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Abstract
In this paper, control design based on target tracking for a class of neutral systems is
investigated by augmented error system approach. The dynamic equation of tracking
error is derived by use of the desired output which is assumed to be known. Based on
the main thought of preview control, the augmented error system is constructed.
A criterion to guarantee the asymptotic stability of the corresponding nominal
system is established. Through control design of the augmented error system, a
delay-dependent control and a delay-independent control are respectively presented
for the original neutral system. Control design in this paper contains integrators,
which can effectively reduce static errors. Examples are given to illustrate the
efficiency of the proposed method.

Keywords: neutral system; augmented error system; asymptotic stability; preview
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1 Introduction
Time-delay is often encountered in many practical systems such as process control sys-
tems, neural network systems, and nuclear reactor systems (see [, ]). It is well known
that time-delay is a major source of instability and oscillation. Therefore, stability analysis
and control design of time-delay systems are important in theory and practice (see [–]).

As a special class of time-delay systems, neutral systems contain time-delay both in the
states and in the derivatives of states, which can reflect the systems’ operation more com-
prehensively and accurately. It has been shown that a number of practical systems can
be modeled by neutral systems such as heat exchangers, population ecology, and partial
element equivalent circuit (PEEC) (see [, ]). Additionally, there exist some time-delay
systems which can be transformed into neutral systems by model transformation, includ-
ing lossless transmission model, standard delay systems, and standard distributed delay
systems (see []). Due to the particularity of time-delay, stability issues of neutral systems
are proved to be more complex. They have attracted much attention and hence a lot of
research has been done over recent years (see [, ]).

To the best of the authors’ knowledge, though some frequency domain methods, such
as the spectral decomposition theory and semi-group theory, are applied to investigate
the stability of neutral systems, they are not as popular as Lyapunov-Krasovskii functional
(LKF). Through LKF approach, many stability criteria have been proposed (see [–]).
Recently, LMIs and free weighting matrices have been widely used in LKF for the stabil-
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ity of neutral systems (see [–]). For example, by constructing a new LKF with free
weighting matrices, stability criteria for uncertain neutral systems were investigated in
[]. Moreover, free weighting matrices and model transformations were both employed
in [] for cross terms. Then a less conservative stability criterion based on LMIs was
derived for stochastic neutral systems. However, control design based on these stability
criteria is usually the state feedback, which is delay-independent or delay-dependent.

Actually, it is required that the output should track the target in some control systems
such as robot routine control systems. H∞ output tracking control, where the output of
a control system tracks the output of a given reference model well in the sense, is often
adopted as the main way of tracking control for neutral systems (see [, , ]). Aug-
mented error system approach is usually used in tracking control by combining the error
signal and the state. Sometimes, LKF uses augmented vector to simplify the results (see
[, ]).

This paper utilizes the known desired output, but not the reference model, to construct
an augmented error system which contains the state vector, the error signal, the desired
output, and their derivatives. Thus, control design in the paper contains not only state
feedback, but also an integrator, which can effectively reduce static errors and is not sim-
ilar to output tracking control (see [, ]). The main thought comes from the theory
of preview control, which belongs to tracking control. In this paper, we keep time-delay
in the augmented error system, which is different from the ordinary method of preview
control (see [–]).

Notations Throughout this paper, the following notations will be used. Rn denotes an
n-dimensional Euclidean space. Rn×m is the set of all n × m real matrices. ∗ refers to the
symmetric part of a matrix. P >  represents that P is a symmetric positive definite matrix.
I denotes an identity matrix with appropriate dimensions.

2 Problem statements
Consider the following linear neutral system:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) – Gẋ(t – h) = Ax(t) + Ax(t – h) + Bu(t),

y(t) = Cx(t), t ≥ ,

x(t) = φ(t), t ∈ [–h, ],

()

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input of system, and y(t) ∈ Rp is the
output vector. h >  denotes the constant time-delay, which appears in both the state and
the derivative of state. The matrices A ∈ Rn×n, A ∈ Rn×n, C ∈ Rp×n, G ∈ Rn×n, B ∈ Rn×m

are known real constant matrices. And the initial condition φ(t) is a continuous vector-
valued function on t ∈ [–h, ]. Define the operator Dx(t) = x(t) – Gx(t – h).

