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1 Introduction
In this paper, we study the existence of positive solutions for the following boundary value
problem with impulsive effects:

⎧
⎪⎨

⎪⎩

x′(t) + a(t)x(t) = f (t, x(t)), t �= tk , t ∈ J ,
�x(tk) = Ik(x(tk)), k = , , . . . , p,
x() = x(T),

(.)

where J = [, T],  = t < t < t < · · · < tp <  = tp+, �x(tk) = x(t+
k ) – x(t–

k ), x(t+
k ), and x(t–

k )
represent the right limit and left limits of u(t) at tk , respectively.

Impulsive differential equations serve as basic models to study the dynamics of processes
that are subject to sudden changes in their states and its theory has developed fast during
the past few years. There has been increasing interest in the investigation for boundary
value problems of nonlinear impulsive differential equations and much literature has been
published about the existence of solutions for impulsive differential equations, see [–]
and the references therein. There are some common techniques to approach those prob-
lems: the fixed point theorems [–], the method of upper and lower solutions [–],
the topological degree theory [, ], the variational method [–] and so on. Recently,
using the fixed point theorem, Zhang et al. [] obtained the existence of a positive solu-
tion of (.), where they required that the function a is of definite sign. In this paper, we
continue to discuss (.). By using the fixed point theorem in a cone different from the one
in [] and degree theory, we obtain some new conditions which guarantee the existence
of single and multiple positive solutions for (.). Our results are different from the results
in [] and are new even if Ik ≡ .
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2 Main results
Let J∗ = J\{t, t, . . . , tp}, PC(J) = {u : J → R|u ∈ C(J∗), u(t+

i ), u(t–
i ) exist and u(t–

i ) = u(ti), i =
, , . . . , p}. PC(J) is a Banach space with the norm ‖u‖ = sup{|u(t)| : t ∈ J}.

Lemma . [] The function x ∈ PC(J) is a solution of (.) if and only if x is a solution of
the following impulsive integral equation:

x(t) =
∫ T


G(t, s)f

(
s, x(s)

)
ds +

p∑

k=

G(t, tk)Ik
(
x(tk)

)
,

where

G(t, s) =

⎧
⎪⎨

⎪⎩

e
∫ s
t a(r) dr

e
∫ T
 a(s) ds–

, if  ≤ t < s ≤ T ,

e
∫ s
t a(r) dre

∫ T
 a(r) dr

e
∫ T
 a(s) ds–

, if  ≤ s ≤ t ≤ T .

Set

�+ =
{

a ∈ C(J , R) :
∫ T


a(r) dr > 

}

, �– =
{

a ∈ C(J , R) :
∫ T


a(r) dr < 

}

,

M = max
{

G(t, s) : t, s ∈ J
}

, m = min
{

G(t, s) : t, s ∈ J
}

.

The Green’s function G is of definite sign if a ∈ �+ ∪ �–. Moreover, M > m >  if a ∈ �+;
m < M <  if a ∈ �–.

Define the operator A and cone K on PC(J) by

(Ax)(t) =
∫ T


G(t, s)f

(
s, x(s)

)
ds +

p∑

k=

G(t, tk)Ik
(
x(tk)

)
,

K =
{

x ∈ PC(J) : x(t) ≥ δ‖x‖},

where δ = m
M if a ∈ �+; δ = M

m if a ∈ �–.

Lemma . [] Let X be a Banach space and K be a cone in X. Suppose � and � are
open subsets of X such that  ∈ � ⊂ �̄ ⊂ � and suppose that

� : K ∩ (�̄\�) → K

is a completely continuous operator such that:
(i) inf‖�u‖ > , u �= μ�u for u ∈ K ∩ ∂� and μ ≥ , and u �= μ�u for u ∈ K ∩ ∂�

and  < μ ≤ , or
(ii) inf‖�u‖ > , u �= μ�u for u ∈ K ∩ ∂� and μ ≥ , and u �= μ�u for u ∈ K ∩ ∂�

and  < μ ≤ .
Then � has a fixed point in K ∩ (�̄\�).

