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1 Introduction
Backward stochastic differential equations (BSDEs) were proposed firstly by Bismut []
in linear case to solve the optimal control problems. Later this notion was generalized by
Pardoux and Peng [] into the general nonlinear form, and the existence and uniqueness
results were proved under the classical Lipschitz condition. A class of BSDEs was also
introduced by Duffie and Epstein [] in point of view of recursive utility in economics.
During the past twenty years, BSDEs theory has attracted many researchers’ interest and
has been fully developed into various directions. Among the abundant literature, we refer
readers to the florilegium book edited by El-Karoui and Mazliak [] for the early works
before . Surveys on BSDEs theory also include [] which is written by El-Karoui,
Hamadène and Matoussi collected in book [] (see Chapter ) and the book by Yong and
Zhou [] (see Chapter ). Some applications on optimization problems can be found in [].
About other applications, such as in the field of economics, we refer to El-Karoui, Peng
and Quenez []. Recently, a complete review on BSDEs theory as well as some new results
on nonlinear expectation were introduced in a survey paper by Peng [].

One possible extension to the pioneering work of [] is to relax as much as possible
the uniform Lipschitz condition on the coefficient. Mao [] provided an existence and
uniqueness result under a weaker condition than the Lipschitz one. Hamadène introduced
in [] a one-dimensional BSDE with local Lipschitz generator. Later Lepeltier and San
Martin [] provided an existence result of minimum solution for one-dimensional BSDE
where the generator function f is continuous and of linear growth in terms of (y, z). When
f is uniformly continuous in z with respect to (ω, t) and independent of y, a uniqueness
result was obtained by Jia []. BSDEs with polynomial growth generator were studied by
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Briand in []. The case of one-dimensional BSDEs with coefficient which is monotonic
in y and non-Lipschitz on z is shown in work []. About the BSDE with continuous and
quadratic growth driver, a classical research should be the one by Kobylanski [] which
investigated a one-dimensional BSDE with driver |f (t, y, z) ≤ C( + |y| + |z|) and bounded
terminal value. This result was generated by Briand and Hu into the unbounded terminal
value case in [].

There are plenty of works on one-dimensional BSDE. However, limited results have been
obtained about the multi-dimensional case. We refer to Hamadène, Lepeltier and Peng []
for an existence result on BSDEs system of Markovian case where the driver is of linear
growth on (y, z) and of polynomial growth on the state process. See Bahlali [, ] for
high-dimensional BSDE with local Lipschitz coefficient.

In the present article, we consider a high-dimensional BSDE under Markovian frame-
work as follows:

Y i
t = gi(XT ) +

∫ T

t
Hi

(
s, Xs, Y 

s , . . . , Y n
s , Z

s , . . . , Zn
s
)

ds –
∫ T

t
Zi

s dBs

for i = , , . . . , n, with process X as a solution of a stochastic differential equation (SDE for
short). For each i = , , . . . , n, the coefficient Hi is continuous on (y, . . . , yn, z, . . . , zn) and
satisfies

∣∣Hi
(
t, x, y, . . . , yn, z, . . . , zn)∣∣ ≤ C

(
 + |x|)∣∣zi∣∣ + C

(
 + |x|γ +

∣∣yi∣∣), γ > ,

which means that Hi is of stochastic linear growth on Zi, or in other words, it is of linear
growth ω by ω. Similar situation was considered in [] in the background of nonzero-sum
stochastic differential game problem. However, in [], the generator Hi is independent of
(y, . . . , yn). According to our knowledge, this general form of high-dimensional coupled
BSDEs system with stochastic linear growth generator has not been considered in litera-
ture. This is the main motivation of the present work.

The rest of this article is organized as follows. In Section , we give some notations and
assumptions on the coefficient. The properties of the forward SDE are also provided. The
main existence result of BSDEs is proved in Section  where a measure domination result
plays an important role. This domination result holds true when we assume that the diffu-
sion process of the SDE satisfies the uniform elliptic condition. For the proof of the main
result, we adopt an approximation scheme following the well-known mollify technique.
The irregular coefficients are approximated by a sequence of Lipschitz functions. Then,
we obtain the uniform estimates of the sequence of solutions as well as the convergence
result in some appropriate spaces. Finally, we verify that the limit of the solutions is exactly
the solution to the original BSDE, which completes the proof.

