
Tian et al. Advances in Difference Equations  (2015) 2015:260 
DOI 10.1186/s13662-015-0594-4

R E S E A R C H Open Access

Global stability of an epidemic model with
stage structure and nonlinear incidence rates
in a heterogeneous host population
Baodan Tian1,2*, Yunguo Jin2,3, Shouming Zhong2 and Ning Chen1

*Correspondence:
tianbaodan@swust.edu.cn
1School of Science, Southwest
University of Science and
Technology, Mianyang, 621010,
China
2School of Mathematical Sciences,
University of Electronic Science and
Technology of China, Chengdu,
611731, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we study an epidemic model with stage structure and latency spreading
in a heterogeneous host population. We show that if the disease-free equilibrium
exists, then the global dynamics are determined by the basic reproduction
number R0. We prove that the disease-free equilibrium is globally asymptotically
stable when R0 ≤ 1; and there exists a unique endemic equilibrium which is globally
asymptotically stable when R0 > 1. The global stability of the endemic equilibrium is
also proved by using a graph-theoretic approach to the method of Lyapunov
functions. Finally, numerical simulations are given to illustrate the main theoretical
results.
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1 Introduction
A heterogeneous host population can be divided into several homogeneous groups ac-
cording to models of transmission, contact patterns, or geographic distributions. Multi-
group epidemic models have been proposed in the literature of mathematical epidemi-
ology to describe the transmission dynamics of infectious diseases in heterogeneous host
populations, such as measles, mumps, gonorrhea, HIV/AIDS, West-Nile virus and vector-
borne diseases such as malaria. Various forms of multi-group epidemic models have sub-
sequently been studied to understand the mechanism of disease transmission. One of the
most important subjects in this field is to obtain a threshold that determines the persis-
tence or extinction of a disease. Guo et al. in [] developed a graph-theoretic approach
to prove the global asymptotic stability of a unique endemic equilibrium of a multi-group
epidemic model. By applying the idea, global stability of endemic equilibrium for several
classes of multi-group epidemic models was investigated in [–].

In the real world, some epidemics, such as malaria, dengue, fever, gonorrhea and bac-
terial infections, may have a different ability to transmit the infections in different ages.
For example, measles and varicella always occur in juveniles, while it is reasonable to con-
sider the transmission of diseases such as typhus, diphtheria in adult population. In recent
years, epidemic models with stage structure have been studied in many papers [–]. For
some disease (for example, tuberculosis, influenza, measles), on adequate contact with an
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infective, a susceptible individual becomes exposed, that is, infected but not infective. This
individual remains in the exposed class for a certain period before becoming infective (see,
for example, [–]).

In this paper, we formulate an epidemic model with latency spreading in a heteroge-
neous host population. Let S()

k , S()
k , Ek , Ik and Rk denote the immature susceptible, ma-

ture susceptible, infected but non-infectious, infectious and recovered population in the
kth group, respectively. The disease incidence in the kth group can be calculated as

∑

i=

S(i)
k

n∑

j=

β
(i)
kj Gj(Ij),

where the sum takes into account cross-infections from all groups and β
(i)
kj is the transmis-

sion coefficient between compartments S(i)
k and Ij. Gj(Ij) includes some special incidence

functions in the literature. For instance, Gj(Ij) = Ij
+αjIj

(saturation effect). Let d()
k and d()

k

represent death rates of S()
k and S()

k populations, respectively. Then we obtain the follow-
ing model for a disease with latency:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṡ()
k = ϕk(S()

k ) –
∑n

j= β
()
kj S()

k Gj(Ij) – akS()
k ,

Ṡ()
k = akS()

k –
∑n

j= β
()
kj S()

k Gj(Ij) – d()
k S()

k ,
Ėk =

∑
i=

∑n
j= β

(i)
kj S(i)

k Gj(Ij) – (dk + ηk)Ek ,
İk = ηkEk – (dk + μk + γk)Ik ,
Ṙk = γkIk – dkRk , k = , , . . . , n,

()

where ϕk(S()
k ) denotes the net growth rate of the immature susceptible class in the kth

group (a typical form of ϕk(S()
k ) is ϕk(S()

k ) = bk – d()
k S()

k with bk the recruitment constant
and d()

k the natural death rate). ak is the conversion rate from an immature individual to a
mature individual in group k. ηk represents the rate of becoming infectious after a latent
period in the kth group. dk , μk and γk are the natural death rate, the disease-related death
rate and the recovery rate in the kth group, respectively. All parameter values are assumed
to be nonnegative and ak ,ηk , d(i)

k , dk > .