Set

ϕ(s) = T sup
(t,u)∈J×[δs,s]

f (t, u)
u

+ sup

{ p∑

k=

ln

(

 +
Ik(vk)

vk

)

: vk ∈ [δs, s]

}

,
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ψ(s) = T inf
(t,u)∈J×[δs,s]

f (t, u)
u

+ inf

{ p∑

k=

ln

(

 +
Ik(vk)

vk

)

: vk ∈ [δs, s]

}

,

ϕ = lim
s→+

ϕ(s), ϕ∞ = lim
s→+∞ϕ(s), ψ = lim

s→+
ψ(s), ψ∞ = lim

s→+∞ψ(s).

The following theorems are the main results of this paper.

Theorem . Assume that a ∈ �+ and there exist two positive constants r < R such that

f ∈ C
(
J × [δr, R], [, +∞)

)
, Ik ∈ C

(
[δr, R], [, +∞)

)
( ≤ k ≤ p). (.)

Then (.) has at least one solution x with r ≤ ‖x‖ ≤ R if one of the following conditions is
satisfied:

(H) ϕ(r) <
∫ T

 a(s) ds and ψ(R) >
∫ T

 a(s) ds;
(H) ϕ(R) <

∫ T
 a(s) ds and ψ(r) >

∫ T
 a(s) ds.

Proof Here, we only prove the case in which (H) is satisfied. Let �R = {x ∈ K : ‖x‖ < R},
�r = {x ∈ K : ‖x‖ < r}. At first, we show that A : �̄R \ �r → K . For any x ∈ �̄R \ �r , δr ≤
x(t) ≤ R, t ∈ J . From  < m ≤ G(t, s) ≤ M and (.), we obtain, for x ∈ �̄R \ �r ,

 ≤ (Ax)(t) ≤ M

[∫ T


f
(
s, x(s)

)
ds +

p∑

k=

Ik
(
x(tk)

)
]

≤ MT max
{

f (t, u) : t ∈ J , δr ≤ u ≤ R
}

+ pM max
{

Ik(u) : δr ≤ u ≤ R,  ≤ k ≤ p
}

< +∞,

(Ax)(t) ≥ m

[∫ T


f
(
s, x(s)

)
ds +

p∑

k=

Ik
(
x(tk)

)
]

≥ δ‖Ax‖.

Hence, A : �̄R \ �r → K . In addition, one easily checks that A is completely continuous.
Next, we show that:
(a) x �= μAx for x ∈ K ∩ ∂�r and  < μ ≤ ,
(b) inf‖Ax‖ > , x �= μAu for x ∈ K ∩ ∂�R and μ ≥ .
If (a) is not true, there exist x ∈ K ∩ ∂�r and  < μ ≤  with x = μAx. Hence,

⎧
⎪⎨

⎪⎩

x′(t) + a(t)x(t) = μf (t, x(t)), t �= tk , t ∈ J ,
x(t+

k ) = x(tk) + μIk(x(tk)), k = , , . . . , p,
x() = x(T).

(.)

Since x(t) ≥ δr > , we rewrite (.) as

⎧
⎪⎨

⎪⎩

(ln x(t))′ + a(t) = μf (t,x(t))
x(t) , t �= tk , t ∈ J ,

� ln x(tk) = ln( + μIk (x(tk ))
x(tk ) ), k = , , . . . , p,

x() = x(T).
(.)