2 Notations and assumptions
In this section, we give some basic notations, the preliminary assumptions throughout
this paper, as well as some useful results. Let (�,F , P) be a probability space on which
we define an m-dimensional Brownian motion B = (Bt)≤t≤T with integer m ≥ . Let us
denote by F = {Ft ,  ≤ t ≤ T} for fixed T >  the natural filtration generated by process B
and augmented by NP the P-null sets, i.e., Ft = σ {Bs, s ≤ t} ∨NP.



Mu and Wu Advances in Difference Equations  (2015) 2015:265 Page 3 of 15

Let P be the σ -algebra on [, T] ×� of Ft-progressively measurable sets. Let p ∈ [,∞)
be a real constant and t ∈ [, T] be fixed. We then define the following spaces: Lp = {ξ :
Ft-measurable and Rm-valued random variable s.t. E[|ξ |p] < ∞}; Sp

t,T = {ϕ = (ϕs)t≤s≤T :
P-measurable and Rm-valued s.t. E[sups∈[t,T] |ϕs|p] < ∞} and Hp

t,T = {ϕ = (ϕs)t≤s≤T :
P-measurable and Rm-valued s.t. E[(

∫ T
t |ϕs| ds)

p
 ] < ∞}. Hereafter, Sp

,T and Hp
,T are

simply denoted by Sp
T and Hp

T .
The following assumptions are in force throughout this paper. Let σ be the function

defined as

σ : [, T] × Rm −→ Rm×m

which satisfies the following assumption.

Assumption .
(i) σ is uniformly Lipschitz w.r.t. x, i.e., there exists a constant C such that, ∀t ∈ [, T],

∀x, x′ ∈ Rm, |σ (t, x) – σ (t, x′)| ≤ C|x – x′|.
(ii) σ is invertible and bounded and its inverse is bounded, i.e., there exists a constant Cσ

such that ∀(t, x) ∈ [, T] × Rm, |σ (t, x)| + |σ –(t, x)| ≤ Cσ .

Remark . (Uniform elliptic condition) Under Assumption ., we can verify that there
exists a real constant ε >  such that for any (t, x) ∈ [, T] × Rm,

ε.I ≤ σ (t, x).σ
(t, x) ≤ ε–.I, (.)

where I is the identity matrix of dimension m.

Suppose that we have a system whose dynamic is described by a stochastic differential
equation as follows: for (t, x) ∈ [, T] × Rm,

⎧⎨
⎩

Xt,x
s = x +

∫ s
t σ (u, Xt,x

u ) dBu, s ∈ [t, T];

Xt,x
s = x, s ∈ [, t].

(.)

The solution Xt,x = (Xt,x
s )s≤T exists and is unique under Assumption . (cf. Karatzas

and Shreve [], p.). We recall a well-known result associated to integrability of the
solution. For any fixed (t, x) ∈ [, T] × Rm, p ≥ , it holds that, P-a.s.,

E
[

sup
≤s≤T

∣∣Xt,x
s

∣∣p
]

≤ C
(
 + |x|p), (.)

where the constant C only depends on the Lipschitz coefficient and the bound of σ .
For integer n ≥ , we first present the following Borelian function as the terminal coef-

ficient of the n-dimensional BSDE that we are considering:

gi : Rm −→ R, i = , , . . . , n,

which satisfies the following.
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Assumption . The function gi, i = , , . . . , n, is of polynomial growth with respect to x,
i.e., there exist a constant Cg and γ ≥  such that

∣∣gi(x)
∣∣ ≤ Cg

(
 + |x|γ )

, ∀x ∈ Rm, for i = , , . . . , n.

Now, we consider Borelian functions Hi, i = , , . . . , n, from [, T] × Rm × Rn × Rnm into
R as follows:

Hi
(
t, x, y, . . . , yn, z, . . . , zn), i = , , . . . , n,

which satisfy the following hypothesis.

Assumption .
(i) For each (t, x, y, . . . , yn, z, . . . , zn) ∈ [, T] × Rm × Rn × Rnm, there exist constants C,

Ch and γ >  such that, for each i = , , . . . , n,

∣∣Hi
(
t, x, y, . . . , yn, z, . . . , zn)∣∣ ≤ C

(
 + |x|)∣∣zi∣∣ + Ch

(
 + |x|γ +

∣∣yi∣∣); (.)

