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1 Introduction
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
the algebraic closure of Qp. Let νp be the normalized exponential valuation of Cp with
|p|p = p–νp(p) = 

p . Let UD(Zp) be the space of uniformly differentiable functions on Zp. For
f ∈ UD(Zp), the bosonic p-adic integral on Zp is defined by

I(f ) =
∫
Zp

f (x) dμ(x)

= lim
N→∞

pN –∑
x=

f (x)μ
(
x + pN

Zp
)

= lim
N→∞


pN

pN –∑
x=

f (x). (.)

Thus, by (.), we get

I(f) = I(f ) + f ′(), where f(x) = f (x + ) (see [–]). (.)
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The fermionic p-adic integral on Zp is defined by Kim as

I–(f ) =
∫
Zp

f (x) dμ–(x)

= lim
N→∞

pN –∑
x=

f (x)μ–
(
x + pN

Zp
)

= lim
N→∞

pN –∑
x=

f (x)(–)x. (.)

Thus, from (.), we have

I–(f) = –I–(f ) + f () (see []). (.)

From (.) and (.), we can derive the following equations:

I(fn) – I(f ) =
n–∑
l=

f ′(l), I–(fn) + (–)n–I–(f ) = 
n–∑
l=

f (l), (.)

where fn(x) = f (x + n), f ′(l) = df (x)
dx |x=l (see [, , ]).

As is well known, the Bernoulli polynomials of order r (∈N) are defined by the generat-
ing function

(
t

et – 

)r

ext =
∞∑

n=

B(r)
n (x)

tn

n!
(see [, ]). (.)

When x = , B(r)
n = B(r)

n () are called the Bernoulli numbers of order r. In particular, if
r = , Bn(x) = B()

n (x) are called the ordinary Bernoulli polynomials.
The Euler polynomials of order r are also given by the generating function

(


et + 

)r

ext =
∞∑

n=

E(r)
n (x)

tn

n!
(see [, ]). (.)

When x = , E(r)
n = E(r)

n () are called the Euler numbers of order r. In particular, if r = ,
then En(x) = E()

n (x) are called the ordinary Euler polynomials.
The Daehee polynomials of order r are defined by the generating function

(
log( + t)

t

)r

( + t)x =
∞∑

n=

D(r)
n (x)

tn

n!
(see []). (.)

When x = , D(r)
n = D(r)

n () are called the Daehee numbers of order r. In particular, if r = ,
then Dn(x) = D()

n (x) are called the ordinary Daehee polynomials. Now, we introduce the
Changhee polynomials of order r given by the generating function

(


t + 

)r

( + t)x =
∞∑

n=

Ch(r)
n (x)

tn

n!
(see []). (.)



Kim and Kim Advances in Difference Equations  (2015) 2015:282 Page 3 of 13

When x = , Ch(r)
n = Ch(r)

n () are called the Changhee numbers of order r. In particular,
if r = , then Chn(x) = Ch()

n (x) are called the ordinary Changhee polynomials.
Recently, Korobov introduced the special polynomials given by the generating function

λt
(t + )λ – 

( + t)x =
∞∑

n=

Kn(x | λ)
tn

n!
(λ ∈N) (see [–]). (.)

Note that limλ→ Kn(x | λ) = bn(x), where bn(x) are the Bernoulli polynomials of the sec-
ond kind defined by the generating function

(
t

log( + t)

)
( + t)x =

∞∑
n=

bn(x)
tn

n!
(see [, ]). (.)

In this paper, we define the higher-order Korobov polynomials given by the generating
function

(
λt

(t + )λ – 

)r

( + t)x =
∞∑

n=

K (r)
n (x | λ)

tn

n!
. (.)

When x = , K (r)
n (λ) = K (r)

n ( | λ) are called the Korobov numbers of order r. In particular,
if r = , then Kn(λ) = K ()

n ( | λ) = Kn( | λ) are called the ordinary Korobov numbers. Now,
we consider the Korobov-type Changhee polynomials which are called the λ-Changhee
polynomials as follows:

(


( + t)λ + 

)
( + t)x =

∞∑
n=

Chn(x | λ)
tn

n!
. (.)

When x = , Chn(λ) = Chn( | λ) are called λ-Changhee numbers. Note that
limλ→ Chn(x | λ) = Chn(x), limλ→ Chn(x | λ) = (x)n, where

(x)n = x(x – ) · · · (x – n + ) =
n∑

l=

S(n, l)xl (see []).

For r ∈N, the λ-Changhee polynomials of order r are defined by the generating function

(


( + t)λ + 

)r

( + t)x =
∞∑

n=

Ch(r)
n (x | λ)

tn

n!
. (.)