Wang and Guo Advances in Difference Equations  (2015) 2015:275 Page 4 of 10

Integrating the first equality in (.) from  to T , we obtain

∫ T


a(t) dt = μ

∫ T



f (t, x(t))
x(t)

dt +
p∑

k=

ln

(

 +
μIk(x(tk))

x(tk)

)

≤
∫ T



f (t, x(t))
x(t)

dt +
p∑

k=

ln

(

 +
Ik(x(tk))

x(tk)

)

≤ ϕ(r),

which is a contradiction.
Suppose that infx∈K∩∂�R ‖Ax‖ = . There exists the sequence xn ∈ K ∩ ∂�R such that

‖Axn‖ →  as n → ∞. Noting f (t, xn(t)) ≥ , Ik(xn(tk)) ≥  and

 ≤ m

[∫ T


f
(
s, xn(s)

)
ds +

p∑

k=

Ik
(
xn(tk)

)
]

≤ ‖Axn‖ → ,

we obtain f (s, xn(s)) → , Ik(xn(tk)) →  as n → ∞. Hence,

∫ T



f (t, xn(t))
xn(t)

dt +
p∑

k=

ln

(

 +
Ik(xn(tk))

xn(tk)

)

→  as n → ∞,

which implies that ψ(R) = , a contradiction.
Suppose that there exist u ∈ K ∩ ∂�R and μ ≥  with u = μAu. Then

⎧
⎪⎨

⎪⎩

(ln u(t))′ + a(t) = μf (t,u(t))
u(t) , t �= tk , t ∈ J ,

� ln u(tk) = ln( + μIk (u(tk ))
x(tk ) ), k = , , . . . , p,

u() = u(T).
(.)

Integrating the first equality in (.) from  to T , we obtain

∫ T


a(t) dt = μ

∫ T



f (t, u(t))
u(t)

dt +
p∑

k=

ln

(

 +
μIk(u(tk))

u(tk)

)

≥
∫ T



f (t, u(t))
u(t)

dt +
p∑

k=

ln

(

 +
Ik(u(tk))

u(tk)

)

≥ ψ(R),

which is a contradiction.
By Lemma ., there exists x ∈ �̄R\�r with Ax = x, which is the positive solution of (.).

The proof is complete. �

Corollary . Assume that a ∈ �+ and f ∈ C(J × [, +∞], [, +∞)), Ik ∈ C([, +∞),
[, +∞)) ( ≤ k ≤ p). Then (.) has at least one positive solution if one of the following
conditions is satisfied:

() ϕ <
∫ T

 a(s) ds and ψ∞ >
∫ T

 a(s) ds;
() ϕ∞ <

∫ T
 a(s) ds and ψ >

∫ T
 a(s) ds.
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Theorem . Assume that a ∈ �+ and there exist N +  positive constants p < p < · · · <
pN < pN+ such that

f ∈ C
(
J × [δp, pN+], [, +∞)

)
, Ik ∈ C

(
[δp, pN+], [, +∞)

)
( ≤ k ≤ p).

Further suppose that one of the following conditions is satisfied:
() ϕ(pk–) <

∫ T
 a(s) ds, k = , , . . . , [(N + )/], ψ(pk) >

∫ T
 a(s) ds,

k = , , . . . , [(N + )/], or
() ψ(pk–) >

∫ T
 a(s) ds, k = , , . . . , [(N + )/], ϕ(pk) <

∫ T
 a(s) ds,

k = , , . . . , [(N + )/],
where [d] denotes the integer part of d. Then (.) has at least N positive solutions xk ∈ X,
k = , , . . . , N with pk < ‖xk‖ < pk+.

Proof Assume that () holds. The case in which () holds is similar. Since ϕ, ψ are contin-
uous functions, for any  ≤ j ≤ N , there exist rj, Rj such that pj < rj < Rj < pj+ and

ϕ(rj) <
∫ T


a(s) ds, ψ(Rj) >

∫ T


a(s) ds, j is odd,

ϕ(Rj) <
∫ T


a(s) ds, ψ(rj) >

∫ T


a(s) ds, j is even.