(ii) the mapping (y, . . . , yn, z, . . . , zn) ∈ Rn × Rnm �−→ Hi(t, x, y, . . . , yn, z, . . . , zn) ∈ R is
continuous for any fixed (t, x) ∈ [, T] × Rm.

For a fixed constant a ∈ Rm, and i = , , . . . , n, let us consider the following BSDE:

Y i
t = gi(X,a

T
)

+
∫ T

t
Hi

(
s, X,a

s , Y 
s , . . . , Y n

s , Z
s , . . . , Zn

s
)

ds

–
∫ T

t
Zi

s dBs, t ∈ [, T]. (.)

From Assumptions . and ., we know that this is a multiple dimensional coupled BSDEs
system under Markovian framework with unbounded terminal value.

3 Existence of solutions for the multiple dimensional coupled BSDEs system
In this section, we provide an existence result of BSDEs (.) when n =  as an example.
Actually, the case for n >  can be dealt with in the same way without any difficulties.

3.1 Measure domination
Before we state our main theorem, let us first recall a result related to measure domination.

Definition . (Lq-domination condition) Let q ∈ (,∞) be fixed. For given t ∈ [, T],
a family of probability measures {ν(s, dx), s ∈ [t, T]} defined on Rm is said to be Lq-
dominated by another family of probability measures {ν(s, dx), s ∈ [t, T]} if for any δ ∈
(, T – t], there exists an application φδ

t : [t + δ, T] × Rm → R+ such that:
(i) ν(s, dx) ds = φδ

t (s, x)ν(s, dx) ds on [t + δ, T] × Rm.
(ii) ∀k ≥ , φδ

t (s, x) ∈ Lq([t + δ, T] × [–k, k]m;ν(s, dx) ds).

Lemma . Let a ∈ Rm, (t, x) ∈ [, T] × Rm, s ∈ (t, T] and μ(t, x; s, dy) the law of Xt,x
s , i.e.,

∀A ∈ B
(
Rm)

, μ(t, x; s, A) = P
(
Xt,x

s ∈ A
)
.
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Under Assumption . on σ , for any q ∈ (,∞), the family of laws {μ(t, x; s, dy), s ∈ [t, T]} is
Lq-dominated by {μ(, a; s, dy), s ∈ [t, T]} for fixed a ∈ Rm.

Proof See [], Lemma . and Corollary ., pp.-. �

3.2 High-dimensional coupled BSDEs system
Our main result in this section is the following theorem.

Theorem . Let a ∈ Rm be fixed. Then under Assumptions ., . and ., there exist two
pairs of P-measurable processes (Y i, Zi) with values in R+m, i = , , and two deterministic
functions ς i(t, x) which are of polynomial growth, i.e., |ς i(t, x)| ≤ C( + |x|γ ) with γ ≥ ,
i = , , such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P-a.s., ∀t ≤ T , Y i
t = ς i(t, X,a

t ) and Zi is dt-square integrable P-a.s.;

Y 
t = g(X,a

t ) +
∫ T

t H(s, X,a
s , Y 

s , Y 
s , Z

s , Z
s ) ds –

∫ T
t Z

s dBs;

Y 
t = g(X,a

t ) +
∫ T

t H(s, X,a
s , Y 

s , Y 
s , Z

s , Z
s ) ds –

∫ T
t Z

s dBs.

(.)

The result holds true as well for the case i >  following the same way.

Proof The structure of this proof is as follows. We first use the mollify technique on the
generator Hi to construct a sequence of BSDEs with generators which are Lipschitz con-
tinuous. Then, we provide uniform estimates of the solutions as well as the convergence
property. Finally, we verify that the limits of the sequences are exactly the solutions for
BSDE (.).

Step . Approximation.
Let ξ be an element of C∞(R+m, R) with compact support and satisfy

∫
R+m

ξ
(
y, y, z, z)dy dy dz dz = .

For (t, x, y, y, z, z) ∈ [, T] × Rm × R+m, we set

H̃n
(
t, x, y, y, z, z)

=
∫

R+m
nH

(
s,ϕn(x), p, p, q, q)

× ξ
(
n
(
y – p), n

(
y – p), n

(
z – q), n

(
z – q))dp dp dq dq,

where the truncation function ϕn(x) = ((xj ∨ (–n)) ∧ n)j=,,...,m for x = (xj)j=,,...,m ∈ Rm. We
next define ψ ∈ C∞(R+m, R) by

ψ
(
y, y, z, z) =

⎧⎨
⎩

, |y| + |y| + |z| + |z| ≤ ,

, |y| + |y| + |z| + |z| ≥ .

