
Milošević Advances in Difference Equations  (2015) 2015:273 
DOI 10.1186/s13662-015-0599-z

R E S E A R C H Open Access

Asymptotic behavior of increasing
positive solutions of second order quasilinear
ordinary differential equations in the
framework of regular variation
Jelena Milošević*
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1 Introduction
It is of particular interest in the theory of qualitative analysis of differential equations to
determine the exact asymptotic behavior at infinity of the solutions under the appropriate
assumptions for the coefficients of an equation. This problem is extremely complex when
the coefficients are general continuous functions. Thus, the recent research shows that the
problem should be studied in the framework of regularly varying functions (also known
as Karamata functions). This approach was initiated by Avakumović in  (see []), and
followed by Marić and Tomić (see [–]). It turns out that the problem is completely solv-
able in the case when the coefficients are regularly varying or generalized regularly varying
functions. Namely, in this case, it is possible to completely determine the existence of the
solutions, as well as their asymptotic behavior at infinity.

In this paper, we study the differential equation of the form

(E)
(
p(t)ϕ

(
x′(t)

))′ + q(t)ψ
(
x(t)

)
= , t ≥ a > ,

under the following assumptions:
(i) ϕ : (,∞) → (,∞) is an increasing continuous function which is regularly varying

at zero of index α > ;
(ii) ψ : (,∞) → (,∞) is a continuous function which is regularly varying at infinity

of index β ∈ (,α);
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(iii) p : [a,∞) → (,∞) is a continuous function which is regularly varying at infinity of
index η ∈ (,α);

(iv) q : [a,∞) → (,∞) is a continuous function which is regularly varying at infinity of
index σ ∈ R.

By a solution of (E) we mean a function x(t) : [T ,∞) → R, T ≥ a which is continuously
differentiable together with p(t)ϕ(x′(t)) on [T ,∞) and satisfies (E) at every point of [T ,∞).

It is easily seen (see []) that if x(t) is an increasing positive solution of (E), then we have
the following classification of increasing positive solutions of (E) into three types according
to their asymptotic behavior at infinity:

(I) lim
t→∞ x(t) = const. > ,

(II) lim
t→∞ x(t) = ∞, lim

t→∞ p(t)ϕ
(
x′(t)

)
= ,

(III) lim
t→∞

x(t)
P(t)

= const. > ,

where the function P(t) is defined as

P(t) =
∫ t

a
ϕ–(p(s)–)ds (.)

and ϕ–(·) denotes the inverse function of ϕ(·).
Solutions of type (I), (II), (III) are often called, respectively, subdominant, intermediate,

and dominant solutions.
It is well known (see [, ]) that the existence of subdominant and dominant solutions for

(E) with continuous coefficients p(t), q(t), ϕ(s), and ψ(s) can be completely characterized
by the convergence of the integrals

I =
∫ ∞

a
q(t)ψ

(
P(t)

)
dt, J =

∫ ∞

a
ϕ–

(
p(t)–

∫ ∞

t
q(s) ds

)
dt.

Theorem . Let p(t), q(t) ∈ C[a,∞) and ϕ(s),ψ(s) ∈ C[,∞).
(a) Equation (E) has an increasing positive solution of type (I) if and only if J < ∞.
(b) Equation (E) has an increasing positive solution of type (III) if and only if I < ∞.
(c) Equation (E) has an increasing positive solution of type (II) if J = ∞ and I < ∞.

For the existence of intermediate solutions for (E), necessary conditions can be obtained
with relative ease. But the problem of establishing necessary and sufficient conditions
turns out to be extremely difficult and thus has been an open problem for a long time.

In this paper we establish the necessary and sufficient conditions for the existence of
intermediate solutions for (E) and precisely determine their behavior at infinity, using
the theory of regularly varying functions. The present work was motivated by the recent
progress in the asymptotic analysis of differential equations by means of regularly varying
functions in the sense of Karamata, which was initiated by the monograph of Marić [].
Also, the equation under consideration in this paper is a generalization of the equation

x′′(t) + q(t)φ
(
x(t)

)
= ,
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considered in [], as well as of the equation

(
p(t)

∣
∣x′(t)

∣
∣α–x′(t)

)′ + q(t)
∣
∣x(t)

∣
∣β–x(t) = 

considered in [, ]. See also [–] for related results regarding second order equations
and first order systems, and [–] for high-order differential equations and systems.

The main body of the paper is divided into six sections. The definition and basic prop-
erties of regularly varying functions are given in Section . The main results are stated in
Section  and proved in Section . In Section  we collect some preparatory results which
will help us to simplify the proof of our main theorems. Finally, some illustrative examples
are presented in Section .

2 Regularly varying functions
In our analysis we shall extensively use the class of regularly varying functions introduced
by Karamata in  by the following.

Definition . A measurable function f : [a,∞) → (,∞), a >  is said to be regularly
varying at infinity of index ρ ∈R if

lim
t→∞

f (λt)
f (t)

= λρ for all λ > . (.)

A measurable function f : (, a) → (,∞) is said to be regularly varying at zero of index
ρ ∈R if

lim
t→+

f (λt)
f (t)

= λρ for all λ > . (.)

The set of regularly varying functions of index ρ at infinity and at zero, are denoted,
respectively, with RV(ρ) and RV(ρ). If, in particular ρ = , the function f is called slowly
varying at infinity or at zero. With SV and SV we denote, respectively, the set of slowly
varying functions at infinity and at zero. By an only regularly or a slowly varying function,
we mean regularity at infinity.

It follows from Definition . that any function f (t) ∈ RV(ρ) can be written as

f (t) = tρg(t), g(t) ∈ SV, (.)

and so the class SV of slowly varying functions is of fundamental importance in the the-
ory of regular variation. If, in particular, the function g(t) → k >  as t → ∞, it is called
a trivial slowly varying, denoted by g(t) ∈ tr-SV, and the function f (t) is called a trivial
regularly varying of index ρ , denoted by f (t) ∈ tr-RV(ρ). Otherwise, the function g(t) is
called a nontrivial slowly varying, denoted by g(t) ∈ ntr-SV, and the function f (t) is called
a nontrivial regularly varying of index ρ , denoted by f (t) ∈ ntr-RV(ρ).

Since regularly variation of f (·) at zero of index α means in fact regularly variation of
f (/t) at infinity of index –α, the properties of RV functions can be deduced from theory
of RV functions.
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For a comprehensive treatise on regular variation the reader is referred to Bingham et
al. []. See also Seneta []. However, to help the reader we present here some elemen-
tary properties of regularly varying functions and a fundamental result, called Karamata’s
integration theorem, which will be used throughout the paper.

