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Abstract
In this paper along with the research on weakly mixing sets and transitive sets, we
introduce a local aspect of sensitivity in topological dynamics and give the concept of
an s-set. It is shown that a weakly mixing set is an s-set. A transitive set with the set of
periodic points being dense is an s-set. In particular, a transitive set is an s-set for
interval maps. Moreover, we discuss s-sets for set-valued discrete dynamical systems.
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1 Introduction
A topological dynamical system (abbreviated by TDS) is a pair (X, f ), where X is a compact
metric space with metric d and f : X → X is a continuous map. When X is finite, it is
a discrete space and there is no non-trivial convergence at all. Hence, we assume that
X contains infinitely many points. Let N+ denote the set of all positive integers and let
N = N

+ ∪ {}.
Transitivity, weak mixing, and sensitive dependence on initial conditions (see [–])

are global characteristics of topological dynamical systems. Let (X, f ) be a TDS, (X, f ) is
(topologically) transitive if for any nonempty open subsets U and V of X there exists an
n ∈ N such that f n(U) ∩ V �= ∅. (X, f ) is (topologically) mixing if for any nonempty open
subsets U and V of X, there exists an N ∈ N such that f n(U) ∩ V �= ∅ for all n ∈ N with
n ≥ N . (X, f ) is (topologically) weakly mixing if for any nonempty open subsets U, U, V,
and V of X, there exists an n ∈N such that f n(U) ∩ V �= ∅ and f n(U) ∩ V �= ∅. It follows
from these definitions that mixing implies weak mixing, which in turn implies transitivity.
A map f is said to have sensitive dependence on initial conditions if there is a constant
δ >  such that for any nonempty open set U of X, there exist points x, y ∈ U such that
d(f n(x), f n(y)) > δ for n ∈ N

+.
In [], Blanchard introduced overall properties and partial properties. For example, sen-

sitive dependence on initial conditions, Devaney chaos (see []), weak mixing, mixing and
more belong to overall properties; Li-Yorke chaos (see []) and positive entropy (see [, ])
belong to partial properties. Weak mixing is an overall property, it is stable under semi-
conjugate maps and implies Li-Yorke chaos. We find that a weakly mixing system always
contains a dense uncountable scrambled set (see []). In [], Blanchard and Huang intro-
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duced the concepts of a weakly mixing set, derived from a result given by Xiong and Yang
[] and showed ‘partial weak mixing implies Li-Yorke chaos’ and ‘Li-Yorke chaos cannot
imply partial weak mixing’.

Motivated by the idea of Blanchard and Huang’s notion of a ‘weakly mixing subset’,
Oprocha and Zhang [] extended the notion of a weakly mixing set and gave the con-
cept of a transitive set and discussed its basic properties. In this paper we give the concept
of ‘s-set’ for topological dynamical systems and investigate the relationship among transi-
tive subsets, weakly mixing sets, and s-sets. We find that a TDS to have a weakly mixing set
implies it has an s-set, and if periodic points are dense in the transitive set, then the transi-
tive set is an s-set. In particular, a transitive set is an s-set for interval maps. The properties
of transitivity, weak mixing, and sensitivity on initial conditions for a set-valued discrete
dynamical system were discussed (see [–]). Also, we continue to discuss s-sets for set-
valued discrete dynamical systems and investigate the relationship between a set-valued
discrete system and an original system on an s-set. More precisely, a set-valued discrete
system has an s-set, which implies that an original system has an s-set.

2 Preliminaries
A TDS (X, f ) is point transitive if there exists a point x ∈ X with dense orbit i.e., orb(x) =
X. Such a point x is called a transitive point of (X, f ). In general, transitive and point
transitive are independent (see []). A TDS (X, f ) is minimal if orb(x, f ) = X for every x ∈ X,
i.e., every point is transitive point. A point x is called minimal if the subsystem (orb(x, f ), f )
is minimal. Denote by P(f ) the set of all periodic points.