Then we define the measurable function sequence (Hn)n≥ as follows: ∀(t, x, y, y, z, z) ∈
[, T] × Rm × R+m,

Hn
(
t, x, y, y, z, z) = ψ

(
y

n
,

y

n
,

z

n
,

z

n

)
H̃n

(
t, x, y, y, z, z).
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We have the following properties:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Hn is uniformly Lipschitz w.r.t. (y, y, z, z);

(b) |Hn(t, x, y, y, z, z)| ≤ C( + |ϕn(x)|)|z| + Ch( + |ϕn(x)|γ + |y|);
(c) |Hn(t, x, y, y, z, z)| ≤ cn for any (t, x, y, y, z, z);

(d) For any (t, x) ∈ [, T] × Rm, and K a compact subset of R+m,

sup(y,y,z,z)∈K |Hn(t, x, y, y, z, z) – H(t, x, y, y, z, z)| → ,

as n → ∞.

(.)

The construction of the approximating sequence (Hn
 )n≥ is carried out in the same way.

For each n ≥  and (t, x) ∈ [, T] × Rm, since Hn and Hn are uniformly Lipschitz w.r.t.
(y, y, z, z), by the result of Pardoux-Peng (see []), we know that there exist two pairs of
processes (Y in;(t,x), Zin;(t,x)) ∈ S

t,T (R) ×H
t,T (Rm), i = , , which satisfy, for s ∈ [t, T],

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y n;(t,x)
s = g(Xt,x

T ) +
∫ T

s Hn(r, Xt,x
r , Y n;(t,x)

r , Y n;(t,x)
r , Zn;(t,x)

r , Zn;(t,x)
r ) dr

–
∫ T

s Zn;(t,x)
r dBr ;

Y n;(t,x)
s = g(Xt,x

T ) +
∫ T

s Hn(r, Xt,x
r , Y n;(t,x)

r , Y n;(t,x)
r , Zn;(t,x)

r , Zn;(t,x)
r ) dr

–
∫ T

s Zn;(t,x)
r dBr .

(.)

Meanwhile, properties (.)(a), (c) and the result of El-Karoui et al. (ref. []) yield that there
exist two sequences of deterministic measurable applications ς n (resp. ςn) : [, T] ×
Rm → R and zn (resp. zn) : [, T] × Rm → Rm such that for any s ∈ [t, T],

Y n;(t,x)
s = ς n(s, Xt,x

s
) (

resp. Y n;(t,x)
s = ςn(s, Xt,x

s
))

(.)

and

Zn;(t,x)
s = z

n(s, Xt,x
s

) (
resp. Zn;(t,x)

s = z
n(s, Xt,x

s
))

.

Besides, we have the following deterministic expression: for i = ,  and n ≥ ,

ς in(t, x) = E
[

gi(Xt,x
T

)
+

∫ T

t
Fin

(
s, Xt,x

s
)

ds
]

, ∀(t, x) ∈ [, T] × Rm, (.)

where

Fin(s, x) = Hin
(
s, x,ς n(s, x),ςn(s, x), zn(s, x), zn(s, x)

)
.

Step . Uniform integrability of (Y n;(t,x), Zn;(t,x))n≥ for fixed (t, x) ∈ [, T] × Rm.
For each n ≥ , let us first consider the following BSDE:

Ȳ n
s = g(Xt,x

T
)

+
∫ T

t
C

(
 +

∣∣ϕn
(
Xt,x

r
)∣∣)∣∣Z̄n

r
∣∣

+ Ch
(
 +

∣∣ϕn
(
Xt,x

r
)∣∣γ +

∣∣Ȳ n
r

∣∣)dr –
∫ T

s
Z̄n

r dBr . (.)
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For any x ∈ Rm and n ≥ , the mapping (y, z) ∈ R × Rm �→ C( + |ϕn(Xt,x
r )|)|z| + Ch( +

|ϕn(Xt,x
r )|γ + |y|) is Lipschitz continuous; therefore, the solution (Ȳ n, Z̄n) ∈ S

t,T (R) ×
H

t,T (Rm) exists and is unique. Moreover, it follows from the result of El-Karoui et al.
(see []) that Ȳ n can be characterized through a deterministic measurable function
ς̄ n : [, T] × Rm → R, that is, for any s ∈ [t, T],

Ȳ n
s = ς̄ n(s, Xt,x

s
)
. (.)