Let r(t) be the p× desired output or the demand vector of system (). Then the tracking
error of system () is described as

e(t) = y(t) – r(t). ()

The basic problem considered in this paper is to design control for system () such that
the output y(t) tracks the desired output r(t). For system (), we assume the following.
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Assumption  |λi(G)| <  (i = , , . . . , n), where λi(G) is the ith characteristic value of G.

Assumption  The desired output r(t) ∈ Rp is piecewise differentiable with finite discon-
tinuity points. Except its discontinuity points, r(t) is differentiable up to the sth order, i.e.,
r′(t), r′′(t), . . . , r(s–)(t) are all continuous and r(s)(t) = r(s+)(t) = · · · = .

Remark  The stability ofDx(t) can be replaced by the Schur-Cohn stability of G. It means
that if all characteristic values of G are in unite circle, the operator Dx(t) is stable (see []).
So Assumption  insures that Dx(t) is stable.

Remark  System () is described by differential equations. So it is necessary that the
derivatives of desired output are taken to construct an augmented error system. Assump-
tion  can make sure the method is suitable for more extensive desired output such as
staircase signal which is mostly common in signal processing (see []). Additionally, at
discontinuity points of the desired output, we can take left or right derivatives as their
derivatives for values of limited points do not affect the system’s performance much.

Remark  If r(t) is derivable for any order, its first to sth derivatives are selected within
error range, which is similar to the truncation method of signal procession (see []). Some
desired output may be expanded into power series with limited terms if necessary.

The following well-known lemma will be used for providing the main results in the se-
quel.

Lemma  (Schur complement in []) Given the constant matrices �, �, �, where � =
�T

 and  < � = �T
 , then � + �T

 �–
 � <  if and only if

[
� �T



� –�

]

< , or

[
–� �

�T
 �

]

< .

3 Main results
In this section, main results on both delay-dependent and delay-independent control de-
sign will be presented for system (). Firstly, an augmented error system is constructed.
And then, the stability criterion of its corresponding nominal system is proposed.

3.1 Construction of an augmented error system
In order to make better use of the desired output r(t), we consider combining the tracking
error e(t) with system ().

It follows from () that the dynamic equation of tracking error e(t) is given by

ė(t) – αė(t – h) = Cẋ(t) – αCẋ(t – h) – ṙ(t) + αṙ(t – h), ()

where  < α <  is a constant. According to (), we have

ẍ(t) – Gẍ(t – h) = Aẋ(t) + Aẋ(t – h) + Bu̇(t). ()
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Let δr(t) = ṙ(t)– ṙ(t –h). Thus, by (), () and (), the augmented error system is obtained
as follows:

ż(t) – Ḡż(t – h) = Ā(t)z(t) + Ā(t)z(t – h) + B̄u̇(t) + D̄δr(t), ()

where

z(t) =

⎡

⎢
⎣

e(t)
x(t)
ẋ(t)

⎤

⎥
⎦ , Ḡ =

⎡

⎢
⎣

αI  
 G 
  G

⎤

⎥
⎦ , Ā(t) =

⎡

⎢
⎣

  C
  I
  A

⎤

⎥
⎦ ,

Ā(t) =

⎡

⎢
⎣

  –αC
  –G
  A

⎤

⎥
⎦ , B̄ =

⎡

⎢
⎣



B

⎤

⎥
⎦ , D̄ =

⎡

⎢
⎣

–I



⎤

⎥
⎦ .

In system (), the tracking error e(t) appears as a component of z(t). And the state equa-
tion of z(t) is related to the desired output r(t). We wish to transfer system () into an
ordinary neutral system. So we consider processing the desired output r(t). Assume that
R(t) is the vector which contains the available desired output and its first to sth order
derivatives, namely

R(t) =
[
r(t)T, r′(t)T, . . . , r(s–)(t)T, r(s–)(t)T]T.

It follows from Assumption  that R(t) satisfies Ṙ(t) = ER(t), Ṙ(t – h) = ER(t – h), where

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 Ip  · · · 
  Ip · · · 
...

...
...

. . .
...

   · · · Ip

   · · · 

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Denote X(t) = [z(t)T, R(t)T]T, system () can be rewritten as

Ẋ(t) – G̃Ẋ(t – h) = ÃX(t) + ÃX(t – h) + B̃u̇(t), ()

where

G̃ =

[
Ḡ 
 αI

]

, Ã =

[
Ā DR

 E

]

, Ã =

[
Ā –αDR

 –αE

]

, B̃ =

[
B̄


]

,

DR = [, D̄, , . . . , ].

