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Abstract
The problem of an H∞ state estimation for discrete-time neural networks with
time-varying and distributed delays is investigated in this paper. By constructing a
new Lyapunov-Krasovskii functional and utilizing a reciprocally convex method,
several sufficient conditions are derived in terms of linear matrix inequalities (LMIs).
The results obtained in this paper are less conservative than the existing ones, which
can be checked efficiently by using some standard numerical packages. Finally, three
numerical examples are given to show the effectiveness of the proposed method.
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1 Introduction
In the past few decades, neural networks have been applied successfully in different fields,
such as static processing, pattern recognition, combinatorial optimization, and so on
[–]. It is well known that time delay is inevitable in practical neural networks because of
the finite switching speed of the amplifiers, which may induce undesirable dynamic behav-
iors such as oscillation or instability. Therefore, the stability analysis problem of delayed
neural networks has received considerable attention, and a large number of important
results have been obtained in [–]. It should be noted that most neural networks are
focused on the continuous-time case [–]. However, discrete time plays a considerable
role in today’s information society. Particularly, when implementing delayed continuous-
time neural networks for computer simulation, it becomes necessary to develop a discrete-
time system. In recent years, a lot of significant results have been reported in the literature
[–]. For example, Kwon et al. [] presented the stability criteria for the discrete-time
system with time varying delays. Recently, Li and Li [] addressed the exponential stabil-
ity for stochastic discrete-time recurrent neural networks with mixed delays.

In addition, the state estimation is a critical issue in dynamic analysis for complex system
including genetic regulatory networks, recurrent neural networks, and complex networks.
The state estimation involves the fact that using partial information about the neuron
states in the networks outputs of large-scale neural networks, using the estimated neu-
ron state, one also can get a certain performance such as control engineering and system
modeling []. Thus, many effective approaches have been proposed in this research area
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[–]. On the other hand, another type of time delay, named distributed delay, has at-
tracted much attention in research [, –]. The authors in [] discussed the problem
of a state estimation for discrete neural networks with Markovian jumping parameters and
mixed time delays. In [], the state estimation problem was studied for fuzzy cellular neu-
ral networks with time delay in the leakage term, in discrete and unbounded distributed
delays. More recently, the authors in [] investigated an H∞ estimation for static delayed
neural networks by using the reciprocally convex approach, zero equality, and linear ma-
trix inequality. Further improved results were obtained in [] by using an augmented
Lyapunov approach and a linear matrix inequality technique. In [], the problem of a
state estimation for a class of discrete nonlinear systems with randomly occurring uncer-
tainties and distributed sensor delays was considered. The issue of the H∞ state estimation
problem for discrete-time delayed neural networks has been addressed in []. However,
to the best of our knowledge, the problem of an H∞ state estimation for discrete-time
neural networks with time-varying and distributed delays has not been studied.

Motivated by the above discussion, we study the problem of an H∞ state estimation
for discrete-time neural networks with time-varying and distributed delays. The major
contributions of this paper can be summarized as follows. Firstly, by construction of a
suitable Lyapunov-Krasovskii functional, sufficient conditions are established such that
the error system is asymptotically stable and a prescribed H∞ performance is guaranteed.
Secondly, by introducing two new zero equalities, based on reciprocally convex method
and free-weighting matrices techniques, less conservative criteria were derived in terms of
LMIs. Thirdly, in order to design an estimator gain matrix, a new zero equality is devised to
convert the problem of a nonlinear matrix inequality in the LMIs, which can give flexibility
in solving LMIs. Finally, three numerical examples are given to confirm the effectiveness
of the proposed method.

Notations Throughout this paper, the superscripts – and T stand for the inverse and
transpose of a matrix, respectively; P >  (P ≥ , P < , P ≤ ) means that the matrix P
is symmetric positive definite (positive-semi definite, negative definite, and negative-semi
definite); ‖ · ‖ refers to the Euclidean vector norm; N[a, b] denotes the discrete interval
given by N[a, b] = {a, a + , . . . , b – , b}; Rn denotes n-dimensional Euclidean space; Rm×n

is the set of m × n real matrices; ∗ denotes the symmetric block in a symmetric matrix; Z–

denotes the set of negative integers; λmax(Q) and λmin(Q) denote, respectively, the maximal
and minimal eigenvalue of the matrix Q.