Remark The model () can be regarded as an SVEIR model such that S()
k is unvaccinated

and S()
k is vaccinated with vaccination rate ak . References studied on the SVEIR model

can be seen in [, ] and so on.

Since the variable Rk does not appear in the remaining four equations of (), if we denote
mk := dk + μk + γk , then we can obtain the following reduced system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ()
k = ϕk(S()

k ) –
∑n

j= β
()
kj S()

k Gj(Ij) – akS()
k ,

Ṡ()
k = akS()

k –
∑n

j= β
()
kj S()

k Gj(Ij) – d()
k S()

k ,
Ėk =

∑
i=

∑n
j= β

(i)
kj S(i)

k Gj(Ij) – (dk + ηk)Ek ,
İk = ηkEk – mkIk , k = , , . . . , n.

()

The initial conditions for system () are

S()
k () > , S()

k () > , Ek() > , Ik() > , k = , , . . . , n. ()
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The organization of this paper is as follows. In the next section, we prove some pre-
liminary results for system (). In Section , the main theorem of this paper is stated and
proved. In the last section, a brief discussion and numerical simulations which support
our theoretical analysis are given.

2 Preliminaries
We assume:

(A) ϕk and Gk are Lipschitz on [, +∞);
(A) ϕk is strictly decreasing on [, +∞), and there exists S()

k >  such that

ϕk
(
S()

k
)

– akS()
k = ;

(A) Gk (x)
x is nonincreasing on (, +∞) and

δk = lim
x→

Gk(x)
x

>  exists, k = , , . . . , n.

From our assumptions, it is clear that system () has a unique solution for any given
initial conditions () and the solution remains nonnegative. If (A) holds, then we see that
system () has a disease-free equilibrium

P =
(
S()

 , S()
 , . . . , S()

n, S()
n , , , . . . , 

)
,

where

ϕk
(
S()

k
)

= d()
k S()

k , akS()
k = d()

k S()
k , k = , , . . . , n. ()

For two nonnegative n-square matrices A = (akj) and B = (akj), we write A ≤ B if akj ≤ bkj

for all k and j, and A < B if A ≤ B and A �= B. Following [], we set matrices

F :=

( ∑

i=

β
(i)
kj S(i)

kδj

)

n×n

, V := diag

(
m(d + η)

η
,

m(d + η)
η

, . . . ,
mn(dn + ηn)

ηn

)
.

The next generation matrix for system () is

Q := FV– =
(

ηk
∑

i= β
(i)
kj S(i)

kδj

mk(dk + ηk)

)

n×n

=

⎡

⎢⎢⎢⎣

η
∑

i= β
(i)
 S(i)

δ
m(d+η) · · · η

∑
i= β

(i)
n S(i)

δn
m(d+η)

...
. . .

...
ηn

∑
i= β

(i)
n S(i)

nδ
mn(dn+ηn) · · · ηn

∑
i= β

(i)
nnS(i)

nδn
mn(dn+ηn)

⎤

⎥⎥⎥⎦ .

Thus, we obtain the basic reproduction number R for system () as

R = ρ(Q),

where ρ denotes the spectral radius.
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Let Nk = S()
k + S()

k + Ek + Ik , dk = min{d()
k , d()

k , dk , mk}, k = , , . . . , n. Then from () we
have

Ṅk ≤ ϕk
(
S()

k
)

+ d()
k S()

k – dkNk . ()

We derive from () that the region

	 =
{(

S()
 , S()

 , . . . , S()
n , S()

n , E, . . . , En, I, . . . , In
) ∈R

n
+ : S()

k ≤ S()
k,

S()
k ≤ S()

k , S()
k + S()

k + Ek + Ik ≤ ϕk() + d()
k S()

k
dk

, k = , , . . . , n
}

is positively invariant with respect to (). Let 	◦ denote the interior of 	.