A Li-Yorke or scrambled pair (x, y) of (X, f ) is a pair of points of X such that
() limn→∞ inf d(f n(x), f n(y)) = , and
() limn→∞ sup d(f n(x), f n(y)) > .

A set S ⊆ X is said to be a scrambled set if for all x, y ∈ S, x �= y, the (x, y) is a scrambled
pair. A TDS (X, f ) is called Li-Yorke chaotic if it contains an uncountable scrambled set.

A map f is said to be Devaney chaotic if f satisfies the following conditions:
() f is transitive,
() f is periodically dense; i.e., the set of periodic points of f is dense in X , and
() f is sensitive dependent on initial conditions.

Definition . [] Let (X, f ) be a TDS and A be a closed subset of X with at least two
elements. A is said to be weakly mixing if for any k ∈ N, any choice of nonempty open
subsets V, V, . . . , Vk of A and nonempty open subsets U, U, . . . , Uk of X with A ∩ Ui �= ∅,
i = , , . . . , k, there exists an m ∈ N such that f m(Vi) ∩ Ui �= ∅ for  ≤ i ≤ k. (X, f ) is called
partial weak mixing if X contains a weakly mixing subset.

Definition . [] Let (X, f ) be a TDS and A be a nonempty subset of X. A is called a
transitive set of (X, f ) if, for any choice of nonempty open subset V A of A and nonempty
open subset U of X with A ∩ U �= ∅, there exists an n ∈ N such that f n(V A) ∩ U �= ∅.

Remark .
() (X, f ) is topologically transitive if and only if X is a transitive set of (X, f ).
() By [], A is a transitive set if and only if A is a transitive set, where A denotes the

closure of A.
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According to the definitions of transitive set and weakly mixing subset, we have the
following results.

Result . If A is a weakly mixing set of (X, f ), then A is a transitive set of (X, f ).
Result . If a ∈ X is a transitive point of (X, f ), then {a} is a transitive set of (X, f ).
Result . If A = orb(x, f ) is a periodic orbit of (X, f ) for some x ∈ X , then A is a transitive set

of (X, f ).

Definition . A nonempty subset A is called an s-set of (X, f ) if there exists a δ > 
such that for any x ∈ A and ε > , there exist a y ∈ B(x, ε) ∩ A and an n ∈ N

+ satisfying
d(f n(x), f n(y)) > δ.

Remark . The s-set is dense in itself, i.e., it contains no isolated points. X is an s-set of
(X, f ) if and only if (X, f ) is sensitive dependent on initial conditions.

Let (X, f ) and (Y , g) be two TDSs. Then (X, f ) is an extension of (Y , g), or (Y , g) is a
factor of (X, f ) if there exists a surjective continuous map h : X → Y (called a factor map)
such that h ◦ f (x) = g ◦ h(x) for every x ∈ X. If further h is a homeomorphism, then (X, f )
and (Y , g) are said to be topologically conjugate and the homeomorphism h is called a
conjugated map.

Theorem . Let A be a weakly mixing set of (X, f ). Then A is an s-set of (X, f ).

Proof Let A be a weakly mixing set of (X, f ). Then A contains at least two points. Pick up
two distinct points x, x ∈ A and set δ = 

 d(x, x) > . For any x ∈ A and ε > , we see that
B(x, ε) is a nonempty open subset of X.

We consider an open subset B(x, ε) ∩ A of A and two open subsets B(x, δ), B(x, δ) of X.
Since A is a weakly mixing set and B(x, δ) ∩ A �= ∅, B(x, δ) ∩ A �= ∅, there exists an n ∈ N

such that f n(B(x, ε) ∩ A) ∩ B(x, δ) �= ∅ and f n(B(x, ε) ∩ A) ∩ B(x, δ) �= ∅. Furthermore, there
exist y, y ∈ B(x, ε) ∩ A such that f n(y) ∈ B(x, δ) and f n(y) ∈ B(x, δ). Moreover,

d
(
f n(y), f n(y)

) ≥ d(x, x) – d
(
x, f n(y)

)
– d

(
x, f n(y)

)
> δ – δ – δ = δ.