2 Preliminaries
Consider the following discrete-time neural networks with time-varying and distributed
delays:

x(k + ) = Ax(k) + Bf
(
x(k)

)
+ Bf

(
x
(
k – τ (k)

))
+ B

+∞∑

i=

δ(i)f
(
x(k – i)

)

+ Dω(k),

y(k) = Cx(k) + Cx
(
k – τ (k)

)
+ Dω(k), ()

z(k) = Hx(k),

x(j) = ψ(j), j = . . . , –, –, ,
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where x(k) = [x(k), x(k), . . . , xn(k)]T ∈ Rn is the neuron state vector of the system; y(k) ∈
Rm is the output measurement of the networks; z(k) ∈Rq stands for the neural signal to be
estimated; ω(k) is the noise input belonging to l([,∞);Rp); ψ(j) is the initial condition;
f (x(k)) = [f(x(k)), f(x(k)), . . . , fn(x(k))]T ∈ Rn represents the neuron activation functions.
A = diag{a, a, . . . , an} and B, B, B, C, C, D, D, and H are known constant matrices
with appropriate dimensions. τ (k) denotes the known time-varying delay and satisfies  <
τm ≤ τ (k) ≤ τM .

Assumption . The neuron activation function f (·) satisfies

l–
s ≤ fs(a) – fs(b)

a – b
≤ l+

s , fs() = , s = , , . . . , n, ()

for all a, b ∈ R, a �= b, with l–
s and l+

s known real constants.

Remark  In Assumption ., l–
s and l+

s can be positive, negative or zero, when l–
s =  and

l+
s > .

Assumption . The function δ(i) is a real-valued non-negative function defined on
i ∈ Z+, and there exists a constant scalar ξ >  such that

+∞∑

i=

δ(i) = ξ < +∞,
+∞∑

i=

δ(i)i < +∞. ()

For neural networks, a proper state estimator is constructed as

x̂(k + ) = Ax̂(k) + Bf
(
x̂(k)

)
+ Bf

(
x̂
(
k – τ (k)

))
+ B

+∞∑

i=

δ(i)f
(
x̂(k – i)

)

+ K
(
y(k) – ŷ(k)

)
,

ŷ(k) = Cx̂(k) + Cx̂
(
k – τ (k)

)
, ()

ẑ(k) = Hx̂(k),

x̂(j) = ψ̂(j), j = . . . , –, –, ,

where x̂(k) ∈Rn denotes the estimate of the state x(k), ẑ(k) represents the estimate of the
output z(k) and K is the gain matrix to be determined.

Defining the error e(k) = x(k) – x̂(k) and z̃(k) = z(k) – ẑ(k), we can obtain the error system
from () and () as follows:

e(k + ) = (A – KC)e(k) – KCe
(
k – τ (k)

)
+ Bg

(
e(k)

)
+ Bg

(
e
(
k – τ (k)

))

+ B

+∞∑

i=

δ(i)g
(
e
(
(k – i)

))
+ (D – KD)ω(k), ()

z̃(k) = He(k),

where g(e(k)) = f (x(k)) – f (x̂(k)).
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Definition . The error system () with ω(k) =  is said to be asymptotically stable, for
any such solution e(k) of the system () satisfying

lim
k→∞

∥∥e(k)
∥∥ = .

In this paper, our aim is to design a proper state estimator () such that the following
conditions hold:

() The error system () with ω(k) =  is said to be asymptotically stable.
() Under the zero-initial condition, the estimation error z̃(k) satisfies

∞∑

k=

∥∥z̃(k)
∥∥ ≤ γ 

∞∑

k=

∥∥ω(k)
∥∥,

for all nonzero ω(k), where γ >  is a given disturbance attenuation level.

The following lemmas are useful in deriving our main results.