3 Main results
In the section, we study the global stability of equilibria of system ().

Theorem . Assume that (A)-(A) hold and B = (
∑

i= β
(i)
kj ) is irreducible.

() If R ≤ , then P is globally asymptotically stable in 	;
() If R > , then P is unstable and system () admits at least one endemic equilibrium

in 	◦.

Proof Let

S =
(
S()

 , S()
 , . . . , S()

n , S()
n

)
, S =

(
S()

 , S()
 , . . . , S()

n, S()
n

)
,

I = (I, I, . . . , In), Q(S, I) =
(∑

i=
∑n

j= ηkβ
(i)
kj S(i)

k Gj(Ij)
mk(dk + ηk)Ij

)

n×n
.

Notice that B is irreducible, then Q(S, I) and Q are irreducible. By (A), we have  ≤
Q(S, I) ≤ Q. Hence Q(S, I) + Q is also irreducible. That is,  ≤ Q(S, I) < Q and Q(S, I) + Q
is irreducible provided that S �= S. Thus, by [], Corollary ., p., ρ(Q(S, I)) < ρ(Q) if
S �= S. Since Q is irreducible, there exist ωk > , k = , , . . . , n, such that

(ω,ω, . . . ,ωn)ρ(Q) = (ω,ω, . . . ,ωn)Q.

Consider a Lyapunov functional

L =
n∑

k=

ωkηk

mk(dk + ηk)

[
Ek +

dk + ηk

ηk
Ik

]
.

Differentiating L along the solution of system (), we obtain

L̇ =
n∑

k=

ωkηk

mk(dk + ηk)

[ ∑

i=

n∑

j=

β
(i)
kj S(i)

k Gj(Ij) –
mk(dk + ηk)

ηk
Ik

]

=
n∑

k=

ωk

[∑
i=

∑n
j= ηkβ

(i)
kj S(i)

k Gj(Ij)
mk(dk + ηk)

– Ik

]
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= (ω,ω, . . . ,ωn)
(
Q(S, I)IT – IT)

≤ (ω,ω, . . . ,ωn)
(
QIT – IT)

=
[
ρ(Q) – 

]
(ω,ω, . . . ,ωn)IT ≤ .

If R < , then L̇ =  if and only if IT = . If R = , then L̇ =  implies

(ω,ω, . . . ,ωn)
(
Q(S, I)IT – IT)

= .

Therefore, L̇ =  if and only if I = , or S = S. On the other hand, from the last equation
in system (), we see that I =  implies that Ek =  for k = , , . . . , n. Hence, the largest
invariant subset of the set, where L̇ = , is the singleton {P}. By LaSalle’s invariance prin-
ciple, P is globally asymptotically stable for R ≤ .

If R >  and I �= , then

[
ρ(Q) – 

]
(ω,ω, . . . ,ωn)IT > .

Thus, by continuity, we have L̇ = (ω,ω, . . . ,ωn)(Q(S, I)IT – IT ) >  in a neighborhood
of P in 	◦. This implies that P is unstable. From a uniform persistence result of []
and a similar argument as in the proof of Proposition . of [], we can deduce that the
instability of P implies the uniform persistence of system () in 	◦. This together with
the uniform boundedness of solutions of system () in 	◦ implies that system () has an
endemic equilibrium in 	◦ (see Theorem .. of [] or Theorem D. of []). The proof
is completed. �

By Theorem ., we have that if B = (
∑

i= β
(i)
kj ) is irreducible, (A)-(A) hold and R > ,

then system () has an endemic equilibrium P∗ in 	◦. Let

P∗ =
(
S()∗

 , S()∗
 , . . . , S()∗

n , S()∗
n , E∗

 , . . . , E∗
n, I∗

 , . . . , I∗
n
)
,

then the components of P∗ satisfy

ϕk
(
S()∗

k
)

=
∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)

+ d()
k S()∗

k , ()

ak
(
S()∗

k
)