Proposition . (Karamata’s integration theorem) Let L(t) ∈ SV. Then:
(i) If α > –,

∫ t

a
sαL(s) ds ∼ tα+L(t)

α + 
, t → ∞.

(ii) If α < –,

∫ ∞

t
sαL(s) ds ∼ –

tα+L(t)
α + 

, t → ∞.

(iii) If α = –, the integral
∫ ∞

a s–L(s) ds may or may not be convergent. The integral
m(t) =

∫ t
a s–L(s) ds is a new slowly varying function and L(t)/m(t) → , t → ∞. In

the case
∫ ∞

a s–L(s) ds < ∞, again m(t) =
∫ ∞

t s–L(s) ds ∈ SV and L(t)/m(t) → ,
t → ∞.

The symbol ∼ denotes the asymptotic equivalence of two positive functions, i.e.,

f (t) ∼ g(t), t → ∞ ⇐⇒ lim
t→∞

g(t)
f (t)

= .

We shall also use the following results:

Proposition . Let g(t) ∈ RV(σ), g(t) ∈ RV(σ), g(t) ∈ RV(σ). Then:
(i) (g(t))α ∈ RV(ασ) for any α ∈R;

(ii) g(t) + g(t) ∈ RV(σ ), σ = max(σ,σ);
(iii) g(t)g(t) ∈ RV(σ + σ);
(iv) g(g(t)) ∈ RV(σσ), if g(t) → ∞, as t → ∞; g(g(t)) ∈ RV(σσ), if g(t) → , as

t → ∞;
(v) for any ε >  and L(t) ∈ SV one has tεL(t) → ∞, t–εL(t) → , as t → ∞.

Proposition . If f (t) ∼ tαl(t) as t → ∞ with l(t) ∈ SV, then f (t) is a regularly varying
function of index α i.e. f (t) = tαl∗(t), l∗(t) ∈ SV, where in general l∗(t) �= l(t), but l∗(t) ∼ l(t)
as t → ∞.

Proposition . A positive measurable function l(t) belongs to SV if and only if for every
α >  there exist a non-decreasing function � and a non-increasing function ψ with

tαl(t) ∼ �(t) and t–αl(t) ∼ ψ(t), t → ∞.

Proposition . For the function f (t) ∈ RV(α), α > , there exists g(t) ∈ RV(/α) such that

f
(
g(t)

) ∼ g
(
f (t)

) ∼ t as t → ∞.
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Here g is an asymptotic inverse of f (and it is determined uniquely to within asymptotic
equivalence).

Note that the same result holds for t →  i.e. when f (t) ∈ RV(α), α > .

Proposition . For the function f (t) ∈ RV(α), α > , there exists g(t) ∈ RV(/α) such
that

f
(
g(t)

) ∼ g
(
f (t)

) ∼ t as t → .

Proof Since f (t) ∈ RV(α), we have f (/t) ∈ RV(–α) and /f (/t) ∈ RV(α). We can apply
the Proposition . to the function f̃ (t) = /f (/t). Then there exists g̃ ∈ RV(/α) such that

f̃
(
g̃(t)

) ∼ g̃
(
f̃ (t)

) ∼ t as t → ∞.

Then it is easy to show that the function g(t) = /g̃(/t) ∈ RV(/α) is an asymptotic inverse
of f . �

Next result is proved in [] and we are going to use it very often in our proofs. It helps
us with manipulation of the asymptotic relations.

Let H = {x|x : [a,∞) → (,∞)} and H = {x ∈ H|x(t) → ∞, t → ∞}. If � denotes the
asymptotic similarity of two positive functions, i.e.,

f (t) � g(t), t → ∞ ⇐⇒ lim
t→∞

g(t)
f (t)

= const. > 

and ρ, ρ are arbitrary relations from the set {∼,�}, then let Hom((H,ρ); (H ,ρ)) be the
set of all measurable functions F : [a,∞) → (,∞) such that

x(t)ρy(t), t → ∞ ⇒ F
(
x(t)

)
ρF

(
y(t)

)
, t → ∞.

Proposition . Let F : [a,∞) → (,∞) be a measurable function. Then

F ∈ RV ⇔ F ∈ Hom
(
(H,�); (H ,�)

)
.

To avoid repetitions we state here basic conditions imposed of the functions ϕ, ψ , p, q.
In what follows we always assume

ϕ(s) ∈ RV(α), α > ; ψ(s) ∈ RV(β), α > β > ;

p(t) ∈ RV(η), η ∈ (,α); q(t) ∈ RV(σ ), σ ∈R.
(.)

Using the notation (.), we can express ϕ(s), ψ(s), p(t), and q(t) as

ϕ(s) = sαL(s), L(s) ∈ SV; ψ(s) = sβL(s), L(s) ∈ SV; (.)

p(t) = tηlp(t), lp(t) ∈ SV; q(t) = tσ lq(t), lq(t) ∈ SV. (.)
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By assumption (i), ϕ(s) is an increasing function, so ϕ(s) has the inverse function, denoted
by ϕ–(s) and from (.) we conclude that

ϕ–(s) ∈ RV(/α) ⇒ ϕ–(s) = s/αL(s), L(s) ∈ SV. (.)

We also need the additional requirements for the slowly varying parts of ϕ and ψ :

L
(
tu(t)

) ∼ L(t), t → ,∀u(t) ∈ SV ∩ C(R); (.)

L
(
tu(t)

) ∼ L(t), t → ∞,∀u(t) ∈ SV ∩ C(R). (.)

It is easy to check that this is satisfied by e.g.

L(t) =
N∏

k=

(logk t)αk , αk ∈R, but not by L(t) = exp
N∏

k=

(logk t)βk , βk ∈ (, ),

where logk t = log logk– t, k = , , . . . .

Remark . The condition (.) implies an useful property of the function ϕ–. For u(t) ∈
SV ∩ C(R) and λ ∈R

–, applying Proposition .(iv), we have u(s 
λ ) ∈ SV ∩ C(R). Using

substitution tλ = s (s →  as t → ∞) and (.) we obtain

L
(
tλu(t)

)
= L

(
su

(
s


λ
)) ∼ L(s) = L

(
tλ

)
, t → ∞,∀λ ∈R

–,∀u(t) ∈ SV ∩ C(R),

from which it follows that

ϕ–(tλu(t)
) ∼ ϕ–(tλ

)
u(t)


α , t → ∞,∀λ ∈R

–,∀u(t) ∈ SV ∩ C(R). (.)