Next let us consider the process

Bn
s = Bs –

∫ s


[t,T](r)C

(
 +

∣∣ϕn
(
Xt,x

r
)∣∣) sign

(
Z̃n

r
)

dr,  ≤ s ≤ T ,

which is, thanks to Girsanov’s theorem, a Brownian motion under the probability Pn

on (�,F ) whose density with respect to P is ET := ET (
∫ T

 C( + |ϕn(Xt,x
s )|) sign(Z̄n

s ) ×
[t,T](s) dBs), where for any z = (zi)i=,...,d ∈ Rm, sign(z) = ([|zi|=]

zi

|zi| )i=,...,d and Et(·) is defined
by

E(M) :=
(
exp

{
Mt – 〈M〉t/

})
t≤T (.)

for any (Ft , P)-continuous local martingale M = (Mt)t≤T . Then (.) becomes

Ȳ n
s = g(Xt,x

T
)

+
∫ T

t
Ch

(
 +

∣∣ϕn
(
Xt,x

r
)∣∣γ +

∣∣Ȳ n
r

∣∣)dr –
∫ T

s
Z̄n

r dBn
r , s ∈ [t, T]. (.)

Applying Itô-Meyer’s formula to (eChtȲ n
t )+, t ≤ T , we know

(
eChtȲ n

t
)+ +

∫ T

t
dL

s

=
(
eChT g(Xt,x

T
))+ –

∫ T

t
Ȳ n

s ≥ d
(
eChsȲ n

s
)

=
(
eChT g(Xt,x

T
))+ +

∫ T

t
CheChs( +

∣∣ϕn
(
Xt,x

s
)∣∣γ )

ds –
∫ T

t
eChsZ̄n

s dBn
s ,

where L
t is the local time of the continuous semimartingale eChtȲ n

t at time  which is an
increasing process. Therefore, the term

∫ T
t dL

s is positive. Considering (.), we have

eChtς̄ n(t, x) ≤ (
eChtς̄ n(t, x)

)+

≤ En
[(

eChT g(Xt,x
T

))+ +
∫ T

t
CheChs( +

∣∣ϕn
(
Xt,x

s
)∣∣γ )

ds
∣∣∣Ft

]
,

where En is the expectation under the probability Pn. Taking the expectation on both sides
under the probability Pn and taking account of ς̄ n is deterministic and f + ≤ |f | for any
integrable function f , we obtain

ς̄ n(t, x) ≤ e–ChtEn
[

eChT ∣∣g(Xt,x
T

)∣∣ +
∫ T

t
CheChs( +

∣∣ϕn
(
Xt,x

s
)∣∣γ )

ds
]

.
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Since g is of polynomial growth, and e–Cht ≤  for t ∈ [, T], we infer that, ∀(t, x) ∈ [, T]×
Rm,

ς̄ n(t, x) ≤ CEn
[

sup
t≤s≤T

(
 +

∣∣Xt,x
s

∣∣γ )] ≤ CE
[
ET · sup

t≤s≤T

(
 +

∣∣Xt,x
s

∣∣γ )]
,

where the constant C depends only on T , Ch and Cg . Next, by a result of Haussmann
([], p., see also [], Lemma .), there exist some p ∈ (, ) and a constant C which is
independent of n such that E[|ET |p ] ≤ C uniformly. As a result of Young’s inequality and
estimate (.), we have

ς̄ n(t, x) ≤ Cp

{
E
[|ET |p

]
+ E

[
sup

t≤s≤T

(
 +

∣∣Xt,x
s

∣∣ pγ
p–

)]}
,

which yields

ς̄ n(t, x) ≤ C
(
 + |x|λ) with λ = pγ /(p – ) > . (.)