By Theorem ., (.) has at least one positive solution xj with rj ≤ ‖xj‖ ≤ Rj. This ends the
proof. �

Theorem . Assume that a ∈ �– and there exist two positive constants r < R such that

f ∈ C
(
J × [δr, R], (–∞, ]

)
, Ik ∈ C

(
[δr, R], (–∞, ]

)
( ≤ k ≤ p). (.)

Further suppose that (H) or (H) is satisfied, where lnα = –∞ if α ≤ . Then (.) has at
least one solution x with r ≤ ‖x‖ ≤ R.

The proof of Theorem . is similar to that of Theorem . and we omit it.

Theorem . Assume that a ∈ �+ and the following conditions are satisfied:

(D) There exist constants  < α < β such that f (t, u), Ik(u) are nondecreasing in u ∈ [α,β]
and

∫ T


f (t,α) dt +

p∑

k=

Ik(α) >
α

m
,

∫ T


f (t,β) dt +

p∑

k=

Ik(β) <
β

M
.

(D) There exists γ > β such that

f ∈ C
(
J × [,γ ], [, +∞)

)
, Ik ∈ C

(
[,γ ], [, +∞)

)
,

∫ T


sup

≤u≤γ

f (t, u) dt +
p∑

k=

sup
≤u≤γ

Ik(u) ≤ γ

M
.
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(D)

lim
x→+

f (t, x)
x

= , lim
x→+

Ik(u)
u

= .

Then (.) has at least two positive solutions in Uγ = {x ∈ PC(J) : ‖x‖ ≤ γ }.

Proof Set

f̃ =

{
f (t, |u|), |u| ≤ γ ,
f (t,γ ) |u| > γ ,

Ĩk =

{
Ik(|u|), |u| ≤ γ ,
Ik(γ ), |u| > γ ,

(Tλu)(t) = λ

∫ T


G(t, s)̃f

(
s, u(s)

)
ds + λ

p∑

k=

G(t, tk )̃Ik
(
u(tk)

)
, λ ∈ [, ], u ∈ PC(J),

�λ = I – Tλ, V =
{

x ∈ PC(J),α < x < β
}

,

where I denotes the identity map. It is easy to check that Tλ : [, ] × PC(J) → PC(J) is
compact. We show:

() T(V ) ⊂ V .
() �λ(u) =  implies that ‖u‖ ≤ γ .
() There exists c ∈ (,α) such that �λ(u) =  admits only the trivial solution in Uc.
The proof of (). From (D), we obtain, for ∀u ∈ V ,

f (t,α) ≤ f̃ (t, u) ≤ f (t,β),

Ik(α) ≤ Ĩk(u) ≤ Ik(β).

Thus, for all u ∈ V ,

T(u) =
∫ T


G(t, s)̃f

(
s, u(s)

)
ds +

p∑

k=

G(t, tk )̃Ik(u) ≤ M

[∫ T


f (s,β) ds +

p∑

k=

Ik(β)

]

< β ,

T(u) ≥ m

[∫ T


f (s,α) ds +

p∑

k=

Ik(α)

]

> α.

That is, T(V ) ⊂ V .
The proof of (). If ϕλ(u) = , then

|u| =
∣
∣Tλ(u)

∣
∣ =

∫ T


G(t, s)̃f

(
s, u(s)

)
ds +

p∑

k=

G(t, tk )̃Ik
(
u(tk)

)

≤ M
∫ T


sup

≤u≤γ

f (s, u) ds + M
p∑

k=

sup
≤u≤γ

Ik(u) ≤ γ .