Therefore, the problem tackled in this paper is to design control for system ().

3.2 Asymptotic stability analysis of the nominal system
The nominal system of () is

Ẋ(t) – G̃Ẋ(t – h) = ÃX(t) + ÃX(t – h). ()
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Now a criterion is presented for the asymptotic stability of system ().

Theorem  System () is asymptotically stable if there exist P >  and Q >  such that the
following symmetric matrix inequality holds:

⎡

⎢
⎢
⎢
⎣

PÃ + ÃTP PÃG̃ PÃ I
∗ –Q/  G̃T

∗ ∗ –Q/ 
∗ ∗ ∗ –Q–

⎤

⎥
⎥
⎥
⎦

< . ()

Proof Based on Assumption  and  < α < , it is easy to get |λi(Ḡ)| <  (i = , , . . . , n + p).
Therefore, we conclude that |λj(G̃)| <  (j = , , . . . , n + p + sp), which ensures DX(t) =
X(t) – G̃X(t – h) is stable (see []).

Consider the following Lyapunov functional:

V (t) = V(t) + V(t),

where V(t) = DX(t)TPDX(t), V(t) =
∫ 

–h X(t + θ )TQX(t + θ ) dθ , the matrices P = PT > 
and Q = QT >  are to be determined.

Taking time derivatives of V(t) and V(t) along system () yields

V̇(t) =
[
Ẋ(t) – G̃Ẋ(t – h)

]TPDX(t) + DX(t)TP
[
Ẋ(t) – G̃Ẋ(t – h)

]

=
[
ÃX(t) + ÃX(t – h)

]TP
[
X(t) – G̃X(t – h)

]

+
[
X(t) – G̃X(t – h)

]TP
[
ÃX(t) + ÃX(t – h)

]

= X(t)T(
ÃTP + PÃ

)
X(t) + X(t)T(

–ÃTPG̃ + PÃ
)
X(t – h)

+ X(t – h)T(
ÃT

 P – G̃TPÃ
)
X(t)

+ X(t – h)T(
–ÃT

 PG̃ – G̃TPÃ
)
X(t – h),

V̇(t) = X(t)TQX(t) – X(t – h)TQX(t – h).

Thus we get

V̇ (t) = X(t)T(
ÃTP + PÃ + Q

)
X(t) + X(t)T(

PÃ – ÃTPG̃
)
X(t – h)

+ X(t – h)T(
ÃT

 P – G̃TPÃ
)
X(t)

+ X(t – h)T(
–ÃT

 PG̃ – G̃TPÃ – Q
)
X(t – h).

Let M = Q
 – G̃TQG̃. In view of the definition of D, the derivative of V with respect to t

can be rewritten as

V̇ (t) = DX(t)T(
PÃ + ÃTP + Q

)
DX(t) + DX(t)T(Q + PÃ)G̃X(t – h)

+ DX(t)TPÃX(t – h) – X(t – h)T
(

M +
Q


)

X(t – h)

= DX(t)T[
PÃ + ÃTP + Q + (Q + PÃ)G̃M–G̃T(Q + PÃ)T
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+ PÃQ–ÃT
 P

]
DX(t) –

[
X(t – h)T – DX(t)T(Q + PÃ)G̃M–]

× M
[
X(t – h) – M–G̃T(Q + PÃ)TDX(t)

]

–
[
X(t – h)T – DX(t)TPÃQ–]Q


[
X(t – h) – Q–ÃT

 PDX(t)
]
.

Since Q = QT > , we obtain that V̇ <  if the following inequalities

M =
Q


– G̃TQG̃ >  ()

and

PÃ + ÃTP + Q + (Q + PÃ)G̃M–G̃T(Q + PÃ)T + PÃQÃT
 P <  ()

are feasible. Then, according to Lyapunov stability theory, system () is asymptotically
stable.