Similarly, the condition (.) implies an useful property of the function ψ :

ψ
(
tλu(t)

) ∼ ψ
(
tλ

)
u(t)β , t → ∞,∀λ ∈R

+,∀u(t) ∈ SV ∩ C(R). (.)

3 Main results
This section is devoted to the study of the existence and asymptotic behavior of an inter-
mediate regularly varying solutions of (E) with functions ϕ, ψ , p, q satisfying (.). We
seek such solutions x(t) of (E) expressed in the form

x(t) = tρ lx(t), lx(t) ∈ SV. (.)

Since η > , applying Proposition .(v), we have limt→∞ p(t) = ∞. Then, applying Propo-
sition .(iv), we get ϕ–(p(t)–) ∈ RV(– η

α
) so that the assumption η < α ensures that we

may apply Karamata’s integration theorem (Proposition .) to the integral in (.). Using
(.), (.), (.), and Proposition . we obtain

P(t) =
∫ t

a
ϕ–(s–ηlp(s)–)ds ∼

∫ t

a
ϕ–(s–η

)
lp(s)– 

α ds

=
∫ t

a
s– η

α L
(
s–η

)
lp(s)– 

α ds ∼ α

α – η
t– η

α L
(
t–η

)
lp(t)– 

α , t → ∞, (.)

implying that P(t) ∈ RV( – η

α
). Since η < α by Proposition .(v) we have limt→∞ P(t) = ∞.
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We emphasize that we exclude the case η = α because of the computational difficulty
and the fact that the integral

∫ t

a
ϕ–(p(s)–)ds =

∫ t

a
s–L

(
s–η

)
lp(s)– 

α ds

might be either convergent or divergent.
Since there are positive constants c and c such that c ≤ x(t) ≤ cP(t), for all large t, the

regularity index ρ of x(t) must satisfy  ≤ ρ ≤  – η

α
. Therefore, the class of intermediate

regularly varying solutions of (E) is divided into three types of subclasses:

ntr-SV, RV(ρ), ρ ∈
(

,  –
η

α

)
, ntr-RV

(
 –

η

α

)
.

To state our main results, we will need the function

�(y) =
∫ y



dv
ψ(v) 

α

, y > , (.)

which is clearly increasing on (,∞). From (.), (.), and Proposition . we get

�(y) =
∫ y


v– β

α L(v)– 
α dv ∼ α

α – β
y– β

α L(y)– 
α =

α

α – β

y
ψ(y) 

α

, y → ∞, (.)

implying �(y) ∈ RV( α–β

α
) and �–(y) ∈ RV( α

α–β
) with α–β

α
> .

Theorem . Suppose that (.), (.), and (.) hold. Equation (E) possesses intermediate
solutions x(t) ∈ ntr-SV if and only if

σ = η – α –  and
∫ ∞

a
ϕ–

(
p(t)–

∫ ∞

t
q(s) ds

)
dt = ∞, (.)

in which case any such solution x(t) has the asymptotic behavior x(t) ∼ X(t), t → ∞, where

X(t) = �–
(∫ t

a
ϕ–

(
p(s)–

∫ ∞

s
q(r) dr

)
ds

)
, t ≥ t. (.)

Theorem . Suppose that (.), (.), and (.) hold. Equation (E) possesses intermediate
solutions x(t) ∈ RV(ρ) with ρ ∈ (,  – η

α
) if and only if

η – α –  < σ <
β

α
η – β – , (.)

in which case ρ is given by

ρ =
σ + α +  – η

α – β
(.)

and any such solution x(t) has the asymptotic behavior x(t) ∼ X(t), t → ∞, where

X(t) = �–
(

α

α – β

t–ρ+ 
α

ρ[α( – ρ) – η] 
α

ϕ–(tα(ρ–))p(t)– 
α q(t)


α

)
, t ≥ t. (.)
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Theorem . Suppose that (.), (.), and (.) hold. Equation (E) possesses intermediate
solutions x(t) ∈ ntr-RV( – η

α
) if and only if

σ =
β

α
η – β –  and

∫ ∞

a
q(t)ψ

(
P(t)

)
dt < ∞, (.)

in which case any such solution x(t) has the asymptotic behavior x(t) ∼ X(t), t → ∞, where

X(t) = P(t)
(

α – β

α

∫ ∞

t
q(s)ψ

(
P(s)

)
ds

) 
α–β

, t ≥ t. (.)

4 Preparatory results
Let x(t) be an intermediate solution of (E) defined on [t,∞). Since limt→∞ p(t)ϕ(x′(t)) =
limt→∞ x′(t) = , limt→∞ x(t) = ∞, integrating of (E) first on (t,∞) and then on [t, t] gives

x(t) = x(t) +
∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
x(r)

)
dr

)
ds, t ≥ t. (.)

It follows therefore that x(t) satisfies the integral asymptotic relation

x(t) ∼
∫ t

b
ϕ–

(
p(s)–

∫ ∞

s
q(r)ψ

(
x(r)

)
dr

)
ds, t → ∞, (.)

for any b ≥ a, which is regarded as an ‘approximation’ of (.) at infinity. A common way
of determining the desired intermediate solution of (E) would be by solving the integral
equation (.) with the help of a fixed point technique. For this purpose the Schauder-
Tychonoff fixed point theorem should be applied to the integral operator

Fx(t) = x +
∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
x(r)

)
dr

)
ds, t ≥ t, x ∈R,

acting on some closed convex subsets X of C[t,∞), which should be chosen in such a
way that F is a continuous self-map on X and send it into a relatively compact subset
of C[t,∞). That such choices of X are feasible is guaranteed by the existence of three
types of regularly varying functions that determine exactly the asymptotic behavior of all
possible solutions of (.).

The purpose of this section is to collect preparatory results which will help us to simplify
the proof of both ‘if ’ and ‘only if ’ parts of our main theorems. We begin by proving three
results verifying that regularly varying functions Xi(t), i = , ,  defined, respectively by
(.), (.), and (.) satisfy the integral asymptotic relation (.).

Lemma . Suppose that (.) holds. The function X(t) given by (.) satisfies the asymp-
totic relation (.).