The proof of (). From (D), there exists  < c < α such that

f (t, u) ≤ u
MT

, Ik(u) ≤ u
Mp

,  ≤ u ≤ c.
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If u ∈ Uc with u = Tλu, we have

|u| =
∣
∣Tλ(u)

∣
∣ ≤ sup

t∈[,T]

[∫ T


G(t, s)̃f

(
s, u(s)

)
ds +

p∑

k=

G(t, tk )̃Ik
(
u(tk)

)
]

≤ sup
t∈[,T]

[∫ T


G(t, s)

u(s)
MT

ds + M
p∑

k=

Ĩk
(
u(tk)

)
]

≤ 

‖u‖,

which implies that u ≡ .
Let Uγ

c = Uγ /Uc and the degree of �λ at  relative to open set D be d(�λ, D, ). Since V
is a closed, convex set in PC(J) and T(∂V ) ⊂ V , by Schauder’s fixed point theorem, there
exists u ∈ V such that T(u) = u and

d(�, V , ) = .

For λ ∈ [, ], u ∈ ∂Uγ
c , �λ(u) �= , by the homotopy property of the degree, we obtain

d
(
�λ, Uγ

c , 
) ≡ constant, λ ∈ [, ],

d
(
�, Uγ

c , 
)

= d
(
�, Uγ

c , 
)

= d
(
I, Uγ

c , 
)

= .

By the additivity property of the degree, one obtains

d
(
�, Uγ

c , 
)

= d(�, V , ) + d
(
�, Uγ

c /V , 
)
.

Hence,

d
(
�, Uγ

c /V , 
)

= d
(
�, Uγ

c , 
)

– d(�, V , ) =  –  = –,

which implies that T has at least a fixed point u ∈ Uγ
c /V . Clearly, c ≤ ‖u‖ ≤ γ . In addi-

tion,

u(t) =
∫ T


G(t, s)̃f

(
s, u(s)

)
ds +

p∑

k=

G(t, tk )̃Ik
(
u(tk)

) ≥ ,

u(t) =
∫ T


G(t, s)f

(
s, u(s)

)
ds +

p∑

k=

G(t, tk)Ik
(
u(tk)

)

≥ m

(∫ T


f
(
s, u(s)

)
ds +

p∑

k=

Ik
(
u(tk)

)
)

≥ .

If there is t∗ ∈ J such that u(t∗) = , by the above inequality, we obtain f (s, u(s)) ≡ ,
Ik(u(tk)) ≡ , which implies that u(t) ≡ , a contradiction. Hence, (.) has at least two
positive solutions in Uγ . The proof is complete. �

Example . Consider the differential equation with singularity
⎧
⎪⎨

⎪⎩

x′(t) + κx(t) = a
xλ(t) + h(t), t �= tk , t ∈ J ,

�x(tk) = ckx(tk), k = , , . . . , p,
x() = x(T),

(.)

where κ , a, λ are positive constants, ck >  and h ∈ C(J , R).
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Set h∗ = min{h(t) : t ∈ J} and h∗ = max{h(t) : t ∈ J}. We claim that (.) has at least one
positive solution provided that the following conditions hold:

γ =
p∑

k=

ln( + ck) < κT , if h∗ ≥ , (.)

γ =:
(
h∗ – eλκT h∗

)
eκT

(
–h∗

a

) 
λ

< κ –

T

p∑

k=

ln( + ck), if h∗ < . (.)

In fact, f (t, u) = au–λ + h(t), ψ = +∞. Moreover, ϕ∞ = γ if h∗ ≥ . If h∗ < , choose b =
λ
√

a/(–h∗),  ≤ f (t, u) ≤ au–λ + h∗ ≤ γu for (t, u) ∈ J × [δb, b] and ϕ(b) = γT + γ < κT . By
Theorem ., (.) has one positive solution.

Remark . The conditions (.) and (.) are different from those of Corollary . in [].

Example . Consider the differential equation

⎧
⎪⎨

⎪⎩

x′(t) + 
 x(t) = x(t) exp(–.x(t)), t ∈ [, t) ∪ (t, ],

�x(t) = x(t)
+x(t) ,

x() = x().
(.)

Let f (t) = te–.t , I(t) = t/( + t), α = ., β = , γ = . It is easy to check that the
conditions (D)-(D) hold. Hence, (.) has at least two positive solutions.