By Schur complement, () and (), we get

[
PÃ + ÃTP + Q + PÃQÃT

 P (Q + PÃ)G̃
∗ –M

]

< . ()

In view of
[

PÃ + ÃTP + Q + PÃQ–ÃT
 P (Q + PÃ)G̃

∗ –M

]

=

[
PÃ + ÃTP + Q (Q + PÃ)G̃

∗ –Q/ + G̃TQG̃

]

+

[
PÃ



]
(
Q–)

[

ÃT
 P 

]

and Q > , () is equivalent to

⎡

⎢
⎣

PÃ + ÃTP + Q (Q + PÃ)G̃ PÃ

∗ –Q/ + G̃TQG̃ 
∗ ∗ –Q/

⎤

⎥
⎦ < . ()

On the other hand,
⎡

⎢
⎣

PÃ + ÃTP + Q (Q + PÃ)G̃ PÃ

∗ –Q/ + G̃TQG̃ 
∗ ∗ –Q/

⎤

⎥
⎦

=

⎡

⎢
⎣

PÃ + ÃTP PÃG̃ PÃ

∗ –Q/ 
∗ ∗ –Q/

⎤

⎥
⎦ +

⎡

⎢
⎣

I
G̃T



⎤

⎥
⎦Q

[

I G̃ 
]

.

So inequality () equals

⎡

⎢
⎣

PÃ + ÃTP PÃG̃ PÃ

∗ –Q/ 
∗ ∗ –Q/

⎤

⎥
⎦ +

⎡

⎢
⎣

I
G̃T



⎤

⎥
⎦Q

[

I G̃ 
]

< .
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By Lemma , the above inequality implies that () holds. �

As a foundation, Theorem  provides a sufficient condition for the asymptotic stabil-
ity of system (). In the following sections, the proposed delay-independent and delay-
dependent controllers are calculated not only to stabilize the closed-loop neutral system,
but also to fully utilize the desired output r(t).

3.3 Delay-independent control for system (1)
Suppose u̇(t) = KX(t) is a delay-independent control for system (), where K ∈ R×[n+(s+)p]

is the feedback gain matrix. Substituting u̇(t) = KX(t) into system (), we obtain the fol-
lowing closed-loop system:

Ẋ(t) – G̃Ẋ(t – h) = (Ã + B̃K)X(t) + ÃX(t – h). ()

By using Schur complement and replacing Ã in system () with Ã + B̃K , we have the fol-
lowing theorem.

Theorem  Suppose Assumption  holds for system (). The closed-loop system of () is
asymptotically stable if there exist matrices P > , Q >  and K such that

⎡

⎢
⎢
⎢
⎣

Z + ZT ZG̃ PÃ I
∗ –Q/  G̃T

∗ ∗ –Q/ 
∗ ∗ ∗ –Q–

⎤

⎥
⎥
⎥
⎦

< , ()

where Z = PÃ + PB̃K . Then u̇(t) = KX(t) is a delay-independent control for system ().

Considering the structure of X(t) in (), K can be decomposed as K = [k, k, k, k].
Therefore, u̇(t) for system () can be expressed as

u̇(t) = ke(t) + kx(t) + kẋ(t) +
s–∑

j=

k,jr(j)(t),

where k = [k,, k,, . . . , k,s–]. So

u(t) – u(–h) = k

∫ t

–h
e(v) dv + k

∫ t

–h
x(v) dv + k

∫ t

–h
ẋ(v) dv

+ k,

∫ t


r(v) dv +

s–∑

j=

k,j

∫ t

–h
r(j–)(v) dv.

Then control u(t) of system () is provided in the following theorem.
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Theorem  Suppose Assumption  holds for system (). If there exists a matrix K satisfying
(), the delay-independent control for system () can be expressed as

u(t) = (kC + k)
∫ 

–h
φ(v) dv + k

∫ t


e(v) dv + k

∫ t


x(v) dv + kx(t)

– kφ(–h) + k,

∫ t


r(v) dv +

s–∑

j=

k,jr(j–)(t), ()

where K = [k, k, k, k], k = [k,, k,, . . . , k,s–].

Remark  From (), we can find that control u(t), which is calculated from u̇(t), not only
contains state feedback and the integral of state vector x(t), but also relates to the initial
condition φ(t). Furthermore, both the integrator on tracking error signal e(t) and the inte-
gral of desired output r(t) are contained in control u(t). It is well known that introduction
of integrators to control design is helpful to eliminate static errors (see []).