Lemma . [] Let M ∈ Rn×n be a positive-definite matrix, Xi ∈ Rn, ai >  (i = , , . . .),
then

–(m – n)
k–n–∑

i=k–m

XT
i MXi ≤ –

(k–n–∑

i=k–m

Xi

)T

M

(k–n–∑

i=k–m

Xi

)

, ()

–

( ∞∑

i=

ai

) ∞∑

i=

aixT
i Mxi ≤ –

( ∞∑

i=

aixi

)T

M

( ∞∑

i=

aixi

)

. ()

Lemma . [] For any vectors ζ, ζ, given constant matrices R, R, S, and any scalars
α ≥ , β ≥ , satisfying α + β = , and

[ R S
∗ R

] ≥ , we have

–

α

ζ T
 Rζ –


β

ζ T
 Rζ ≤ –

[
ζ

ζ

]T [
R S
∗ R

][
ζ

ζ

]

. ()

Lemma . For integers τm ≤ τ (k) ≤ τM and the vector function e(k) : N[k – τM, k – τm –
] 
→ Rn, TT

 = T > , τMm = τM – τm, η(k) = e(k + ) – e(k), N, N being free-weighting
symmetric matrices, Y being a free-weighting matrix with appropriate dimensions, and
[ T+N Y

∗ T+N

] ≥ , the following inequality holds:

–τMm

k–τm–∑

i=k–τ (k)

ηT (i)(T + N)η(i) – τMm

k–τ (k)–∑

i=k–τM

ηT (i)(T + N)η(i)

≤ –

[
e(k – τm) – e(k – τ (k))
e(k – τ (k)) – e(k – τM)

]T [
T + N Y

∗ T + N

]

·
[

e(k – τm) – e(k – τ (k))
e(k – τ (k)) – e(k – τM)

]

. ()
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Proof In fact, if τm < τ (k) < τM , by using Lemma . and Lemma ., we have

–τMm

k–τm–∑

i=k–τ (k)

ηT (i)(T + N)η(i) – τMm

k–τ (k)–∑

i=k–τM

ηT (i)(T + N)η(i)

≤ –
τMm

τ (k) – τm

[ k–τm–∑

i=k–τ (k)

η(i)

]T

(T + N)

[ k–τm–∑

i=k–τ (k)

η(i)

]T

–
τMm

τM – τ (k)

[k–τ (k)–∑

i=k–τM

η(i)

]T

(T + N)

[k–τ (k)–∑

i=k–τM

η(i)

]T

= –
τMm

τ (k) – τm

[
e(k – τm) – e

(
k – τ (k)

)]T (T + N)
[
e(k – τm) – e

(
k – τ (k)

)]

–
τMm

τM – τ (k)
[
e
(
k – τ (k)

)
– e(k – τM)

]T (T + N)
[
e
(
k – τ (k)

)
– e(k – τM)

]

≤ –

[
e(k – τm) – e(k – τ (k))
e(k – τ (k)) – e(k – τM)

]T [
T + N Y

∗ T + N

][
e(k – τm) – e(k – τ (k))
e(k – τ (k)) – e(k – τM)

]

.

It should be noted that, when τ (k) = τm or τ (k) = τM , we have

k–τm–∑

i=k–τ (k)

η(i) = e(k – τm) – e
(
k – τ (k)

)
= ,

k–τ (k)–∑

i=k–τM

η(i) = e
(
k – τ (k)

)
– e(k – τM) = .

Therefore, () still holds by using Lemma .. The proof is completed. �

3 Main results
We denote

L = diag
{

l–
 l+

 , . . . , l–
n l+

n
}

, L = diag

{
l–
 + l+




, . . . ,
l–
n + l+

n


}
,

τMm = τM – τm, η(k) = e(k + ) – e(k).

Theorem . For a given scalar γ > , the error system () is asymptotically stable with
H∞ performance γ , if there exist symmetric positive definite matrices P > , P > ,
Q =

[ Q Q
∗ Q

]
> , Rl >  (l = , ), Tl >  (l = , , , ), the positive diagonal matrices

Sk = diag{sk , sk , . . . , snk} (k = , ), any symmetric matrices N, N, any appropriately di-
mensioned matrices Y , G, and any appropriately dimensioned invertible matrix M, such
that the following matrix inequalities hold:

[
T N

∗ T

]

> ,

[
T N

∗ T

]

> ,

[
T + N Y

∗ T + N

]

≥ , ()

 =

⎡

⎢
⎣

� � �

∗ –γ I 
∗ ∗ –I

⎤

⎥
⎦ < , � =

⎡

⎢⎢
⎣

� · · · �

∗ . . .
...