3 Application
In this section, we consider the differential equation

⎧
⎪⎨

⎪⎩

x′(t) = – a(t)
xλ(t) + f (x(t)), t �= tk , t ∈ J ,

�x(tk) = ckx(tk), k = , , . . . , p,
x() = x(T),

(.)

where λ ≥ .
Set y = exp(xλ+(t)/(λ + )) and F(u) = uλf (u), then

⎧
⎪⎨

⎪⎩

y′(t) + a(t)y(t) = y(t)F(((λ + ) ln y(t))


λ+ ), t �= tk , t ∈ J ,
�y(tk) = y(tk)(+ck )λ+ – y(tk), k = , , . . . , p,
y() = y(T).

(.)

If (.) has a solution y(t) > , t ∈ J , then x(t) = ((λ + ) ln y(t))


λ+ is the positive solution of
(.). By Theorem ., we have the following result.

Theorem . Assume that a ∈ �+, f ∈ C((, +∞), [, +∞)), ck > . If there exist constants
δ– < r < R such that

T sup
δr≤u≤r

F
((

(λ + ) ln u
) 

λ+
)

+ r
p∑

k=

[
( + ck)λ+ – 

]
<

∫ T


a(t) dt,
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T inf
δR≤u≤R

F
((

(λ + ) ln u
) 

λ+
)

+
(
ln δ–R

)
p∑

k=

[
( + ck)λ+ – 

]
>

∫ T


a(t) dt

or

T sup
δR≤u≤R

F
((

(λ + ) ln u
) 

λ+
)

+ ln R
p∑

k=

[
( + ck)λ+ – 

]
<

∫ T


a(t) dt,

T inf
δr≤u≤r

F
((

(λ + ) ln u
) 

λ+
)

+
(
ln δ–r

)
p∑

k=

[
( + ck)λ+ – 

]
>

∫ T


a(t) dt,

then (.) has at least one positive solution.

Example . Consider the differential equation

⎧
⎪⎨

⎪⎩

x′(t) = – a(t)
xλ(t) + μf (x(t)), t �= tk , t ∈ J ,

�x(tk) = μx(tk), k = , , . . . , p,
x() = x(T),

(.)

where λ ≥ , a ∈ �+, f ∈ C((, +∞), [, +∞)), μ is a positive real parameter.

Corollary . There exists μ∗ >  such that (.) has at least a positive solution for any
μ ∈ (,μ∗).

Proof Choosing r = δ– +. Since uλf (u) is continuous in (, +∞) and ln u >  for u ∈ [δr, r],
we obtain

 ≤ sup
δr≤u≤r

{(
(λ + ) ln u

) λ
+λ f

((
(λ + ) ln u

) 
λ+

)} ≤ C

for some C > . On the other hand, since [( + μ)λ+ – ]/μ →  + λ as μ → +, there is
σ >  such that

( + μ)λ+ –  ≤ ( + λ)μ,  < μ ≤ σ .

Set μ∗ = min{σ ,
∫ T

 a(s) ds/[CT + p(λ + ) ln r]}, for μ < μ∗, we have

T sup
δr≤u≤r

F
((

(λ + ) ln u
) 

λ+
)

+ ln r
p∑

k=

[
( + μ)λ+ – 

]

< μ∗[CT + p(λ + ) ln r
]

<
∫ T


a(t) dt.

Taking

R = max

{

exp

∫ T
 a(t) dt

p( + μ)+λ – p
, δ

}

,
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one easily checks that

T inf
δR≤u≤R

F
((

(λ + ) ln u
) 

λ+
)

+
(
ln δ–R

)
p∑

k=

[
( + μ)λ+ – 

]
>

∫ T


a(t) dt.

By Theorem ., (.) has one positive solution. �

Remark . Corollary . admits the case that the function a changes sign. As far as we
know, no paper discussed (.) when a changes sign.
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