3.4 Delay-dependent control for system (1)
Now we suppose that u̇(t) = LX(t) + WX(t – h) is a delay-dependent control for system (),
where L ∈ R×[n+(s+)p] and W ∈ R×[n+(s+)p] are the feedback gain matrices. Substituting
the control into system (), we obtain the closed-loop system as follows:

Ẋ(t) – G̃Ẋ(t – h) = (Ã + B̃L)X(t) + (Ã + B̃W )X(t – h). ()

From Theorem , replacing Ã and Ã of system () respectively with Ã + B̃L and Ã + B̃W
presents the following theorem to guarantee the asymptotic stability of system ().

Theorem  Suppose Assumption  holds for (). System () is asymptotically stable if there
exist matrices P > , Q > , L and W such that

⎡

⎢
⎢
⎢
⎣

Z + ZT ZG̃ Y I
∗ –Q/  G̃T

∗ ∗ –Q/ 
∗ ∗ ∗ –Q–

⎤

⎥
⎥
⎥
⎦

< , ()

where Z = PÃ + PB̃L, Y = PÃ + PB̃W . Then u̇(t) = LX(t) + WX(t – h) is a delay-dependent
control for system ().

If there exist matrices L and W to satisfy Theorem , L and W are decomposed as L =
[l, l, l, l], W = [w, w, w, w]. Then control u̇(t) of system () is deduced as

u̇(t) = le(t) + lx(t) + lẋ(t) +
s–∑

j=

l,jr(j)(t)

+ we(t – h) + wx(t – h) + wẋ(t – h) +
s–∑

j=

w,jr(j)(t – h),
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where l = [l,, l,, . . . , l,s–], w = [w,, w,, . . . , w,s–]. So

u(t) – u(–h) = l

∫ t

–h
e(v) dv + l

∫ t

–h
x(v) dv + l

∫ t

–h
ẋ(v) dv

+
s–∑

j=

l,j

∫ t

–h
r(j–)(v) dv + w

∫ t

–h
e(v – h) dv

+ w

∫ t

–h
x(v – h) dv + w

∫ t

–h
ẋ(v – h) dv

+
s–∑

j=

w,j

∫ t

–h
r(j)(v – h) dv.

Using variable substitution to the integral terms in which the integrand functions are re-
lated to time-delay, we have

u(t) – u(–h) = l

∫ t

–h
e(v) dv + l

∫ t

–h
x(v) dv + l

∫ t

–h
ẋ(v) dv

+
s–∑

j=

l,j

∫ t

–h
r(j)(v) dv + w

∫ t–h

–h
e(θ ) dθ + w

∫ t–h

–h
x(θ ) dθ

+ w

∫ t–h

–h
ẋ(θ ) dθ +

s–∑

j=

w,j

∫ t–h

–h
r(j)(θ ) dθ .

Commonly, time-delay h is much smaller than the system’s run time. So the control law
of t ≤ h has little effect on the system’s whole running status. Therefore, we only consider
the control law when t > h. For t – h > , it is not difficult to obtain that

w

∫ t–h

–h
e(θ ) dθ = wC

∫ 

–h
φ(θ ) dθ + w

∫ t–h


e(θ ) dθ ,

w

∫ t–h

–h
x(θ ) dθ = w

∫ 

–h
φ(θ ) dθ + w

∫ t–h


x(θ ) dθ ,

w

∫ t–h

–h
ẋ(θ ) dθ = w

(
x(t – h) – φ(–h)

)
,

s–∑

j=

w,j

∫ t–h

–h
r(j)(θ ) dθ = w,

∫ t–h


r(v) dv +

s–∑

j=

w,jr(j–)(t – h).

Then the control based on target tracking is presented as the following theorem.

Theorem  Suppose Assumption  holds for system (). If there exist matrices L and W
satisfying (), the delay-dependent control for system () can be expressed as

u(t) = (lC + wC + l + w)
∫ 

–h
φ(θ ) dθ – (l + w)φ(–h) + lx(t)

+ wx(t – h) + l

∫ t


e(θ ) dθ + w

∫ t–h


e(θ ) dθ + l

∫ t


x(θ ) dθ
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+ w

∫ t–h


x(θ ) dθ + w,

∫ t–h


r(θ ) dθ + l,

∫ t


r(θ ) dθ

+
s–∑

j=

[
w,jr(j–)(t – h) + l,jr(j–)(t)

]
. ()

Remark  Compared with (), control design in () contains more information to help
the output y(t) track the desired output r(t) effectively.