The Stirling numbers of the second kind are defined by the generating function

(
et – 

)n = n!
∞∑
l=n

S(l, n)
tl

l!
(see [, ]). (.)

The Korobov polynomials (of the first kind) were introduced in [] as the degener-
ate version of the Bernoulli polynomials of the second kind. In recent years, many re-
searchers studied various kinds of degenerate versions of some familiar polynomials like
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Bernoulli polynomials, Euler polynomials and their variants by means of generating func-
tions, p-adic integrals and umbral calculus (see [, , , ]).

Here in this paper we introduce two Korobov-type polynomials obtained from the same
function, namely the one by performing bosonic p-adic integrals on Zp and the other
by carrying out fermionic p-adic integrals on Zp. In addition, we consider their higher-
order versions and some mixed-types of them by considering multivariate p-adic inte-
grals. In conclusion, we will obtain some connections between these new polynomials
and Bernoulli polynomials, Euler polynomials, Daehee numbers and Bernoulli numbers
of the second kind.

2 Korobov-type polynomials
For λ ∈N, by (.), we get

∫
Zp

( + t)λy+x dμ(y) =
λ log( + t)
( + t)λ – 

( + t)x

=
(

λt
( + t)λ – 

)(
log( + t)

t

)
( + t)x

=

( ∞∑
l=

Kl(x | λ)
tl

l!

)( ∞∑
m=

Dm
tm

m!

)

=
∞∑

n=

( n∑
l=

Kl(x | λ)Dn–l
n!

l!(n – l)!

)
tn

n!

=
∞∑

n=

( n∑
l=

(
n
l

)
Kl(x | λ)Dn–l

)
tn

n!
. (.)

From (.), we have

∫
Zp

(
λy + x

n

)
dμ(y) =


n!

n∑
l=

(
n
l

)
Kl(x | λ)Dn–l. (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n ≥ , we have

∫
Zp

(
λy + x

n

)
dμ(y) =


n!

n∑
l=

(
n
l

)
Kl(x | λ)Dn–l.

Now, we observe that

∫
Zp

(λy + x)n dμ(y) =
n∑

l=

S(n, l)
∫
Zp

(λy + x)l dμ(y)

=
n∑

l=

S(n, l)λl
∫
Zp

(
y +

x
λ

)l

dμ(y)

=
n∑

l=

S(n, l)λlBl

(
x
λ

)
. (.)
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Therefore by (.), we obtain the following corollary.

Corollary . For n ≥ , we have

n∑
l=

S(n, l)λlBl

(
x
λ

)
=

n∑
l=

(
n
l

)
Kl(x | λ)Dn–l.

From (.), we have

∞∑
n=

Kn(x | λ)
tn

n!
=

λt
( + t)λ – 

( + t)x

=
(

t
log( + t)

)∫
Zp

( + t)λy+x dμ(y)

=

( ∞∑
l=

bl
tl

l!

)( ∞∑
m=

∫
Zp

(λy + x)m dμ(y)
tm

m!

)

=
∞∑

n=

( n∑
m=

(
n
m

)
bn–m

m∑
l=

S(m, l)λlBl

(
x
λ

))
tn

n!
. (.)

Therefore, by (.), we obtain the following corollary.

Corollary . For n ≥ , we have

Kn(x | λ) =
n∑

m=

(
n
m

)
bn–m

m∑
l=

S(m, l)λlBl

(
x
λ

)
.

By replacing t by et –  in (.), we get

∞∑
m=

Km(x | λ)
(et – )m

m!
=

λ(et – )
eλt – 

ext

=
λt

eλt – 
e( x

λ
)λt et – 

t

=

( ∞∑
m=

λmBm

(
x
λ

)
tm

m!

)( ∞∑
l=


l + 

tl

l!

)

=
∞∑

n=

( n∑
l=

(
n
l

)
λn–lBn–l

(
x
λ

)


l + 

)
tn

n!
. (.)

On the other hand,

∞∑
m=

Km(x | λ)


m!
(
et – 

)m =
∞∑

m=

Km(x | λ)
∞∑

l=m

S(l, m)
tl

l!

=
∞∑

n=

( n∑
m=

Km(x | λ)S(n, m)

)
tn

n!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.
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Theorem . For n ≥ , we have

n∑
l=

(
n
l

)
λn–lBn–l

(
x
λ

)


l + 
=

n∑
m=

Km(x | λ)S(n, m).

It is easy to show that

∫
Zp

f (x) dμ(x) =

d

d–∑
a=

∫
Zp

f (a + dx) dμ(x) (d ∈N). (.)