Proof Let (.) hold. Since η < α, from (.) we have σ < –, so we can apply Proposition .
to the integral

∫ ∞

t
q(s) ds =

∫ ∞

t
sσ lq(s) ds ∼ (

–(σ + )
)–tσ+lq(t), t → ∞.
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Using the above relation, (.), (.), and (.) we get

ϕ–
(

p(t)–
∫ ∞

t
q(s) ds

)

= ϕ–
(

t–ηlp(t)–
∫ ∞

t
sσ lq(s) ds

)

∼ (
–(σ + )

)– 
α ϕ–(tσ+–η

)
lp(t)– 

α lq(t)

α

=
(
–(σ + )

)– 
α t

σ+–η
α L

(
tσ+–η

)
lp(t)– 

α lq(t)

α , t → ∞. (.)

Since σ = η – α –  we can rewrite (.) in the form

ϕ–
(

p(t)–
∫ ∞

t
q(s) ds

)
∼ (α – η)– 

α t–L
(
t–α

)
lp(t)– 

α lq(t)

α , t → ∞. (.)

Application of Proposition .(iii) to (.) gives

∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r) dr

)
ds ∈ SV. (.)

From (.) and (.), by Proposition .(iv), we find that X(t) ∈ ntr-SV and ψ(X(t)) ∈
ntr-SV. We integrate q(t)ψ(X(t)) on [t,∞). Applying Proposition . (which is possible
since σ < –) and using (.) we obtain

∫ ∞

t
q(s)ψ

(
X(s)

)
ds =

∫ ∞

t
sσ lq(s)ψ

(
X(s)

)
ds ∼ tσ+

–(σ + )
lq(t)ψ

(
X(t)

)

=
tη–α

α – η
lq(t)ψ

(
X(t)

)
,

as t → ∞, from which it readily follows that

p(t)–
∫ ∞

t
q(s)ψ

(
X(s)

)
ds ∼ t–α

α – η
lp(t)–lq(t)ψ

(
X(t)

)
, t → ∞.

From the above relation, using Proposition ., (.), and (.) we conclude

ϕ–
(

p(t)–
∫ ∞

t
q(s)ψ

(
X(s)

)
ds

)

∼ ϕ–((α – η)–t–αlp(t)–lq(t)ψ
(
X(t)

))

∼ (α – η)– 
α ϕ–(t–α

)
lp(t)– 

α lq(t)

α ψ

(
X(t)

) 
α

= (α – η)– 
α t–L

(
t–α

)
lp(t)– 

α lq(t)

α ψ

(
X(t)

) 
α , t → ∞. (.)

In view of (.), integrating (.) from t to t, we get

∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds

∼
∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r) dr

)
ψ

(
X(s)

) 
α ds, t → ∞. (.)
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On the other hand, we rewrite (.) as

�
(
X(t)

)
=

∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r) dr

)
ds, t ≥ t. (.)

Since

�
(
X(t)

)
=

∫ X(t)



dv
ψ(v) 

α

,

differentiation of (.) gives

X ′
(t) = ϕ–

(
p(t)–

∫ ∞

t
q(s) ds

)
ψ

(
X(t)

) 
α , t ≥ t. (.)

Integrating (.) on [t, t] and combining with (.) we obtain

X(t) ∼
∫ t

t

X ′
(s) ds ∼

∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds, t → ∞.

This completes the proof of Lemma .. �

Lemma . Suppose that (.) holds and let ρ be defined by (.). The function X(t) given
by (.) satisfies the asymptotic relation (.).

Proof Let (.) hold. Using (.) and (.) we rewrite (.) in the form

�
(
X(t)

)
=

α

α – β

t
σ+α+–η

α

ρ[α( – ρ) – η] 
α

L
(
tα(ρ–))lp(t)– 

α lq(t)

α , t ≥ t, (.)

from which using (.) follows

X(t)
ψ(X(t)) 

α

∼ t
σ+α+–η

α

ρ[α( – ρ) – η] 
α

L
(
tα(ρ–))lp(t)– 

α lq(t)

α , t → ∞. (.)

Since σ+α+–η

α
> , by Proposition .(v), we conclude that the function on the right-hand

side of (.) tends to ∞ as t → ∞. From (.) using the previous conclusion and �– ∈
RV( α

α–β
) with application of Proposition .(iv), we obtain X(t) ∈ RV(ρ), with ρ given by

(.). Thus, X(t) is expressed as X(t) = tρ l(t), l(t) ∈ SV. Then, using (.), we get

∫ ∞

t
q(s)ψ

(
X(s)

)
ds

=
∫ ∞

t
q(s)

ψ(X(s))
X(s)α

X(s)α ds

∼ ρα
[
α( – ρ) – η

] ∫ ∞

t
q(s)s–σ–α–+ηL

(
sα(ρ–))–αlp(s)lq(s)–X(s)α ds

= ρα
[
α( – ρ) – η

] ∫ ∞

t
sα(ρ–)+η–L

(
sα(ρ–))–αlp(s)l(s)α ds, t → ∞. (.)
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Since σ + β +  < β

α
η, we have α(ρ – ) + η < , implying that we can apply Proposition .

on the last integral in (.) and then multiplying the result with p(t)– we obtain

p(t)–
∫ ∞

t
q(s)ψ

(
X(s)

)
ds ∼ ραtα(ρ–)L

(
tα(ρ–))–αl(t)α , t → ∞,

from which, applying Proposition ., it readily follows as t → ∞ that

ϕ–
(

p(t)–
∫ ∞

t
q(s)ψ

(
X(s)

)
ds

)
∼ ρϕ–(tα(ρ–))L

(
tα(ρ–))–l(t) ∼ ρtρ–l(t),

where we use (.) and (.) in the two last steps. Integration on the above relation from
t to t with application of Proposition . (which is possible since ρ > ) then yields

∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds

∼ ρ

∫ t

t

sρ–l(s) ds ∼ tρ l(t) = X(t), t → ∞.

This completes the proof of Lemma .. �

Lemma . Suppose that (.) holds. The function X(t) given by (.) satisfies the
asymptotic relation (.).

Proof Let (.) hold. Since σ = β

α
η – β – , using (.), (.), and (.), by Proposition .

we get q(t)ψ(P(t)) ∈ RV(–) so that
∫ ∞

t q(s)ψ(P(s)) ds ∈ SV by Proposition .(iii). In view
of (.) and (.), we conclude that X(t) ∈ ntr-RV( – η

α
). Using (.) and (.) we have

∫ ∞

t
q(s)ψ

(
P(s)

)
ds ∼

∫ ∞

t
sβ( η

α –)q(s)ψ
(
s– η

α
)
P(s)β ds, t → ∞. (.)