∗ ∗ �

⎤

⎥⎥
⎦ , ()



Kang et al. Advances in Difference Equations  (2015) 2015:263 Page 6 of 15

where

�T
 =

[
DT

 MT – DT
 GT    DT

 MT – DT
 GT   

]
,

�T
 = [H       ],

� = (τMm + )Q + R + τ 
MmT – T – SL + MA + AMT – GC

– CT
 GT – M – MT , � = T, � = –GC,

� = P – M – MT + AMT – CT
 GT ,

� = (τMm + )Q + MB + LS, � = MB, � = MB,

� = –R + R – T – T + (τMm – )N, � = T + N – Y , � = Y ,

� = –Q – T – (τMm + )N + (τMm – )N + Y + Y T – SL,

� = T + N – Y , � = –CT
 GT , � = –Q + LS,

� = –R – T – (τMm + )N,

� = τ 
Mm(T + T) + τ 

mT + P – M – MT ,

� = MB, � = MB, � = MB,

� = (τMm + )Q + ξP – S, � = –Q – S, � = –

ξ

P,

otherwise, �ij = , i, j = , , . . . , .

Furthermore, the gain matrix K can be designed as K = M–G.

Proof Define a new Lyapunov-Krasovskii functional as follows:

V (k) = V(k) + V(k) + V(k) + V(k) + V(k), ()

where

V(k) = eT (k)Pe(k) +
+∞∑

i=

δ(i)
k–∑

l=k–i

gT(
e(l)

)
Pg

(
e(l)

)
,

V(k) =
k–∑

i=k–τm

eT (i)Re(i) +
k–τm–∑

i=k–τM

eT (i)Re(i),

V(k) =
k–∑

i=k–τ (k)

[
e(i)

g(e(i))

]T [
Q Q

∗ Q

][
e(i)

g(e(i))

]

+
–τm∑

j=–τM+

k–∑

i=k+j

[
e(i)

g(e(i))

]T [
Q Q

∗ Q

][
e(i)

g(e(i))

]

,

V(k) = τMm

–τm–∑

j=–τM

k–∑

i=k+j

eT (i)Te(i) + τMm

–τm–∑

j=–τM

k–∑

i=k+j

ηT (i)Tη(i),

V(k) = τm

–∑

j=–τm

k–∑

i=k+j

ηT (i)Tη(i) + τMm

–τm–∑

j=–τM

k–∑

i=k+j

ηT (i)Tη(i).
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Taking the forward difference of V (k) along the trajectories of system () yields

�V(k) =
(
η(k) + e(k)

)T P
(
η(k) + e(k)

)
– eT (k)Pe(k)

+
+∞∑

i=

δ(i)

( k∑

l=k–i+

–
k–∑

l=k–i

)

gT(
e(l)

)
Pg

(
e(l)

)

≤ ηT (k)Pη(k) + eT (k)Pη(k) + ξgT(
e(k)

)
Pg

(
e(k)

)

–

ξ

+∞∑

i=

δ(i)gT(
e(k – i)

)
P

+∞∑

i=

δ(i)g
(
e(k – i)

)
, ()

�V(k) = eT (k)Re(k) – eT (k – τm)(R – R)e(k – τm) – eT (k – τM)Re(k – τM), ()

�V(k) ≤ (τMm + )

[
e(k)

g(e(k))

]T [
Q Q

∗ Q

][
e(k)

g(e(k))

]

–

[
e(k – τ (k))

g(e(k – τ (k)))

]T [
Q Q

∗ Q

][
e(k – τ (k))

g(e(k – τ (k)))

]

, ()

�V(k) = τ 
Mm

[
eT (k)Te(k) + ηT (k)Tη(k)

]

– τMm

k–τm–∑

i=k–τ (k)

[
e(i)
η(i)

]T [
T 
 T

][
e(i)
η(i)

]

– τMm

k–τ (k)–∑

i=k–τM

[
e(i)
η(i)