By (.), we get

∫
Zp

( + t)λx dμ(x) =

d

d–∑
a=

∫
Zp

( + t)(a+dx)λ dμ(x)

=

d

d–∑
a=

( + t)aλ

∫
Zp

( + t)λdx dμ(x)

=

d

d–∑
a=

( + t)aλ λd log( + t)
( + t)dλ – 

. (.)

On the other hand,

∫
Zp

( + t)λx dμ(x) =
λ log( + t)
( + t)λ – 

. (.)

Thus, by (.) and (.), we get

λt
( + t)λ – 

( + t)x =

d

d–∑
a=

λdt
( + t)λd – 

( + t)aλ+x. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥  and d ∈N, we have

Kn(x | λ) =

d

d–∑
a=

Kn(aλ + x | λd).

From (.), we can derive the following equation:

∫
Zp

( + t)(x+n)λ dμ(x) –
∫
Zp

( + t)λx dμ(x) = λ log( + t)
n–∑
l=

( + t)λl (n ∈N). (.)

Thus, by (.), we get

∫
Zp

( + t)λx dμ(x) =
λ log( + t)
( + t)λn – 

n–∑
l=

( + t)λl. (.)
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From (.), we have

t
log( + t)

∫
Zp

( + t)λx dμ(x) =

n

n–∑
l=

λnt
( + t)λn – 

( + t)λl

=
∞∑

m=

(

n

n–∑
l=

Km(λl | λn)

)
tm

m!
. (.)

On the other hand,

t
log( + t)

∫
Zp

( + t)λx dμ(x) =

( ∞∑
n=

bn
tn

n!

)( ∞∑
l=

∫
Zp

(λx)l dμ(x)
tl

l!

)

=
∞∑

m=

( m∑
l=

(
m
l

)
bm–l

∫
Zp

(λx)l dμ(x)

)
tm

m!

=
∞∑

m=

( m∑
l=

(
m
l

)
bm–l

l∑
n=

S(l, n)λnBn

)
tm

m!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ∈N, m ≥ , we have


n

n–∑
l=

Km(λl | λn) =
m∑

l=

(
m
l

)
bm–l

l∑
n=

S(l, n)λnBn.

Remark By (.), we easily get

∫
Zp

(
λ(x + n)

)
m dμ(x) –

∫
Zp

(λx)m dμ(x) =
n–∑
l=

m∑
k=

kS(m, k)λklk–. (.)

Hence, by Theorem . and (.), we see

m∑
l=

Kl(λn | λ)Dm–l

(
m
l

)
–

m∑
l=

Kl(λ)Dm–l

(
m
l

)
=

n–∑
l=

m∑
k=

kS(m, k)λklk–.

Now, we consider the multivariate p-adic integral on Zp given by

∫
Zp

· · ·
∫
Zp

( + t)λ(x+···+xr)+x dμ(x) · · · dμ(xr). (.)

By (.) and (.), we get

∫
Zp

· · ·
∫
Zp

( + t)λ(x+···+xr)+x dμ(x) · · · dμ(xr)

=
(

λ log( + t)
( + t)λ – 

)r

( + t)x

=
(

λt
( + t)λ – 

)r

( + t)x
(

log( + t)
t

)r

. (.)
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Thus, by (.), we get

∞∑
n=

K (r)
n (x | λ)

tn

n!

=
(

λt
( + t)λ – 

)r

( + t)x

=
(

t
log( + t)

)r ∫
Zp

· · ·
∫
Zp

( + t)λ(x+···+xr )+x dμ(x) · · · dμ(xr)

=

( ∞∑
m=

b(r)
m

tm

m!

)( ∞∑
l=

∫
Zp

· · ·
∫
Zp

(
λ(x + · · · + xr) + x

)
l dμ(x) · · · dμ(xr)

tl

l!

)

=
∞∑

n=

( n∑
l=

l∑
k=

λkS(l, k)B(r)
k

(
x
λ

)(
n
l

)
b(r)

n–l

)
tn

n!
.

By comparing the coefficients on both sides, we obtain the following theorem.

Theorem . For n ≥ , we have

K (r)
n (x | λ) =

n∑
l=

l∑
k=

λkS(l, k)B(r)
k

(
x
λ

)(
n
l

)
b(r)

n–l.

By replacing t by et –  in (.), we get

(
λ(et – )
eλt – 

)r

ext =
∞∑

m=

K (r)
m (x | λ)


m!

(
et – 

)m

=
∞∑

m=

K (r)
m (x | λ)

∞∑
n=m

S(n, m)
tn

n!

=
∞∑

n=

( n∑
m=

K (r)
m (x | λ)S(n, m)

)
tn

n!
. (.)