Therefore, either d(f n(x), f n(y)) > δ or d(f n(x), f n(y)) > δ. This shows that A is an s-set of
(X, f ). �

3 Characterizing s-sets
In this section, we discuss the properties of s-sets of (X, f ). For a TDS (X, f ) and two
nonempty subsets U , V ⊆ X, we use the following notation:

N(U , V ) =
{

n ∈N : f n(U) ∩ V �= ∅}
.

Lemma . Let A be an infinite subset of X and P(f ) be dense in A. Then P(f )∩A is infinite.

Proof Suppose that P(f ) ∩ A is finite and let card(P(f ) ∩ A) = n, where card represents the
cardinality of a set. Since A is an infinite subset of X, there exists a pairwise disjoint open
set V A

i of A for i = , , . . . , n + , i.e., V A
i ∩ V A

j = ∅ for i, j ∈ {, , . . . , n + } and i �= j. More-
over, P(f ) ∩ A is dense in A, which implies card(P(f ) ∩ A) ≥ n + . This is a contradiction.
Therefore, P(f ) ∩ A is infinite. �
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Theorem . Let (X, f ) be a TDS and A be an infinite subset of X. If A is a transitive set of
(X, f ) and P(f ) is dense in A, then A is an s-set of (X, f ).

Proof We first prove that there exists δ >  such that, for any x ∈ A, there exists q ∈ P(f )∩
A satisfying

d
(
orb(q), x

) ≥ δ


.

Indeed, by Lemma ., P(f ) ∩ A is an infinite set. Hence, we pick two different points
q, q ∈ P(f ) ∩ A such that orb(q) ∩ orb(q) = ∅. Let

δ = d
(
orb(q), orb(q)

)
> . (.)

Then, for any x ∈ A, we have

d
(
orb(q), x

)
>

δ


or d

(
orb(q), x

)
>

δ


. (.)

If (.) is false, then

d
(
orb(q), x

) ≤ δ


and d

(
orb(q), x

) ≤ δ


.

Hence, by the triangle inequality, we have

d
(
orb(q), orb(q)

)
< δ.

This is a contradiction by (.).
Take δ = δ

 . For any x ∈ A and ε > , without loss of generality, let ε < δ. Since P(f ) is
dense in A, we have P(A) ∩ (B(x, ε) ∩ A) �= ∅. Furthermore, we can take p ∈ B(x, ε) ∩ A and
let f n(p) = p. Since x ∈ A, there exists q ∈ P(f ) ∩ A such that

d
(
orb(q), x

) ≥ δ.

Let U =
⋂n

i= f –i(B(f i(q), δ)). Since q ∈ U , we have q ∈ U ∩ A, which implies U ∩ A �= ∅.
Moreover, A is a transitive set of (X, f ), thus there exists a k ∈ N

+ such that B(x, ε) ∩ A ∩
f –k(U) �= ∅. Take y ∈ B(x, ε)∩A∩ f –k(U). Then f k(y) ∈ U . Let j = [ k

n +]. Then  ≤ nj–k ≤ n.
Furthermore, we have

f nj(y) ∈ f nj–k(f k(y)
) ∈ f nj–k(U) ⊆ B

(
f nj–k(q), δ

)
.

Since f n(p) = p, we have f nj(p) = p. Hence, by the triangle inequality,

d
(
f nj(p), f nj(y)

)
= d

(
p, f nj(y)

) ≥ d
(
x, f nj–k(q)

)
– d

(
f nj–k(q), f nj(y)

)
– d(p, x).