]T [
T 
 T

][
e(i)
η(i)

]

. ()

For any matrix N , the following equality holds:

eT (i + )Ne(i + ) – eT (i)Ne(i) = η(i)T Nη(i) + eT (i)Nη(i). ()

From the equality (), the following two zero equalities hold with any symmetric matrices
Ni (i = , ):

 = τMmeT (k – τm)Ne(k – τm) – τMmeT(
k – τ (k)

)
Ne

(
k – τ (k)

)

– τMm

k–τm–∑

i=k–τ (k)

[
ηT (i)Nη(i) + eT (i)Nη(i)

]
, ()

 = τMmeT(
k – τ (k)

)
Ne

(
k – τ (k)

)
– τMmeT (k – τM)Ne(k – τM)

– τMm

k–τ (k)–∑

i=k–τM

[
η(i)T Nη(i) + eT (i)Nη(i)

]
. ()

From (), (), and the calculation result of �V(k), we have

�V(k) = τ 
Mm

[
eT (k)Te(k) + ηT (k)Tη(k)

]
+ τMmeT (k – τm)Ne(k – τm)

– τMmeT (k – τM)Ne(k – τM)

+ τMmeT(
k – τ (k)

)
(N – N)e

(
k – τ (k)

)



Kang et al. Advances in Difference Equations  (2015) 2015:263 Page 8 of 15

– τMm

k–τm–∑

i=k–τ (k)

[
e(i)
η(i)

]T [
T N

∗ T

][
e(i)
η(i)

]

– τMm

k–τ (k)–∑

i=k–τM

[
e(i)
η(i)

]T [
T N

∗ T

][
e(i)
η(i)

]

– τMm

k–τm–∑

i=k–τ (k)

ηT (i)Nη(i) – τMm

k–τ (k)–∑

i=k–τM

ηT (i)Nη(i), ()

�V(k) = ηT (k)
(
τ 

mT + τ 
MmT

)
η(k) – τm

k–∑

i=k–τm

ηT (i)Tη(i)

– τMm

k–τm–∑

i=k–τ (k)

ηT (i)Tη(i) – τMm

k–τ (k)–∑

i=k–τM

ηT (i)Tη(i). ()

From
[ T N

∗ T

]
>  and

[ T N
∗ T

]
> , we know that

�V(k) + �V(k)

≤ τ 
Mm

[
eT (k)Te(k) + ηT (k)Tη(k)

]

+ τMmeT(
k – τ (k)

)
(N – N)e

(
k – τ (k)

)

+ τMmeT (k – τm)Ne(k – τm) – τMmeT (k – τM)Ne(k – τM)

+ ηT (k)
(
τ 

mT + τ 
MmT

)
η(k) – τm

k–∑

i=k–τm

ηT (i)Tη(i)

– τMm

k–τm–∑

i=k–τ (k)

ηT (i)(T + N)η(i) – τMm

k–τ (k)–∑

i=k–τM

ηT (i)(T + N)η(i). ()

By using Lemmas . and ., we can obtain

–τm

k–∑

i=k–τm

ηT (i)Tη(i) ≤ –

[
e(k)

e(k – τm)

]T [
T –T

∗ T

][
e(k)

e(k – τm)

]

, ()

–τMm

k–τm∑

i=k–τ (k)

ηT (i)(T + N)η(i) – τMm

k–τ (k)–∑

i=k–τM

ηT (i)(T + N)η(i)

≤ –

[
e(k – τm) – e(k – τ (k))
e(k – τ (k)) – e(k – τM)

]T [
T + N Y

∗ T + N

]

·
[

e(k – τm) – e(k – τ (k))
e(k – τ (k)) – e(k – τM)

]

. ()

Then we can get

�V(k) + �V(k)

≤ τ 
Mm

[
eT (k)Te(k) + ηT (k)Tη(k)

]
+ ηT (k)

(
τ 

mT + τ 
MmT

)
η(k)
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+ τMmeT (k – τm)Ne(k – τm) + τMmeT(
k – τ (k)

)
(N – N)e

(
k – τ (k)

)

– τMmeT (k – τM)Ne(k – τM) –
[
e(k) – e(k – τm)

]T T
[
e(k) – e(k – τm)