On the other hand,
(

λ(et – )
eλt – 

)r

ext =
(

λt
eλt – 

)r

e( x
λ

)λt
(

et – 
t

)r

=

( ∞∑
m=

λmB(r)
m

(
x
λ

)
tm

m!

)( ∞∑
l=

r!S(l + r, r)
tl

(l + r)!

)

=
∞∑

n=

( n∑
l=

(n
l
)

(l+r
r
)λn–lS(l + r, r)B(r)

n–l

(
x
λ

))
tn

n!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

n∑
m=

K (r)
m (x | λ)S(n, m) =

n∑
l=

(n
l
)

(l+r
r
)λn–lS(l + r, r)B(r)

n–l

(
x
λ

)
.
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From (.), we can derive the following equation:

∫
Zp

( + t)λy+x dμ–(y) =


( + t)λ + 
( + t)x =

∞∑
n=

Chn(x | λ)
tn

n!
. (.)

Thus, by (.), we get

∫
Zp

(
λy + x

n

)
dμ–(y) =


n!

Chn(x | λ) (n ≥ ). (.)

We observe that

∞∑
n=

Chn(x | λ)
tn

n!
=

(


( + t)λ + 

)
( + t)x

=

( ∞∑
l=

Chl(λ)
tl

l!

)( ∞∑
m=

(x)m
tm

m!

)

=
∞∑

n=

( n∑
m=

(x)mChn–m(x)
(

n
m

))
tn

n!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

∫
Zp

(
λy + x

n

)
dμ–(y) =


n!

Chn(x | λ) =

n!

n∑
m=

(x)mChn–m(λ)
(

n
m

)
.

From (.), we have

∞∑
n=

Chn(x | λ)
tn

n!
=

∫
Zp

( + t)λy+x dμ–(y)

=
∞∑

n=

∫
Zp

(λy + x)n dμ–(y)
tn

n!

=
∞∑

n=

( n∑
l=

S(n, l)λl
∫
Zp

(
y +

x
λ

)l

dμ–(y)

)
tn

n!

=
∞∑

n=

( n∑
l=

S(n, l)λlEl

(
x
λ

))
tn

n!
. (.)

By replacing t by et –  in (.), we get

∞∑
n=

Chn(x | λ)

n!

(
et – 

)n =


eλt + 
ext

=


eλt + 
e( x

λ
)λt

=
∞∑

n=

En

(
x
λ

)
λn tn

n!
. (.)
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On the other hand,

∞∑
n=

Chn(x | λ)

n!

(
et – 

)n =
∞∑

m=

Chm(x | λ)
∞∑

n=m
S(n, m)

tn

n!

=
∞∑

n=

( n∑
m=

Chm(x | λ)S(n, m)

)
tn

n!
. (.)

Therefore, by (.), (.), and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

En

(
x
λ

)
= λ–n

n∑
m=

Chm(x | λ)S(n, m)

and

Chn(x | λ) =
n∑

l=

S(n, l)λlEl

(
x
λ

)
.

By replacing t by et –  in (.), we get

E(r)
n

(
x
λ

)
= λ–n

n∑
m=

Ch(r)
m (x | λ)S(n, m). (.)

From (.), we can derive the following equation:

∞∑
n=

Ch(r)
n (x | λ)

tn

n!
=

(


( + t)λ + 

)r

( + t)x

=
(


eλ log(+t) + 

)r

ex log(+t)

=
∞∑

n=

E(r)
n

(
x
λ

)

n!

λn(log( + t)
)n

=
∞∑

m=

E(r)
m

(
x
λ

)
λm

∞∑
n=m

S(n, m)
tn

n!

=
∞∑

n=

( n∑
m=

E(r)
m

(
x
λ

)
λmS(n, m)

)
tn

n!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

Ch(r)
n (x | λ) =

n∑
m=

E(r)
m

(
x
λ

)
λmS(n, m)

and

E(r)
n

(
x
λ

)
=


λn

n∑
m=

Ch(r)
m (x | λ)S(n, m).
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Let us observe the following multivariate fermionic p-adic integral on Zp:

∫
Zp

· · ·
∫
Zp

( + t)λ(x+···+xr)+x dμ–(x) · · · dμ–(xr)

=
(


( + t)λ + 

)r

( + t)x

=
∞∑

n=

Ch(r)
n (x | λ)

tn

n!
. (.)

Thus, by (.), we get

Ch(r)
n (x | λ)

n!

=
∫
Zp

· · ·
∫
Zp

(
λ(x + · · · + xr) + x

n

)
dμ–(x) · · · dμ–(xr) (n ≥ ). (.)