As p ∈ B(x, δ) ∩ A and f nj(y) ∈ B(f nj–k(q), δ), so

d
(
f nj(p), f nj(y)

)
> δ – δ – δ = δ.
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Again, by the triangle inequality, we have

d
(
f nj(x), f nj(y)

)
> δ or d

(
f nj(x), f nj(p)

)
> δ,

for some p ∈ B(x, ε) ∩ A and some y ∈ B(x, ε) ∩ A. Therefore, A is an s-set of (X, f ).
By [], if X is a non-degenerate compact interval, f : X → X is a continuous map and

f is transitive, then P(f ) is dense in X. We prove that if X is a non-degenerate compact
interval, A is a non-degenerate closed interval, and A is a transitive set of (X, f ), then P(f )
is dense in A. �

Lemma . [] Suppose that I is a non-degenerate interval and f : I → I is a continuous
map. If J ⊆ I is an interval which contains no periodic points of f and z, f m(z) and f n(z) ∈ J
with  < m < n, then either z < f m(z) < f n(z) or z > f m(z) > f n(z).

Theorem . Let I be a non-degenerate interval and f : I → I be a continuous map. If
J ⊆ I is a non-degenerate closed interval and J is a transitive set of (I, f ), then P(f ) is dense
in J .

Proof Suppose that P(f ) is not dense in J . Then there exists a nonempty open set J of J
containing no periodic points, i.e., P(f )∩ J = ∅. Without loss of generality, let J be an open
interval of I and J ⊆ J . Take an x ∈ J which is not an endpoint of J, an open neighborhood
U � J of x and an open interval E ⊆ J \ U .

We consider open neighborhood U of J and open interval E with J ∩ E �= ∅. Since J is
a transitive set of (I, f ), there exists an m ∈ N such that f m(U) ∩ E �= ∅. Furthermore, there
exists a y ∈ U ⊆ J such that f m(y) ∈ E ⊆ J. Moreover, P(f )∩ J = ∅, it means that y �= f m(y).
Since I is a Hausdorff space and f is continuous, there exists an open neighborhood V of
y such that f m(V ) ∩ V = ∅. Hence, we can take an open interval J of I such that J ⊆ J

and y ∈ J ⊆ V , thus f m(J) ∩ J = ∅. Since J is an open interval of I and J ⊆ J and J is a
transitive set, there exist n > m and z ∈ U such that f n(z) ∈ J. Furthermore, we have  <
m < n and z, f n(z) ∈ J while f m(z) /∈ J. This is a contradiction by Lemma .. Therefore,
P(f ) is dense in J . �

Example . We have the tent map (see Figures  and )

f (x) =

{
x, if  ≤ x ≤ 

 ,
( – x), if 

 ≤ x ≤ ,

which is called Devaney chaos on I = [, ] by []. We will prove that [ 
 , 

 ] is a transitive
set of (I, f ).

Let S(f k) denote the set of extreme value points of f k for every k ∈ N
+. Then S(f k) =

{ 
k , 

k , . . . , k –
k }. Since S(f ) = { 

 }, f ( 
 ) = , f () = , and f () = , we have

f k(x) =

{
, if x = 

k , 
k , . . . , k –

k ,
, if x = , 

k , 
k , . . . , k –

k , .

Let Ij
k = [ j

k , j+
k ] for  ≤ j ≤ k – . Then f k(Ij

k) = [, ]. For any nonempty open set U
of [ 

 , 
 ], without loss of generality, we take U = (x – ε, x + ε) for a given ε >  and
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Figure 1 The tent map f .

Figure 2 The 2nd iterate f 2 of the tent map f .

x ∈ int[ 
 , 

 ], where int[ 
 , 

 ] denotes the interior of [ 
 , 

 ]. When l ∈ N and l > log

ε

,
there exists j, j ∈N and  ≤ j ≤ l – , such that Ij

l ⊆ U . Furthermore, we have f l(U) = [, ].
Thus, for any nonempty open set U of [ 

 , 
 ] and nonempty open set V of [, ] with

V ∩ [ 
 , 

 ] �= ∅, there exists a k ∈ N such that f k(U) ∩ V �= ∅. This shows that [ 
 , 

 ] is a
transitive set of (I, f ). Since P(f ) is dense in I , P(f ) is also dense in [ 

 , 
 ]. By Theorem .,

[ 
 , 

 ] is an s-set of (I, f ).

