w) – zd

)
, y(u) – y(w)

〉
dt + 〈Nw, u – w〉U ≥ , ∀u ∈ Uad. (.)

By Definition . and the definition of an adjoint operator we obtain

∫ T



〈C
t Dα

T p(w), y(u) – y(w)
〉
dt =

∫ T



〈
p(w), ∂α

t y(u) – ∂α
t y(w)

〉
dt, (.)

∫ T



〈
A(t)∗p(w), y(u) – y(w)

〉
dt =

∫ T



〈
p(w), A(t)y(u) – A(t)y(w)

〉
dt. (.)
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By adding (.) and (.), and using the first equation of (.), we obtain

∫ T



〈
C(t)∗�

(
Cy(w) – zd

)
, y(u) – y(w)

〉
dt

=
∫ T



〈
p(w),

(
A(t) + ∂α

t
)(

y(u) – y(w)
)〉

dt

=
∫ T



〈
p(w), Bu – Bw

〉
dt

=
〈
B∗p(w), u – w

〉

U

=
(
�–

U B∗p(w), u – w
)

U .

Hence (.) and (.) are equivalent, thus we obtained the characterization of the opti-
mal control w. �

3.3 System with distributed control
Theorem . Suppose f ∈ L(, T ; H–(�)) and U = L(, T ; L(�)), then system (.) has
a unique weak solution y such that

y ∈

⎧
⎪⎪⎨

⎪⎪⎩

Hα(, T ; H
(�), H–(�)),  ≤ α < 

 ,

Hα(, T ; H
(�), H–(�)), 

 < α ≤ ,

{u ∈ H 
 (, T ; H

(�), H–(�)) :
∫ T

 t–|y(t)| dt < ∞}, α = 
 ,

(.)

and for α ∈ ( 
 , ) we have y ∈ Cu(, T ; L(�)) apart from a set of measure zero.

Proof We introduce the spaces

V = H
(�), H = L(�), V ′ = H–(�).

Hence we have

A(t)y = –
n∑

i,j=

∂

∂xi

(

aij(x, t)
∂y
∂xj

)

.

Take Dom(A(t)) = V = H
(�) and A(t) ∈L(H

(�), H–(�)).
For v ∈ V from Green’s formula we have

∫

�

A(t)y(t)v dx = a
(
t; y(t), v

)
, (.)

hence we obtain

a
(
t; y(t), v

)
= –

n∑

i,j=

∫

�

aij(x, t)
∂y
∂xj

∂v
∂xi

dx,

and from (.), (.) we see that a(t; y(t), v) satisfies condition (A) to (A).
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Denote f = f + u ∈ L(, T ; H–(�)). From Definition ., (.) is equivalent to the vari-
ational formulation

⎧
⎪⎪⎨

⎪⎪⎩

∂α
t (y(t), v) + a(t; y(t), v) = 〈f(t), v〉 in D′(], T[), t ∈ (, T],

∀v ∈ H
(�),

y = .

(.)

From Theorem . we see that there exists a unique solution y to (.) (and hence to sys-
tem (.)) which satisfies (.). From Definition . this is also the unique weak solution
to system (.). From Lemma . we obtain for α ∈ ( 

 , ), y ∈ Cu(, T ; L(�)) apart from a
set of measure zero. �

Finally we consider the optimal control of (.) with regard to the cost function:

J(u) =
∫ T



∫

�

(
y(t; u) – zd

) dx dt + (Nu, u), u ∈ Uad, zd ∈ L(Q). (.)

Now we give interpretations of notations from Section . in this situation. The ob-
servation space H = H′ = L(, T ; L(�)). C is the injection of L(, T ; H

(�)) onto
L(, T ; L(�)). B, �, �U are identify mappings.

From (.) and (.) we can see that A(t) is a self adjoint operator such that

A∗ = –
n∑

i,j=

∂

∂xi

(

aij(x, t)
∂y(w)
∂xj

)

.

From Theorem . we can obtain a characterization of optimal control w of system (.)
by simultaneously solving the following system of partial differential equations and in-
equality:

⎧
⎨

⎩

∂α
t y(w) –

∑n
i,j=

∂
∂xi

(aij(x, t) ∂y(w)
∂xj

) = f + w, t ∈ (, T],

y(w) = ,
(.)

⎧
⎨

⎩

C
t Dα

T p(w) –
∑n

i,j=
∂

∂xi
(aij(x, t) ∂y(w)

∂xj
) = y(w) – zd, t ∈ (, T],

p(T ; w) = ,
(.)

(
p(w) + Nw, u – w

) ≥ , ∀u, w ∈ Uad, (.)
⎧
⎨

⎩

y(w) ∈ L(, T ; H
(�)),

p(w) ∈ L(, T ; H
(�)).

(.)

The symbol ( , ) in (.) denotes a scalar product in L(, T ; L(�)).
In this work we considered fractional diffusion equation with Dirichlet boundary condi-

tions with distributed control. It will be interesting also to consider a system with bound-
ary controls or observations using the weak formulation given here.
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