This, combined with (.), gives the following expression for X(t):

X(t) ∼ P(t)
(

α – β

α

∫ ∞

t
sβ( η

α –)q(s)ψ
(
s– η

α
)
P(s)β ds

) 
α–β

, t → ∞. (.)

Next, we integrate q(t)ψ(X(t)) on [t,∞). Since X(t) = t– η
α l(t), l(t) ∈ SV, due to (.),

we obtain

∫ ∞

t
q(s)ψ

(
X(s)

)
ds

=
∫ ∞

t
q(s)ψ

(
s– η

α l(s)
)

ds

∼
∫ ∞

t
q(s)ψ

(
s– η

α
)
l(s)β ds

=
∫ ∞

t
sβ( η

α –)q(s)ψ
(
s– η

α
)
X(s)β ds, t → ∞. (.)
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Changing (.) in the last integral in (.), by a simple calculation we have
∫ ∞

t
q(s)ψ

(
X(s)

)
ds

∼
(

α – β

α

) β
α–β

×
∫ ∞

t
sβ( η

α –)q(s)ψ
(
s– η

α
)
P(s)β

(∫ ∞

s
rβ( η

α –)q(r)ψ
(
r– η

α
)
P(r)β dr

) β
α–β

ds

=
(

α – β

α

∫ ∞

t
sβ( η

α –)q(s)ψ
(
s– η

α
)
P(s)β ds

) α
α–β

∼
(

α – β

α

∫ ∞

t
q(s)ψ

(
P(s)

)
ds

) α
α–β

, t → ∞, (.)

where we use (.) in the last step. Since
∫ ∞

t q(s)ψ(X(s)) ds ∈ SV, (.), (.), and (.)
give

ϕ–
(

p(t)–
∫ ∞

t
q(s)ψ

(
X(s)

)
ds

)

= ϕ–
(

t–ηlp(t)–
∫ ∞

t
q(s)ψ

(
X(s)

)
ds

)

∼ ϕ–(t–η
)
lp(t)– 

α

(∫ ∞

t
q(s)ψ

(
X(s)

)
ds

) 
α

= t– η
α L

(
t–η

)
lp(t)– 

α

(∫ ∞

t
q(s)ψ

(
X(s)

)
ds

) 
α

, (.)

as t → ∞. Integrating (.) from t to t, we conclude via Proposition . that

∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds

∼ α

α – η
t– η

α L
(
t–η

)
lp(t)– 

α

(∫ ∞

t
q(s)ψ

(
X(s)

)
ds

) 
α

,

as t → ∞. This, combined with (.) and (.), shows that X(t) satisfies the asymptotic
relation (.). This completes the proof of Lemma .. �

After the construction of intermediate solutions with the help of the Schauder-Tychonoff
fixed point theorem, to finish the proof of the ‘if ’ part of our main results we prove the
regularity of those solutions using the generalized L’Hospital rule (see []).

Lemma . Let f , g ∈ C[T ,∞). Let

lim
t→∞ g(t) = ∞ and g ′(t) >  for all large t. (.)

Then

lim inf
t→∞

f ′(t)
g ′(t)

≤ lim inf
t→∞

f (t)
g(t)

≤ lim sup
t→∞

f (t)
g(t)

≤ lim sup
t→∞

f ′(t)
g ′(t)

.
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If we replace (.) with condition

lim
t→∞ f (t) = lim

t→∞ g(t) =  g ′(t) <  for all large t,

then the same conclusion holds.

5 Proof of main results
Proof of the ‘only if ’ part of Theorems ., ., . Suppose that (E) has an intermediate
solution x(t) ∈ RV(ρ) with ρ ∈ [,  – η

α
] defined on [t,∞). Since limt→∞ p(t)ϕ(x′(t)) = ,

integration of (E) on (t,∞) using (.), (.), and (.) gives

p(t)ϕ
(
x′(t)

)
=

∫ ∞

t
q(s)ψ

(
x(s)

)
ds =

∫ ∞

t
sσ+βρ lq(s)lx(s)βL

(
x(s)

)
ds, t ≥ t, (.)

implying the convergence of the last integral in (.) i.e. implying that σ + βρ ≤ –. We
distinguish the two cases:

(a) σ + βρ = –, (b) σ + βρ < –.

Assume that (a) holds. Multiplying (.) with p(t)– we get

ϕ
(
x′(t)

)
= p(t)–ξ (t), where ξ (t) =

∫ ∞

t
s–lq(s)lx(s)βL

(
x(s)

)
ds. (.)

Clearly, ξ (t) ∈ SV and limt→∞ ξ (t) = . From (.), using (.) and (.) we have

x′(t) = ϕ–(p(t)–ξ (t)
)

= ϕ–(t–ηlp(t)–ξ (t)
) ∼ ϕ–(t–η

)
lp(t)– 

α ξ (t)

α , t → ∞. (.)

Integrating (.) from t to t and using (.) we get

x(t) ∼
∫ t

t

ϕ–(s–η
)
lp(s)– 

α ξ (s)

α ds =

∫ t

t

s– η
α L

(
s–η

)
lp(s)– 

α ξ (s)

α ds, t → ∞. (.)

From (.) we find via Karamata’s integration theorem that

x(t) ∼ α

α – η
t– η

α L
(
t–η

)
lp(t)– 

α ξ (t)

α ∈ RV

(
 –

η

α

)
, t → ∞. (.)

Using (.) we rewrite (.) in the form

x(t) ∼ P(t)ξ (t)

α , t → ∞. (.)

Assume that (b) holds. Applying Proposition . to the last integral in (.) we have

p(t)ϕ
(
x′(t)

) ∼ tσ+βρ+

–(σ + βρ + )
lq(t)lx(t)βL

(
x(t)

)
, t → ∞. (.)