= S()∗
k

n∑

j=

β
()
kj Gj

(
I∗

j
)

+ d()
k S()∗

k , ()

∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)

= (dk + ηk)E∗
k =

mk(dk + ηk)
ηk

I∗
k , k = , , . . . , n. ()

Since ϕk is strictly decreasing on [, +∞), we have

[
ϕk

(
S()

k
)

– ϕk
(
S()∗

k
)](

 –
S()∗

k

S()
k

)
≤ , ()

where equality holds if and only if S()
k = S()∗

k , k = , , . . . , n.
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We further make the following assumption:
(A) Gk is strictly increasing on [, +∞), and

Gk(xk)Ik

Gk(Ik)xk
+

Gk(Ik)
Gk(xk)

–
Ik

xk
–  ≤ , k = , , . . . , n, ()

where xk >  is chosen in an arbitrary way and equality holds if Ik = xk .

Theorem . Assume that B = [
∑

i= β
(i)
kj ] is irreducible. If R > , then P∗ is globally

asymptotically stable.

Proof Set βkj =
∑

i= β
(i)
kj S(i)∗

k Gj(I∗
j ),  ≤ k, j ≤ n, and

B =

⎡

⎢⎢⎢⎢⎣

∑
l �= βl –β . . . –βn

–β
∑

l �= βl . . . –βn
...

...
. . .

...
–βn –βn . . .

∑
l �=n βnl

⎤

⎥⎥⎥⎥⎦
.

Then B is also irreducible. It follows from Lemma . of [] that the solution space of the
linear system

Bv =  ()

has dimension  with a basis

v := (v, v, . . . , vn)T = (ξ, ξ, . . . , ξn)T , ()

where ξk denotes the cofactor of the kth diagonal entry of B. Note that from () we have

n∑

j=

Bkjvk =
n∑

j=

Bjkvj, k = , , . . . , n. ()

From (), we have

n∑

k=

vk

n∑

j=

∑

i=

β
(i)
kj S(i)∗

k Gj(Ij)

=
n∑

k,j=

∑

i=

β
(i)
jk S(i)∗

j vjGk(Ik) =
n∑

k=

[ n∑

j=

∑

i=

β
(i)
jk S(i)∗

j Gk
(
I∗

k
)
vj

]
Gk(Ik)
Gk(I∗

k )

=
n∑

k=

[ n∑

j=

(β jkvj)

]
Gk(Ik)
Gk(I∗

k )
=

n∑

k=

[ n∑

j=

(βkjvk)

]
Gk(Ik)
Gk(I∗

k )

=
n∑

k=

vk

n∑

j=

∑

i=

β
(i)
kj S(i)∗

k Gj
(
I∗

j
) Gk(Ik)

Gk(I∗
k )

. ()
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Consider a Lyapunov functional

V =
n∑

k=

vk

[ ∑

i=

(
S(i)

k – S(i)∗
k – S(i)∗

k ln
S(i)

k

S(i)∗
k

)
+ Ek – E∗

k

– E∗
k ln

Ek

E∗
k

+
dk + ηk

ηk

∫ Ik

I∗k

Gk(x) – Gk(I∗
k )

Gk(x)
dx

]
.

Differentiating V along the solution of system (), we obtain

V̇ =
n∑

k=

vk

{
ϕk

(
S()

k
)

– d()
k S()

k –
mk(dk + ηk)

ηk
Ik

–
S()∗

k

S()
k

[
ϕk

(
S()

k
)

– S()
k

n∑

j=

β
()
kj Gj(Ij) – akS()

k

]

–
S()∗

k

S()
k

[
akS()

k – S()
k

n∑

j=

β
()
kj Gj(Ij) – d()

k S()
k

]

–
E∗

k
Ek

[ ∑

i=

n∑

j=

β
(i)
kj S(i)

k Gj(Ij) – (dk + ηk)Ek

]

–
Gk(I∗

k )
Gk(Ik)

[
(dk + ηk)Ek –

mk(dk + ηk)
ηk

Ik

]}

=
n∑

k=

vk

{
ϕk

(
S()

k
)(

 –
S()∗

k

S()
k

)
+ d()

k S()∗
k

(
 –

S()
k

S()∗
k

)

