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Abstract
In this paper, we consider the degenerate poly-Bernoulli polynomials and present
new and explicit formulas for computing them in terms of the degenerate Bernoulli
polynomials and Stirling numbers of the second kind.
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1 Introduction
For λ ∈ C, Carlitz considered the degenerate Bernoulli polynomials given by the generat-
ing function
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When x = , βn(λ) = βn( | λ) are called the degenerate Bernoulli numbers.
Thus, by (.), we get
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The classical polylogarithm function Lik is
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where Bn(x) are called the Bernoulli polynomials (see [–]).
Thus, by (.), we get

lim
λ→

βn(x | λ) = Bn(x) (n ≥ ). (.)

In [, ], the poly-Bernoulli polynomials are given by

Lik( – e–t)
et – 

ext =
∞∑

n=

B(k)
n (x)

tn

n!
. (.)

For k = , we have
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By (.) and (.), we get B()
n (x) = Bn(x).

The Stirling numbers of the second kind are given by

xn =
n∑

l=

S(n, l)(x)l (see [–]), (.)

and the Stirling numbers of the first kind are defined by

(x)n = x(x – ) · · · (x – n + ) =
n∑

l=

S(n, l)xl (n ≥ ). (.)

The purpose of this paper is to construct the degenerate poly-Bernoulli polynomials
and present new and explicit formulas for computing them in terms of the degenerate
Bernoulli polynomials and Stirling numbers of the second kind.

2 Degenerate poly-Bernoulli numbers and polynomials
For λ ∈ C, k ∈ Z, we consider the degenerate poly-Bernoulli polynomials given by the
generating function
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When x = , β (k)
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From (.), we can derive the following equation:
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where Bn = Bn() are the Bernoulli numbers.
By comparing the coefficients on both sides of (.), we obtain the following theorem.
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Theorem . For n ≥ , we have
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By comparing the coefficients on both sides of (.), we obtain the following theorem.
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Theorem . For n ≥ , we have
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