4 Examples
In this section, two examples are given to show the effectiveness of the proposed control
design method.

Example  Consider system () with the following parameters:

G =

[
. –.
 .

]

, A =

[
 .
 –

]

, A =

[
. –.
. .

]

, B =

[
.
.

]

,

C =
[

 
]

, h = ., φ(θ ) =

[
.θ

(–)[θ ]

]

, –h < θ ≤ .

Assume the desired output r(t) = /t. Obviously, the desired output is derivable for any
order. By Remark , we choose s = . And in the dynamic equation of e(t), we choose
α = ..

Case : Control design independent of time-delay is firstly considered. By Theorem ,
the feedback gain matrix K is

[

–. –. . –. –. –. . .
]

.

Furthermore, the corresponding state curve and output response curve are shown re-
spectively in Figures  and .

Choose E =  and DR =  when constructing the augmented error system, i.e., remove
the desired output r(t) from control u(t) of Theorem . Then we get the control irrelevant
to target tracking and time delay. The state curve and output response curve are shown
respectively as Figures  and .

From Figures -, we find that when the control is based on target tracking, the state
curve and the output response are much smoother, and the curve amplitude is much
smaller.

Case : We observe the effect of control design dependent of time-delay. By Theorem ,
feedback gain matrices L and W are respectively

[–., ., ., –., –., ., ., –.],

[, , , –., ., , –., –.]

Then the corresponding state curve and output response curve are shown respectively
in Figures  and .
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Figure 1 State curve of system (1) under delay-independent control based on target tracking.

Figure 2 Output response of system (1) under delay-independent control based on target tracking.

When the control is relevant to time-delay but irrelevant to the desired output, the state
curve and output response curve are shown respectively in Figures  and .

Comparing these figures, we find that for this system, the amplitude of the state curve
and output response is much smaller when the control u(t) is relevant to time delay.

Example  The following system comes from a small test circuit example which consists
of a partial element equivalent circuit (PEEC) (see []). Based on model () of [], it is given
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Figure 3 State curve of system (1) under delay-independent control without target tracking.

Figure 4 Output response of system (1) under delay-independent control without target tracking.

by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) – [ . –.
 .]ẋ(t – .) = [ . –.

. . ]x(t – h) + [  .
 –. ]x(t) + [ 

–]u(t),

y(t) = [  . ]x(t), t ≥ ,

x(t) = [ –t/
sin t ], t ∈ [–., ].

()
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Figure 5 State curve of system (1) under delay-dependent control based on target tracking.

Figure 6 Output response of system (1) under delay-dependent control based on target tracking.

The desired output is assumed to be the following stair-step function:

r(t) =

⎧
⎪⎪⎨

⎪⎪⎩

, t < ;


 (t – ),  ≤ t < ;

, t ≥ .

And in the dynamic equation of e(t), we choose α = ..
In this example, we only observe the control design based on target-tracking for system

(). By Theorem , we get that the state and the output response of system () under
delay-independent control design are respectively shown as Figures  and . Then, by



Xu et al. Advances in Difference Equations  (2015) 2015:270 Page 14 of 17

Figure 7 State curve of system (1) under delay-dependent control without target tracking.

Figure 8 Output response of system (1) under delay-dependent control without target tracking.

Theorem , the corresponding curves under delay-dependent control design are shown
in Figures  and .

Remark  The model in Example  comes from partial element equivalent circuits. In [],
the neutral system was described with zero output, whereas an output equation is added
to the system in Example .
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Figure 9 State curve of system (19) under delay-independent control design with target tracking.

Figure 10 Output response of system (19) under delay-independent control design with target
tracking.

5 Conclusions
In this paper, control design based on target tracking is investigated. The properties of the
desired output are taken to construct an augmented error system. Based on the asymptotic
stability theory of the nominal system, we present the feedback control for the augmented
error system. The corresponding control design, which contains integrator on the track-
ing error signal, is deduced for the original system in Theorems  and . Two examples
dealing with different kinds of desired output have been given to show the effectiveness of
the proposed method. Control design in the paper contains not only the state feedback,
but also the integrator on the tracking error signal, the integrals of the state and the de-
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Figure 11 State curve of system (19) under delay-dependent control design with target tracking.

Figure 12 Output response of system (19) under delay-dependent control design with target
tracking.

sired output. We hope that the proposed method in the paper can provide an approach to
control design for a class of neutral systems described as system ().
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