+ akS()∗
k

(
 –

S()
k S()∗

k

S()∗
k S()

k

)
+

∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj(Ij)

–
E∗

k
Ek

∑

i=

–S(i)
k

n∑

j=

β
(i)
kj Gj(Ij) + (dk + ηk)E∗

k

(
 –

EkGk(I∗
k )

E∗
k Gk(Ik)

)

+
mk(dk + ηk)

ηk
I∗

k
IkGk(I∗

k )
I∗

k Gk(Ik)
–

mk(dk + ηk)
ηk

I∗
k

Ik

I∗
k

}
.

From () and (), we have

V̇ =
n∑

k=

vk

{
ϕk

(
S()

k
)(

 –
S()∗

k

S()
k

)
+ d()

k S()∗
k

(
 –

S()
k

S()∗
k

)

–
E∗

k
Ek

∑

i=

S(i)
k

n∑

j=

β
(i)
kj Gj(Ij)

+

[
S()∗

k

n∑

j=

β
()
kj Gj

(
I∗

j
)

+ d()
k S()∗

k

](
 –

S()
k S()∗

k

S()∗
k S()

k

)

+
∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)[

 –
EkGk(I∗

k )
E∗

k Gk(Ik)
+

Gj(Ij)
Gj(I∗

j )
+

IkGk(I∗
k )

I∗
k Gk(Ik)

–
Ik

I∗
k

]}
.
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By () and (), we obtain

V̇ ≤
n∑

k=

vk

{
ϕk

(
S()

k
)(

 –
S()∗

k

S()
k

)
+ d()

k S()∗
k

(
 –

S()
k

S()∗
k

)

–
E∗

k
Ek

∑

i=

S(i)
k

n∑

j=

β
(i)
kj Gj(Ij) +

[
S()∗

k

n∑

j=

β
()
kj Gj

(
I∗

j
)

+ d()
k S()∗

k

]

×
(

 –
S()

k S()∗
k

S()∗
k S()

k

)
+

∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)[

 –
EkGk(I∗

k )
E∗

k Gk(Ik)

]}
=: B. ()

From (), we know that

ϕk
(
S()∗

k
)(

 –
S()∗

k

S()
k

)
=

( ∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)

+ d()
k S()∗

k

)(
 –

S()∗
k

S()
k

)
. ()

By (), we can rewrite B as

V̇ =
n∑

k=

vk

{
[
ϕk

(
S()

k
)

– ϕk
(
S()∗

k
)](

 –
S()∗

k

S()
k

)

+ d()
k S()∗

k

(
 –

S()∗
k

S()
k

–
S()

k S()∗
k

S()∗
k S()

k

–
S()

k

S()∗
k

)

–
E∗

k
Ek

∑

i=

S(i)
k

n∑

j=

β
(i)
kj Gj(Ij) + S()∗

k

n∑

j=

β
()
kj Gj

(
I∗

j
)

×
(

 –
S()∗

k

S()
k

–
S()

k S()∗
k

S()∗
k S()

k

)
+ S()∗

k

n∑

j=

β
()
kj Gj

(
I∗

j
)(

 –
S()∗

k

S()
k

)

+
∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)[

 –
EkGk(I∗

k )
E∗

k Gk(Ik)

]}
.

By () and the arithmetic-geometric mean, we easily see that

B ≤
n∑

k=

vk

{
–

E∗
k

Ek

∑

i=

S(i)
k

n∑

j=

β
(i)
kj Gj(Ij)

+ S()∗
k

n∑

j=

β
()
kj Gj

(
I∗

j
)(

 –
S()∗

k

S()
k

–
S()

k S()∗
k

S()∗
k S()

k

)

+ S()∗
k

n∑

j=

β
()
kj Gj

(
I∗

j
)(

 –
S()∗

k

S()
k

)

+
∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)[

 –
EkGk(I∗

k )
E∗

k Gk(Ik)

]}
=: B. ()
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We can rewrite B as

B =
n∑

k=

vk

{
S()∗

k

n∑

j=

β
()
kj Gj

(
I∗

j
)[

 –
S()∗

k

S()
k

–
S()

k S()∗
k

S()∗
k S()

k

–
S()

k E∗
k Gj(Ij)

S()∗
k EkGj(I∗

j )

]
+ S()∗

k

n∑

j=

β
()
kj Gj

(
I∗

j
)[

 –
S()∗

k

S()
k

–
S()

k E∗
k Gj(Ij)

S()∗
k EkGj(I∗

j )

]
+

∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)[

 –
EkGk(I∗

k )
E∗

k Gk(Ik)

]}
.