Multiplying (.) with p(t)– and using (.) we get

ϕ
(
x′(t)

) ∼ tσ+βρ+–η

–(σ + βρ + )
lp(t)–lq(t)lx(t)βL

(
x(t)

)
, t → ∞. (.)
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Using Proposition ., (.), and (.) we have

x′(t) ∼ ϕ–(tσ+βρ+–η
(
–(σ + βρ + )

)–lp(t)–lq(t)lx(t)βL
(
x(t)

))

∼ ϕ–(tσ+βρ+–η
)(

–(σ + βρ + )
)– 

α lp(t)– 
α lq(t)


α lx(t)

β
α L

(
x(t)

) 
α

=
(
–(σ + βρ + )

)– 
α t

σ+βρ+–η
α L

(
tσ+βρ+–η

)
lp(t)– 

α lq(t)

α lx(t)

β
α L

(
x(t)

) 
α , (.)

as t → ∞. Integration of (.) on [t, t] leads to

x(t) ∼ (
–(σ + βρ + )

)– 
α

×
∫ t

t

s
σ+βρ+–η

α L
(
sσ+βρ+–η

)
lp(s)– 

α lq(s)

α lx(s)

β
α L

(
x(s)

) 
α ds, (.)

as t → ∞. Since the above integral tends to infinity as t → ∞ (note that x(t) → ∞,
t → ∞), we consider the following two cases separately.

(b.)
σ + βρ +  – η

α
> –, (b.)

σ + βρ +  – η

α
= –.

Assume that (b.) holds. Applying Proposition . to the integral in (.), we get

x(t) ∼ α

σ + βρ +  – η + α

(
–(σ + βρ + )

)– 
α t

σ+βρ+–η+α
α

× L
(
tσ+βρ+–η

)
lp(t)– 

α lq(t)

α lx(t)

β
α L

(
x(t)

) 
α ∈ RV

(
σ + βρ +  – η + α

α

)
,

t → ∞. (.)

Assume that (b.) holds. Then (.) shows that x(t) ∈ SV, that is, ρ = , and hence σ =
η – α – . Since σ + βρ +  = η – α, (.) reduced to

x(t) ∼ (α – η)– 
α

∫ t

t

s–L
(
s–α

)
lp(s)– 

α lq(s)

α lx(s)

β
α L

(
x(s)

) 
α ds ∈ SV, t → ∞. (.)

Let us now suppose that x(t) is an intermediate solution of (E) belonging to ntr-SV.
From the above observation this is possible only when the case (b.) holds, in which case
ρ = , σ = η – α – , and x(t) = lx(t) must satisfy the asymptotic behavior (.). Denote
the right-hand side of (.) by μ(t). Then μ(t) → ∞, t → ∞ and it satisfies

μ′(t) = (α – η)– 
α t–L

(
t–α

)
lp(t)– 

α lq(t)

α lx(t)

β
α L

(
x(t)

) 
α

= (α – η)– 
α t–L

(
t–α

)
lp(t)– 

α lq(t)

α ψ

(
x(t)

) 
α , t ≥ t,

where we use (.) in the last step. Since (.) is equivalent to x(t) ∼ μ(t), t → ∞, from
the above using (.) we obtain

μ′(t)
ψ(μ(t)) 

α

∼ ϕ–
(

p(t)–
∫ ∞

t
q(s) ds

)
, t → ∞.
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An integration of the last relation over [t, t] gives

∫ μ(t)

μ(t)

dv
ψ(v) 

α

∼ �
(
μ(t)

) ∼
∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r) dr

)
ds, t → ∞,

or

x(t) ∼ μ(t) ∼ �–
(∫ t

t

ϕ–
(

p(s)–
∫ ∞

s
q(r) dr

)
ds

)
, t → ∞.

Thus, it has been shown that x(t) ∼ X(t), t → ∞, where X(t) is given by (.). Notice that
the verification of (.) is included in the above discussions. This proves the ‘only if ’ part
of Theorem ..

Next, suppose that x(t) is an intermediate solution of (E) belonging to RV(ρ), ρ ∈ (,  –
η

α
). This is possible only when (b.) holds, in which case x(t) must satisfy the asymptotic

relation (.). Therefore,

ρ =
σ + βρ +  – η + α

α
⇒ ρ =

σ + α +  – η

α – β
,

which justifies (.). An elementary calculation shows that

 < ρ <  –
η

α
⇒ η – α –  < σ <

β

α
η – β – ,

which determines the range (.) of σ . Since σ + βρ +  – η + α = αρ and –(σ + βρ + ) =
α( – ρ) – η, (.) reduced to

x(t) ∼ tρ

ρ(α( – ρ) – η) 
α

L
(
tα(ρ–))lp(t)– 

α lq(t)

α lx(t)

β
α L

(
x(t)

) 
α

=
t–ρ+ 

α

ρ(α( – ρ) – η) 
α

ϕ–(tα(ρ–))p(t)– 
α q(t)


α ψ

(
x(t)

) 
α , t → ∞, (.)

where we use (.), (.), (.), and (.) in the last step. From (.) using (.) we get

�
(
x(t)

) ∼ α

α – β

x(t)
ψ(x(t)) 

α

∼ α

α – β

t–ρ+ 
α

ρ(α( – ρ) – η) 
α

ϕ–(tα(ρ–))p(t)– 
α q(t)


α , t → ∞.

Thus, we conclude that x(t) enjoys the asymptotic formula x(t) ∼ X(t), t → ∞, where
X(t) is given by (.). This proves the ‘only if ’ part of Theorem ..

Finally, suppose that x(t) is an intermediate solution of (E) belonging to ntr-RV( – η

α
).

Then the case (a) is the only possibility for x(t), which means that ρ =  – η

α
, σ = β

α
η –β – ,

and (.) is satisfied by x(t). Differentiation of ξ (t), defined in (.), using (.), (.), and
(.), leads to

ξ ′(t) ∼ –t–lq(t)lx(t)βL
(
x(t)

) ∼ –q(t)ψ
(
x(t)

)
, t → ∞.
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Noting that x(t) ∼ P(t)ξ (t) 
α , t → ∞ and using (.), one can transform the above relation

into

ξ ′(t) ∼ –q(t)ψ
(
P(t)ξ (t)


α
) ∼ –q(t)ψ

(
P(t)

)
ξ (t)

β
α , t → ∞.

So, we get the differential asymptotic relation for ξ (t):

ξ (t)– β
α ξ ′(t) ∼ –q(t)ψ

(
P(t)

)
, t → ∞. (.)

Due to fact that α – β >  and ξ (t) →  as t → ∞, the left-hand side of (.) can be
integrated over (t,∞), assuring the integrability of q(t)ψ(P(t)) on (t,∞), which implies
the convergence of the integral in (.). Integration of (.) on (t,∞) yields

ξ (t) ∼
(

α – β

α

∫ ∞

t
q(s)ψ

(
P(s)

)
ds

) α
α–β

, t → ∞. (.)