]

–

[
e(k – τm) – e(k – τ (k))
e(k – τ (k)) – e(k – τM)

]T [
T + N Y

Y T T + N

]

·
[

e(k – τm) – e(k – τ (k))
e(k – τ (k)) – e(k – τM)

]

. ()

On the other hand, for any appropriately dimensioned invertible matrix M, the following
zero equality holds:

 = 
[
eT (k)M + ηT (k)M

]
[

(A – KC – I)e(k) – KCe
(
k – τ (k)

)
+ Bg

(
e(k)

)

+ Bg
(
e
(
k – τ (k)

))
+ B

+∞∑

i=

δ(i)g
(
x(k – i)

)
+ (D – KD)ω(k) – η(k)

]

. ()

From the Assumption ., it follows that

(
gi

(
ei(k)

)
– l+

i ei(k)
)(

gi
(
ei(k)

)
– l–

i ei(k)
) ≤ , ()

(
gi

(
ei

(
k – τ (k)

))
– l+

i ei
(
k – τ (k)

))(
gi

(
ei

(
k – τ (k)

))
– l–

i ei
(
k – τ (k)

)) ≤ . ()

For the diagonal matrices Sk = diag{sk , sk , . . . , snk} (k = , ), one can obtain the following
inequalities:

–

[
e(k)

g(e(k))

]T [
SL –SL

∗ S

][
e(k)

g(e(k))

]

≥ , ()

–

[
e(k – τ (k))

g(e(k – τ (k)))

]T [
SL –SL

∗ S

][
e(k – τ (k))

g(e(k – τ (k)))

]

≥ . ()

In order to establish the H∞ performance of the estimation error system, we define

J(s) =
s∑

k=

{∥∥ẑ(k)
∥∥ – γ ∥∥ω(k)

∥∥}. ()

Under the zero-initial condition, combined with ()-(), one can get

J(s) =
s∑

k=

{∥∥ẑ(k)
∥∥ – γ ∥∥ω(k)

∥∥ + �V (k) – V (s + )
}

≤
s∑

k=

{∥∥ẑ(k)
∥
∥ – γ ∥∥ω(k)

∥
∥ + �V (k)

}

≤
s∑

k=

{

ξT (k)

[
� �

∗ –γ I

]

ξ (k) + eT (k)HT He(k)

}

< , ()
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where

αT (k) =

[

eT (k), eT (k – τm), eT(
k – τ (k)

)
, eT (k – τM),ηT (k), gT(

e(k)
)
,

gT(
e
(
k – τ (k)

))
,

+∞∑

i=

δ(i)gT(
e(k – i)

)
]

,

ξT (k) =
[
αT (k),ωT (k)

]
.

When s −→ ∞, we can obtain

∞∑

k=

∥∥z̃(k)
∥∥ ≤ γ 

∞∑

k=

∥∥ω(k)
∥∥.

Then, when ω(k) = , from () to (), we can get �V (k) ≤ αT (k)�α(k), where � is
defined in () and � < .

There must exist a sufficiently small ε > , such that

�V (k) ≤ –ε
∥
∥e(k)

∥
∥ < . ()

From Lyapunov stability theory, we know that the error system is globally asymptotically
stable in mean square with ω(k) = . The proof is completed. �

Remark  In this paper, we use the zero equality () to avoid the problem of nonlinear
matrix inequality, which can give flexibility in solving LMIs, and the effectiveness of this
way will be demonstrated in the numerical examples. In [], the authors use the way of
–PR–P ≤ –P + R (R ≥ ) to overcome the problem of the nonlinear matrix inequality
into LMI.

Remark  In this paper, by introducing two new zero equalities () and (), the free-
weighting matrices N, N were added in the main diagonal terms of the matrix

[ T 
 T

]
,

the condition of the reciprocally convex approach is changed as
[ T+N Y

Y T T+N

] ≥ . This
method may lead to less conservative conditions of the H∞ state estimation and stability
for discrete-time neural networks, which will be shown by the following numerical exam-
ples.

Remark  It should be noted that the proposed Lyapunov-Krasovskii functional is more
generalized, since V(k) was not considered in []. The effectiveness of V(k) has been
proved in terms of reducing the conservatism in this paper. Therefore, our results may be
more applicable than the ones in [].