By the arithmetic-geometric mean, we have that

B ≤
n∑

k=

vk

{
S()∗

k

n∑

j=

β
()
kj Gj

(
I∗

j
)[

 –
(

E∗
k Gj(Ij)

EkGj(I∗
j )

) 

]

+ S()∗
k

n∑

j=

β
()
kj Gj

(
I∗

j
)[

 –
(

E∗
k Gj(Ij)

EkGj(I∗
j )

) 

]

+
∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)[

 –
EkGk(I∗

k )
E∗

k Gk(Ik)

]}
=: B. ()

We can rewrite B as

B =
n∑

k=

vk

{
S()∗

k

n∑

j=

β
()
kj Gj

(
I∗

j
)[

 –
[

E∗
k Gj(Ij)

EkGj(I∗
j )

] 


+ ln

[
E∗

k Gj(Ij)
EkGj(I∗

j )

] 

]

+ S()∗
k

n∑

j=

β
()
kj Gj

(
I∗

j
)[

 –
[

E∗
k Gj(Ij)

EkGj(I∗
j )

] 


+ ln

[
E∗

k Gj(Ij)
EkGj(I∗

j )

] 

]

–
∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)

ln
E∗

k Gj(Ij)
EkGj(I∗

j )

+
∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)[

 –
EkGk(I∗

k )
E∗

k Gk(Ik)
+ ln

EkGk(I∗
k )

E∗
k Gk(Ik)

]

–
∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)

ln
EkGk(I∗

k )
E∗

k Gk(Ik)

}
.

Using the fact that  – x + ln x ≤ , where equality holds if and only if x = , we obtain

B ≤
n∑

k=

vk

∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)[

– ln
E∗

k Gj(Ij)
EkGj(I∗

j )
– ln

EkGk(I∗
k )

E∗
k Gk(Ik)

]

=
n∑

k=

vk

∑

i=

S(i)∗
k

n∑

j=

β
(i)
kj Gj

(
I∗

j
)

ln
Gk(Ik)Gj(I∗

j )
Gk(I∗

k )Gj(Ij)

=
n∑

k=

vk

n∑

j=

βkj ln
Gk(Ik)Gj(I∗

j )
Gk(I∗

k )Gj(Ij)
. ()
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In the following, we will show that

Hn :=
n∑

k=

vk

n∑

j=

βkj ln
Gk(Ik)Gj(I∗

j )
Gk(I∗

k )Gj(Ij)
≡ . ()

We first give the proof of () for n = , which would give a reader the basic yet clear
ideas without being hidden by the complexity of terms caused by larger values of n. When
n = , we have

H =
∑

k=

vk

∑

j=

βkj ln
Gk(Ik)Gj(I∗

j )
Gk(I∗

k )Gj(Ij)
.

Formula () gives v = β and v = β in this case. Expanding H yields

H = ββ ln
G(I)G(I∗

 )
G(I∗

 )G(I)
+ ββ ln

G(I)G(I∗
 )

G(I∗
 )G(I)

+ ββ ln
G(I)G(I∗

 )
G(I∗

 )G(I)
+ ββ ln

G(I)G(I∗
 )

G(I∗
 )G(I)

= ββ

[
ln

G(I)G(I∗
 )

G(I∗
 )G(I)

+ ln
G(I)G(I∗

 )
G(I∗

 )G(I)

]
= .