Combining (.) with (.) gives us x(t) ∼ X(t), t → ∞, where X(t) is given by (.).
This completes the ‘only if ’ part of the proof of Theorem .. �

Proof of the ‘if ’ part of Theorems ., ., . Suppose that (.), (.) or (.) holds. From
Lemmas ., ., and . it is well known that each Xi(t), i = , , , defined by (.), (.),
and (.), satisfies the asymptotic relation (.) for any b ≥ a. We perform the simultane-
ous proof for Xi(t), i = , ,  so the subscript i = , ,  will be deleted in the rest of proof.
By (.) there exists T > a such that

∫ t

T

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds ≤ X(t), t ≥ T. (.)

Let such a T be fixed. We may assume that X(t) is increasing on [T,∞). Since (.) is
satisfied with b = T, there exists T > T such that

∫ t

T

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds ≥ 


X(t), t ≥ T . (.)

Applying Proposition . to the function ψ(s) ∈ RV(β), β >  we see that there exists a
constant A >  such that

ψ(s) ≤ Aψ(s) for each  ≤ s ≤ s. (.)

Now we choose positive constants m and M such that

m– β
α ≤ 

(A)/α , M– β
α ≥ (A)/α , mX(T) ≤ MX(T). (.)

In addition, since X(t) → ∞ as t → ∞, from (.), for λ >  we have

λβ


ψ

(
X(t)

) ≤ ψ
(
λX(t)

) ≤ λβψ
(
X(t)

)
, for all sufficiently large t. (.)
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Also, since Q(t) = /p(t)
∫ ∞

t q(s)ψ(X(s)) ds →  as t → ∞, from (.), for λ >  we have

λ/α


ϕ–(Q(t)

) ≤ ϕ–(λQ(t)
) ≤ λ/αϕ–(Q(t)

)
, for all sufficiently large t. (.)

Define the integral operator F by

Fx(t) = x +
∫ t

T

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
x(r)

)
dr

)
ds, t ≥ T, (.)

where x is constant such that

mX(T) ≤ x ≤ M


X(T), (.)

and let it act on the set

X :=
{

x(t) ∈ C[T,∞) : mX(t) ≤ x(t) ≤ MX(t), t ≥ T
}

. (.)

It is clear that X is a closed convex subset of the locally convex space C[T,∞) equipped
with the topology of uniform convergence on compact subintervals of [T,∞).

Let x(t) ∈X . Using first (.) and (.) and then (.) and (.) we get

Fx(t) ≤ x +
∫ t

T

ϕ–
(

Ap(s)–
∫ ∞

s
q(r)ψ

(
MX(r)

)
dr

)
ds

≤ M


X(T) +
∫ t

T

ϕ–
(

AMβp(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds, t ≥ T,

from which, using (.), (.), and (.), it follows that

Fx(t) ≤ M


X(T) + 
(
AMβ

)/α
∫ t

T

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds

≤ M


X(t) + 
(
AMβ

)/αX(t) ≤ M


X(t) +
M


X(t) = MX(t), t ≥ T.

On the other hand, using (.) we have

Fx(t) ≥ x ≥ mX(T) ≥ mX(t) for T ≤ t ≤ T ,

and using (.), (.), and (.) we obtain

Fx(t) ≥
∫ t

T

ϕ–
(

p(s)–

A

∫ ∞

s
q(r)ψ

(
mX(r)

)
dr

)
ds

≥
∫ t

T

ϕ–
(

mβp(s)–

A

∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds, t ≥ T .
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From the above using (.), (.), and (.) we conclude

Fx(t) ≥ 


(
mβ

A

) 
α

∫ t

T

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds

≥ 


(
mβ

A

) 
α

X(t) ≥ mX(t), t ≥ T .

This shows that Fx(t) ∈X , that is, F maps X into itself.
Furthermore it can be verified (similarly to the proof of Theorem  in []) that F is a

continuous mapping and that F (X ) is relatively compact in C[T,∞).
Thus, all the hypotheses of the Schauder-Tychonoff fixed point theorem are fulfilled and

so there exists a fixed point x(t) ∈X of F , which satisfies integral equation

x(t) = x +
∫ t

T

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
x(r)

)
dr

)
ds, t ≥ T.

Differentiating the above twice shows that x(t) is a solution of (E) on [T,∞). It is clear
from (.) that x(t) is an intermediate solution of (E).

Therefore, the existence of three types of intermediate solutions of (E) has been estab-
lished. The proof of our main results will be completed with the verification that the in-
termediate solutions of (E) constructed above are actually regularly varying functions.

We define the function

J(t) =
∫ t

T

ϕ–
(

p(s)–
∫ ∞

s
q(r)ψ

(
X(r)

)
dr

)
ds, t ≥ T,

and put

l = lim inf
t→∞

x(t)
J(t)

, L = lim sup
t→∞

x(t)
J(t)

.

Since x(t) ∈X , it is clear that  < l ≤ L < ∞. By Lemmas ., ., and . we have

J(t) ∼ X(t), t → ∞. (.)

Using Lemma . and (.) we see that

lim inf
t→∞

∫ ∞
t q(s)ψ(x(s)) ds

∫ ∞
t q(s)ψ(X(s)) ds

≥ lim inf
t→∞

ψ(x(t))
ψ(X(t))

= lim inf
t→∞

x(t)βL(x(t))
X(t)βL(X(t))

≥ lim inf
t→∞

(
x(t)
X(t)

)β

lim inf
t→∞

L( x(t)
X(t) X(t))

L(X(t))
. (.)

Since m ≤ x(t)
X(t) ≤ M, t ≥ T, using the uniform convergence theorem ([], Theorem ..)

we conclude

∣
∣∣
∣
L( x(t)

X(t) X(t))
L(X(t))

– 
∣
∣∣
∣ ≤ sup

λ∈[m,M]

∣
∣∣
∣
L(λX(t))
L(X(t))

– 
∣
∣∣
∣ −→ , t → ∞. (.)
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From (.), using (.) and (.), we get

lim inf
t→∞

∫ ∞
t q(s)ψ(x(s)) ds

∫ ∞
t q(s)ψ(X(s)) ds

≥
(

lim inf
t→∞

x(t)
X(t)

)β

=
(

lim inf
t→∞

x(t)
J(t)

)β

= lβ . (.)