4 s-sets for set-valued discrete dynamical systems
The distance from a point x to a nonempty set A in X is defined by

d(x, A) = inf
a∈A

d(x, a).

Let κ(X) be the family of all nonempty compact subsets of X. The Hausdorff metric on
κ(X) is defined by

dH (A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

for every A, B ∈ κ(X).

It follows from Michael [] and Engelking [] that κ(X) is a compact metric space. The
Vietoris topology τυ on κ(X) is generated by the base

υ(U, U, . . . , Un) =

{

F ∈ κ(X) : F ⊆
n⋃

i=

Ui and F ∩ Ui �= ∅ for all i ≤ n

}

,
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where U, U, . . . , Un are open subsets of X. Let f̄ be the induced set-valued map defined
by

f̄ : κ(X) → κ(X), f̄ (F) = f (F), for every F ∈ κ(X).

Then f̄ is well defined. (κ(X), f̄ ) is called a set-valued discrete dynamical system.
Let X be a T space, that is, a single point set that is closed. Then κ(A) = {F ∈ κ(X) : F ⊆

A} is a closed subset of κ(X) for any nonempty closed subset A of X (see []).

Theorem . Let A be a nonempty closed subset of X. If P(f ) is dense in A, then P(f̄ ) is
dense in κ(A).

Proof LetVκ(A) be a nonempty open subset of κ(A). Then there exists an open setV of κ(X)
such that Vκ(A) = V ∩ κ(A). Without loss of generality, let V = ν(V, V, . . . , Vm). Take F ∈
V ∩ κ(A). Then we have F ⊆ A, F ⊆ ⋃m

i= Vi and F ∩ Vi �= ∅ for each i = , , . . . , m. Hence,
Vi ∩ A �= ∅ for each i = , , . . . , m. Since P(f ) is dense in A, it follows that P(f ) ∩ (Vi ∩ A) �= ∅
for each i = , , . . . , m. Furthermore, there exist yi ∈ P(f ) ∩ (Vi ∩ A) and ni ∈ N

+ such
that f ni (yi) = yi for each i = , , . . . , m. Let G = {y, y, . . . , ym}. Then G ∈ V and G ∈ κ(A),
which implies G ∈ Vκ(A). Moreover, f nn···nm (yi) = yi for each i = , , . . . , m. Therefore,
(f̄ )nn···nm (G) = f nn···nm (G) = G, it means that P(f̄ ) ∩ Vκ(A) �= ∅. This shows that P(f̄ ) is
dense in κ(A). �

Theorem . Let A be a nonempty closed subset of X. If κ(A) is a sensitive set of (κ(X), f̄ ),
then A is an s-set of (X, f ).

Proof Since κ(A) is an s-set of (κ(X), f̄ ), there exists a constant δ >  such that K ∈ κ(A)
and every ε >  there exist G ∈ B(K , ε)∩κ(A) and n ∈N

+ such that dH ((f̄ )n(K), (f̄ )n(G)) > δ.
Let x ∈ A and ε > . Take K = {x} ∈ κ(A). Then there exist G ∈ B({x}, ε)∩κ(A) and n ∈N

+

such that

dH
(
(f̄ )n({x}), (f̄ )n(G)

)
= dH

(
f n({x}), f n(G)

) ≥ δ.

Since dH (f n({x}), f n(G)) = supy∈G d(f n(x), f n(y)), G is a compact subset of X and f : X → X
is a continuous map, there exists y ∈ G such that

dH
(
f n({x}), f n(G)

)
= d

(
f n(x), f n(y)

)
> δ.

Moreover, G ∈ B({x}, ε) ∩ κ(A) implies G ⊆ B(x, ε) and G ⊆ A, consequently, y ∈ B(x, ε) ∩
A. This shows that A is an s-set of (X, f ). �
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