For more general n, by a similar argument as in the proof of
∑n

k,j= vkβkj ln
E∗

k Ej
Ek E∗

j
≡  in

[], we obtain that

n∑

k=

vk

n∑

j=

βkj ln
Gk(Ik)Gj(I∗

j )
Gk(I∗

k )Gj(Ij)
= –

n∑

k,j=

vkβkj ln
Gk(I∗

k )Gj(Ij)
Gk(Ik)Gj(I∗

j )
≡ .

From ()-(), we see that if V̇ = , then

S(i)
k = S(i)∗

k , i = , , k = , , . . . , n. ()

If () holds, it follows from () that
{

 = ϕk(S()∗
k ) –

∑n
j= β

()
kj S()∗

k Gj(Ij) – akS()∗
k ,

 = akS()∗
k –

∑n
j= β

()
kj S()∗

k Gj(Ij) – d()
k S()∗

k .

Then we obtain that

Ėk =
(
ϕk

(
S()∗

k
)

– akS()∗
k

)
+

(
akS()∗

k – d()
k S()∗

k
)

– (dk + ηk)Ek .

This implies that

lim
t→+∞ Ek =

(ϕk(S()∗
k ) – akS()∗

k ) + (akS()∗
k – d()

k S()∗
k )

(dk + ηk)
= E∗

k . ()

By () and the fourth equation of system (), we have

lim
t→+∞ Ik =

ηkE∗
k

mk
= I∗

k . ()
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From ()-() and the characteristics of V , we obtain that the largest invariant subset of
the set, where V̇ = , is the singleton {P∗}. By LaSalle’s invariance principle, P∗ is globally
asymptotically stable for R > . �

4 Numerical examples
For certain sexually transmitted diseases, AIDS/HIV for example, it is natural to consider
two groups of people: a group of males and a group of females. Further, it is always as-
sumed that there are two important age stages for the susceptible, a group of immature
susceptible S()

k who are less than  years old, and a group of mature susceptible S()
k who

are more than  years old. Thus, we consider the following model:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ()
k = ϕk(S()

k ) –
∑

j= β
()
kj S()

k Gj(Ij) – akS()
k ,

Ṡ()
k = akS()

k –
∑

j= β
()
kj S()

k Gj(Ij) – d()
k S()

k ,
Ėk =

∑
i=

∑
j= β

(i)
kj S(i)

k Gj(Ij) – (dk + ηk)Ek ,
İk = ηkEk – mkIk , k = , ,

()

where ϕk(S()
k ) = bk – d()

k S()
k , Gj(Ij) = Ij

+αjIj
.

Clearly, (A)-(A) hold. We fix the parameters as follows:

b = , b = , d()
 = ., d()

 = ., d()
 = .,

d()
 = ., d = ., d = ., η = ., η = ., ()

m = ., m = ., a = ., a = ., α = α = ..

Then we have P ≈ (., ., ., ., , , , ).

Figure 1 Dynamic behavior of system (24) with
parameter values in (25) and Case 1. R0 ≈ 0.9312.
The initial conditions are: S(1)1 (0) = 70, S(2)1 (0) = 200,
S(1)2 (0) = 80, S(2)2 (0) = 240, E1(0) = 1, E2(0) = 9, I1(0) = 3,
I2(0) = 6.



Tian et al. Advances in Difference Equations  (2015) 2015:260 Page 12 of 13

Figure 2 Dynamic behavior of system (24) with
parameter values in (25) and Case 2. R0 ≈ 1.0941.
The initial conditions are: S(1)1 (0) = 70, S(2)1 (0) = 200,
S(1)2 (0) = 80, S(2)2 (0) = 240, E1(0) = 1, E2(0) = 9, I1(0) = 3,
I2(0) = 6.

Case . If β
()
j = β

()
k = ., β ()

j = β
()
k = ., k = , , j = , , then we obtain

Q ≈
(

. .
. .

)
, R ≈ ..

By Theorem ., the disease dies out in both groups. Numerical simulation illustrates
this fact (see Figure ).

Case . If β
()
j = β

()
k = ., β

()
j = β

()
k = ., k = , , j = , , then we have P∗ ≈

(., ., ., ., ., ., ., .) and R ≈ ..
By Theorem ., the disease persists in both groups. Numerical simulation illustrates

this fact (see Figure ).
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