In the following, we consider the discrete-time neural networks with mixed time delays

e(k + ) = Ae(k) + Bg
(
e(k)

)
+ Bg

(
e
(
k – τ (k)

))
+ B

+∞∑

i=

δ(i)g
(
e(k – i)

)
. ()
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Theorem . The system () is globally asymptotically stable if there exist symmetric pos-
itive definite matrices P > , P > , Q =

[ Q Q
∗ Q

]
> , Rl >  (l = , ), Tl >  (l = , , , ),

the positive diagonal matrices Sk = diag{sk , sk , . . . , snk} (k = , ), any appropriately dimen-
sioned symmetric matrices N, N, and any appropriately dimensioned matrices Y , M, M,
such that the following matrix inequalities hold:

[
T N

∗ T

]

> ,

[
T N

∗ T

]

> ,

[
T + N Y

∗ T + N

]

≥ , ()

�̂ =

⎡

⎢
⎢
⎣

�̂ · · · �̂

∗ . . .
...

∗ ∗ �̂

⎤

⎥
⎥
⎦ < , ()

where

�̂ = (τMm + )Q + R + τ 
MmT – T – SL + MA + AMT

 – M – MT
 ,

�̂ = T, �̂ = P – M – MT
 + AMT

 ,

�̂ = (τMm + )Q + MB + LS, �̂ = MB, �̂ = MB,

� = –R + R – T – T + (τMm – )N, �̂ = T + N – Y , �̂ = Y ,

�̂ = –Q – T – (τMm + )N + (τMm – )N + Y + Y T – SL,

�̂ = T + N – Y , �̂ = –CT
 GT , �̂ = –Q + LS,

�̂ = –R – T – (τMm + )N, �̂ = τ 
Mm(T + T) + τ 

mT + P – M – MT
 ,

�̂ = MB, �̂ = MB, �̂ = MB, �̂ = (τMm + )Q + ξP – S,

�̂ = –Q – S, �̂ = –

ξ

P,

otherwise, �ij = , i, j = , , . . . , .

Proof Define the same Lyapunov-Krasovskii functional in Theorem .

V (k) = V(k) + V(k) + V(k) + V(k) + V(k). ()

For any appropriately dimensioned matrix M, M, the following zero equality holds:

 = 
[
eT (k)M + ηT (k)M

]
[

(A – I)e(k) + Bg
(
e(k)

)
+ Bg

(
e
(
k – τ (k)

))

+ B

+∞∑

i=

δ(i)g
(
x(k – i)

)
– η(k)

]

. ()

Similar to the above analysis in Theorem ., we can get αT (k)�̂α(k) < , and it follows
from Lyapunov stability theory that the system () is globally asymptotically stable. The
proof is completed. �
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4 Examples
In this section, we present three examples to demonstrate the effectiveness of our results.

Example  Consider the system model () with the following parameters:

A =

[
. 
 .

]

, B =

[
–. .
. .

]

, B =

[
. .
. .

]

,

B =

[
–. .
. .

]

, C =

[
. .

–. .

]

, C =

[
. .

–. .

]

,

D =

[
. 
 .

]

, D =

[
. 
 .

]

, H =

[
. .
. .

]

,

f
(
x(k)

)
=

[
tanh(.x) – . sin x

tanh(–.x)

]

,

δ(i) = –i–, τ (k) =  +  sin

(
πk


)
.

It can be verified that

L =

[
–. 

 

]

, L =

[
. 
 –.

]

,

τM = , τm = , ξ =



.

In this example, the attenuation level is γ = .. By applying Theorem . with Matlab,
we can get a set of feasible solution as follows:

P =

[
. –.
–. .

]

, P =

[
. –.

–. .

]

,

Q =

[
. –.
–. .

]

, Q =

[
–. –.
–. –.

]

,

Q =

[
. –.

–. .

]

, R =

[
. –.

–. .

]

,

R =

[
. –.

–. .

]

, T =

[
. –.

–. .

]

,

T =

[
. –.

–. .

]

, T =

[
. –.

–. .

]

,

T =

[
. –.