Similarly, we conclude that

lim sup
t→∞

∫ ∞
t q(s)ψ(x(s)) ds

∫ ∞
t q(s)ψ(X(s)) ds

≤ Lβ . (.)

We denote x̂(t) = p(t)– ∫ ∞
t q(s)ψ(x(s)) ds and X̂(t) = p(t)– ∫ ∞

t q(s)ψ(X(s)) ds. Using Lem-
ma . and (.) we obtain

l ≥ lim inf
t→∞

x′(t)
J ′(t)

= lim inf
t→∞

ϕ–(x̂(t))
ϕ–(X̂(t))

≥ lim inf
t→∞

(
x̂(t)
X̂(t)

) 
α

lim inf
t→∞

L( x̂(t)
X̂(t)

X̂(t))

L(X̂(t))
.

From (.) and (.) we see that x̂(t)
X̂(t)

is bounded. So, we can apply the uniform conver-
gence again, identically to (.), to get

l ≥ lim inf
t→∞

(
x̂(t)
X̂(t)

) 
α

=
(

lim inf
t→∞

∫ ∞
t q(s)ψ(x(s)) ds

∫ ∞
t q(s)ψ(X(s)) ds

) 
α

. (.)

In view of (.) and (.) we have l ≥ l
β
α , implying that l ≥  because α > β . If we ar-

gue similarly by taking the superior limits instead of the inferior limits, we are led to
the inequality L ≤ L

β
α , which implies that L ≤ . Thus we conclude that l = L = , i.e.

limt→∞ x(t)/J(t) = . This combined with (.) shows that x(t) ∼ X(t), t → ∞, which
shows that x(t) is a regularly varying function whose regularity index ρ is , σ+α+–η

α–β
, or

 – η

α
according to whether σ = η – α – , η – α –  < σ < β

α
η – β – , or σ = β

α
η – β – . �

6 Examples
Example . Consider the equation

(E)
(
p(t)ϕ

(
x′(t)

))′ + q(t)ψ
(
x(t)

)
= , t ≥ e = a,

where p(t) = t α
 (log t)α ∈ RV( α

 ), ϕ(s) = sα ∈ RV(α), and ψ(s) = sβ log s ∈ RV(β), α > β > .
We have η = α

 ∈ (,α), P(t) ∼ 
√

t(log t)–, and the functions ϕ–(s) and ψ(s) satisfy the
additional requirements (.) and (.), respectively.

(i) Suppose that

q(t) ∼ α

α+ t–– α


r(t)(log t)
α–β



log
√

log t
, t → ∞, (.)

where r(t) is continuous function on [a,∞) such that limt→∞ r(t) = . Then q(t) ∈ RV(– –
α
 ), so that σ = η – α –  and we see that

∫ t

a
ϕ–

(
p(s)–

∫ ∞

s
q(r) dr

)
ds ∼ 



∫ t

a
(log s)– α+β

α (log
√

log s)– 
α

ds
s

∼ α

α – β
(log t)

α–β
α (log

√
log t)– 

α −→ ∞, t → ∞,
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implying that (.) holds. Therefore, by Theorem . there exist nontrivial slowly varying
solutions of (E), and any such solution x(t) has asymptotic behavior

�
(
x(t)

) ∼ α

α – β
(log t)

α–β
α (log

√
log t)– 

α , t → ∞.

In view of (.) we have

x(t)
α–β
α

(
log x(t)

)– 
α ∼ (

√
log t)

α–β
α (log

√
log t)– 

α , t → ∞

implying that x(t) ∼ √
log t, t → ∞. If in (.) instead of ∼ one has =, and in particular

r(t) =  – 
log t , then (E) possesses an exact increasing nontrivial SV-solution x(t) =

√
log t

on [e,∞).
(ii) Suppose that

q(t) ∼ α

 · α
t– α

 – β
 – r(t)(log t)β

log
√t

log t

, t → ∞, (.)

where r(t) is continuous function on [a,∞) such that limt→∞ r(t) = . It is clear that q(t) is
regularly varying function of index

σ = –
α


–

β


–  ∈

(
η – α – ,

β

α
η – β – 

)
= (– – α/, – – β/)

and that ρ = σ+α+–η

α–β
= 

 . By Theorem . there exist regularly varying solutions of index
ρ of (E) and any such solution x(t) has asymptotic behavior

�
(
x(t)

) ∼ α

α – β
t

α–β
α (log t)

β
α –

(
log

√t
log t

)– 
α

, t → ∞.

In view of (.) we have

x(t)
α–β
α

(
log x(t)

)– 
α ∼

( √t
log t

) α–β
α

(
log

√t
log t

)– 
α

, t → ∞,

implying that

x(t) ∼
√t

log t
, t → ∞.

Observe that in (.) instead of ∼ one has = and

r(t) =
(

 –


log t

)(
 +


log t

)(
 –


log t

)α–

,

then x(t) = √t(log t)– on [e,∞) is an exact increasing solution.
(iii) Suppose that

q(t) ∼ α

α
t–– β


r(t)(log t)β–α–

log
√

t
log t

, t → ∞, (.)
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where r(t) is continuous function on [a,∞) such that limt→∞ r(t) = . Here, q(t) ∈ RV(– –
β

 ). Therefore, σ = β

α
η – β –  and

q(t)ψ
(
P(t)

) ∼ α

α–β
t–(log t)β–α–

log 
√

t
log t

log
√

t
log t

∼ α

α–β
t–(log t)β–α–, t → ∞,

from which it follows that
∫ ∞

t
q(s)ψ

(
P(s)

)
ds ∼ α

α–β

∫ ∞

t
(log s)β–α– ds

s

∼ 
α–β

α

α – β
(log t)β–α −→ , t → ∞,

implying that (.) holds. Therefore, by Theorem . there exist nontrivial regularly vary-
ing solutions of index  – η

α
= 

 of (E) and any such solution x(t) has asymptotic behavior

x(t) ∼ 
√

t(log t)–
(

α – β

α


α–β

α

α – β
(log t)β–α

) 
α–β ∼

√
t

log t
, t → ∞.

If in (.) instead of ∼ one has = and in particular

r(t) =
(

 –


log t

)α–(
 –


log t

)
,

then (E) possesses an exact increasing solution x(t) =
√

t(log t)– on [e,∞).
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9. Jaroš, J, Kusano, T, Manojlović, J: Asymptotic analysis of positive solutions of generalized Emden-Fowler differential

equations in the framework of regular variation. Cent. Eur. J. Math. 11(12), 2215-2233 (2013)
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