Note that

∞∑
n=

Ch(r)
n (x | λ)

tn

n!
=

(


( + t)λ + 

)r

( + t)x =
∞∑

n=

( n∑
m=

(x)mCh(r)
n–m(λ)

(
n
m

))
tn

n!
.

Thus, we get

Ch(r)
n (x | λ) =

n∑
m=

(x)mCh(r)
n–m(λ)

(
n
m

)
(n ≥ ). (.)

By (.) and (.), we easily get

Ch(r)
n (x | λ) =

∫
Zp

· · ·
∫
Zp

(λx + · · · + λxr + x)n dμ–(x) · · · dμ–(xr)

=
n∑

l=

S(n, l)λl
∫
Zp

· · ·
∫
Zp

(
x + · · · + xr +

x
λ

)l

dμ–(x) · · · dμ–(xr)

=
n∑

l=

S(n, l)λlE(r)
l

(
x
λ

)
. (.)

Now, we consider the λ-Changhee and Korobov mixed-type polynomials which are
given by the multivariate p-adic integral on Zp as follows:

CK (r,s)
n (x | λ)

=
∫
Zp

· · ·
∫
Zp

Ch(r)
n (λx + · · · + λxs + x | λ) dμ(x) · · · dμ(xs)

=
n∑

m=

Ch(r)
n–m(λ)

(
n
m

)∫
Zp

· · ·
∫
Zp

(λx + · · · + λxs + x)m dμ(x) · · · dμ(xs), (.)

where r, s ∈N.
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Now, we observe that

∫
Zp

· · ·
∫
Zp

( + t)λx+···+λxs+x dμ(x) · · · dμ(xs)

=
(

λt
( + t)λ – 

)s( log( + t)
t

)s

( + t)x

=
∞∑

n=

( n∑
l=

K (s)
l (x | λ)D(s)

n–l

(
n
l

))
tn

n!
. (.)

By (.), we get

∫
Zp

· · ·
∫
Zp

(λx + · · · + λxs + x)n dμ(x) · · · dμ(xs)

=
n∑

l=

K (s)
l (x | λ)D(s)

n–l

(
n
l

)
. (.)

From (.) and (.), we have

CK (r,s)
n (x | λ) =

n∑
m=

m∑
l=

(
m
l

)(
n
m

)
Ch(r)

n–m(λ)K (s)
l (x | λ)D(s)

m–l. (.)

The generating function of CK (r,s)
n (x | λ) is given by

∞∑
n=

CK (r,s)
n (x | λ)

tn

n!

=
∞∑

n=

∫
Zp

· · ·
∫
Zp

Ch(r)
n (λx + · · · + λxs + x | λ) dμ(x) · · · dμ(xs)

tn

n!

=
∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

s-times

( + t)λy+···+λyr+λx+···+λxs+x

× dμ–(y) · · · dμ–(yr) dμ(x) · · · dμ(xs)

=
(


( + t)λ + 

)r(
λ log( + t)
( + t)λ – 

)s

( + t)x. (.)

Theorem . For r, s ∈N and n ≥ , we have

CK (r,s)
n (x | λ) =

n∑
m=

m∑
l=

(
m
l

)(
n
m

)
Ch(r)

n–m(λ)K (s)
l (x | λ)D(s)

m–l.

We consider the Korobov and λ-Changhee mixed-type polynomials, which are given by

KC(r,s)
n (x | λ) =

∫
Zp

· · ·
∫
Zp

K (r)
n (λx + · · · + λxs + x | λ) dμ–(x) · · · dμ–(xs), (.)

where r, s ∈N and n ≥ .
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Then, by (.), we get

KC(r,s)
n (x | λ)

=
n∑

m=

(
n
m

)
K (r)

m (λ)
∫
Zp

· · ·
∫
Zp

(λx + · · · + λxs + x)n–m dμ–(x) · · · dμ–(xs)

=
n∑

m=

(
n
m

)
K (r)

m (λ)Ch(s)
n–m(x | λ). (.)

The generating function of KC(r,s)
n (x | λ) is given by

∞∑
n=

KC(r,s)
n (x | λ)

tn

n!

=
∞∑

n=

∫
Zp

· · ·
∫
Zp

K (r)
n (λx + · · · + λxs + x | λ) dμ–(x) · · · dμ–(xs)

tn

n!

=
(

λt
( + t)λ – 

)r ∫
Zp

· · ·
∫
Zp

( + t)λx+···+λxs+x dμ–(x) · · · dμ–(xs)

=
(

λt
( + t)λ – 

)r( 
( + t)λ + 

)s

( + t)x. (.)
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