–. .

]

, N =

[
. –.

–. .

]

,

N =

[
. –.

–. .

]

, Y =

[
–. .
. –.

]

,
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M =

[
. –.
–. .

]

, G =

[
. –.
–. .

]

,

S =

[
. 

 .

]

, S =

[
. 

 .

]

.

Therefore, according to Theorem ., the desired estimator gains can be designed as

K = M–G =

[
. –.
. .

]

.

Example  Consider the system () with the following parameters:

A =

[
. 
 .

]

, B =

[
–. .
. .

]

, B =

[
. .
. .

]

,

B =

[
–. .
. .

]

, g(e) =

[
tanh(.e)

tanh(–.e)

]

.

We can obtain

L =

[
 
 

]

, L =

[
. 
 –.

]

,
+∞∑

i=

e–i < +∞.

The aim of Example  is to get the allowable delay bounds τM with different τm; by us-
ing Theorem ., the computational results are listed in Table . From Table , it can be
confirmed that our results are less conservative than the ones in [, ].

Example  In this example, we will show the application of the proposed method to a bio-
logical network, which has been studied in []. Here, we consider the following discrete-
time genetic regulatory network:

m(k + ) = Ãm(k) + B̃f
(
p – τ (k)

)
,

p(k + ) = C̃p(k) + D̃m
(
k – τ (k)

)
,

()

where m(k) = [m(k), m(k), . . . , mn(k)]T , p(k) = [p(k), p(k), . . . , pn(k)]T , and mi(k), pi(k)
can be viewed as the concentrations of the mRNA and protein of the ith mode. Ã =
diag{ã, ã, . . . , ãn} with |ãi| < , C̃ = diag{c̃, c̃, . . . , c̃n} with |c̃i| < , ãi and c̃i are the de-
cay rates of mRNA and protein. D̃ = diag{d̃, d̃, . . . , d̃n}, f (p(t)) = [f(p(t)), f(p(t)), . . . ,
fn(pn(t))]T , and fi(·) denotes the feedback regulation of the protein on the transcription.
B̃ = (b̃ij) ∈ Rn×n is the coupling matrix of the genetic network, which is defined as follows:
bij = αij if the transcription factor j is an activator of gene i, bij =  if there is no link node

Table 1 Allowable bounds of τM for different τm

τm 2 4 10 20

[25] 5 8 14 24
[26] 8 10 16 26
Theorem 3.2 9 12 18 28
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j to i, bij = –αij if the transcription factor j is a repressor of gene i, αij is the dimensionless
transcriptional rate, a bounded constant.

In this example, consider a three-node genetic regulatory network with the following
parameters:

Ã = C̃ =

⎡

⎢
⎣

.  
 . 
  .

⎤

⎥
⎦ , B̃ =

⎡

⎢
⎣

  –.
–.  

 –. 

⎤

⎥
⎦ ,

D̃ =

⎡

⎢
⎣

.  
 . 
  .

⎤

⎥
⎦ .

()

Letting

e(k) =

[
m(k)
p(k)

]

, g
(
e
(
k – τ (k)

))
=

[
m(k – τ (k))
p(k – τ (k))

]

,

A =

[
Ã 
 C̃

]

, B = , B =

[
 B̃
D̃ 

]

, B = .

We can find that genetic regulatory network () can be transformed into discrete-time
neural network (), it is assumed that τ (k) = + sin( kπ

 ). Applying Theorem ., it can be
checked that the discrete-time neural network () is asymptotically stable, which implies
the genetic regulatory network () is stable.

5 Conclusions
In this paper, the problem of an H∞ state estimation for discrete-time neural networks
with distributed delays has been investigated. The presented sufficient conditions are
based on a new Lyapunov-Krasovskii functional, appropriate free-weighting matrices,
a reciprocally convex approach, and three new zero equalities, and new criteria are es-
tablished in terms of LMIs. Three numerical examples are given to demonstrate the use-
fulness and effectiveness of the proposed results. Finally, it should be worth noting that
the proposed method in this paper can be greatly applicable in many other cases, such
as Markovian jumping neural networks, fuzzy neural networks and switched neural net-
works, which deserves further investigation.
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