Next, by the comparison theorem of BSDEs and property (.)(b), we actually have, for
any s ∈ [t, T],

Y n;(t,x)
s = ς n(s, Xt,x

s
) ≤ Ȳ n

s = ς̄ n(s, Xt,x
s

)
,

and by choosing s = t, we get that ς n(t, x) ≤ C(+ |x|λ), (t, x) ∈ [, T]×Rm. In a similar way,
we can also show that for any (t, x) ∈ [, T] × Rm, ς n(t, x) ≥ –C( + |x|λ). As a conclusion,
ς n is of polynomial growth on (t, x) uniformly in n, i.e., there exist a constant C, which is
independent of n, and λ >  such that

∣∣ς n(t, x)
∣∣ ≤ C

(
 + |x|λ). (.)

Combining (.) and (.), we deduce that, for any α > , i = , ,

E
[

sup
t≤s≤T

∣∣Y in;(t,x)
s

∣∣α]
≤ C. (.)

On the other hand, by applying Itô’s formula to (Y in;(t,x)) and considering the uniform
estimate (.), we can infer in a regular way that, for any t ∈ [, T], i = , ,

E
[∫ T

t

∣∣Zin;(t,x)
s

∣∣ ds
]

≤ C. (.)

Step . For fixed a ∈ Rm, there exists a subsequence of ((Y n;(,a)
s , Zn;(,a)

s )≤s≤T )n≥ which
converges in space S

T (R)×H
T (Rm) respectively to (Y 

s , Z
s )≤s≤T , a solution of BSDE (.).

Let us recall expression (.) for case i =  and apply property (.)(b) combined with the
uniform estimates (.), (.), (.) and Young’s inequality to show that, for  < q < ,

E
[∫ T



∣∣Fn
(
s, X,a

s
)∣∣q ds

]

≤ CE
[∫ T



(
 +

∣∣ϕn
(
X,a

s
)∣∣)q∣∣Zn;(,a)

s
∣∣q +

(
 +

∣∣ϕn
(
X,a

s
)∣∣γ q +

∣∣Y n;(,a)
s

∣∣q)ds
]
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≤ C
{

E
[∫ T



∣∣Zn;(,a)
s

∣∣ ds
]

+ E
[

sup
≤s≤T

∣∣Y n;(,a)
s

∣∣q
]

+ 
}

≤ C. (.)

Therefore, there exists a subsequence {nk} (for notation simplification, we still denote it
by {n}) and a B([, T]) ⊗B(Rm)-measurable deterministic function F(s, y) such that

Fn → F weakly in Lq([, T] × Rm;μ(, a; s, dy) ds
)
. (.)

Next we aim to prove that (ς n(t, x))n≥ is a Cauchy sequence for each (t, x) ∈ [, T] × Rm.
Now let (t, x) be fixed, η > , k, n and m ≥  be integers. From (.), we have

∣∣ς n(t, x) – ς m(t, x)
∣∣ =

∣∣∣∣E
[∫ T

t
Fn

(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
)

ds
]∣∣∣∣

≤ E
[∫ t+η

t

∣∣Fn
(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
)∣∣ds

]

+
∣∣∣∣E

[∫ T

t+η

(
Fn

(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
))

{Xt,x
s |≤k} ds

]∣∣∣∣

+
∣∣∣∣E

[∫ T

t+η

(
Fn

(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
))

{|Xt,x
s |>k} ds

]∣∣∣∣,

where on the right-hand side, noticing (.), we obtain

E
[∫ t+η

t

∣∣Fn
(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
)∣∣ds

]

≤ η
q–

q

{
E
[∫ T



∣∣Fn
(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
)∣∣q ds

]} 
q

≤ Cη
q–

q .

At the same time, Lemma . associated with the L
q

q– -domination property implies

∣∣∣∣E
[∫ T

t+η

(
Fn

(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
))

{|Xt,x
s |≤k} ds

]∣∣∣∣

=
∣∣∣∣
∫

Rm

∫ T

t+η

(
Fn(s,η) – Fm(s,η)

)
{|η|≤k}μ(t, x; s, dη) ds

∣∣∣∣

=
∣∣∣∣
∫

Rm

∫ T

t+η

(
Fn(s,η) – Fm(s,η)

)
{|η|≤k}φt,x,a(s,η)μ(, a; s, dη) ds

∣∣∣∣.

Since φt,x,a(s,η) ∈L
q

q– ([t +η, T]× [–k, k]m;μ(, a; s, dη) ds), for k ≥ , it follows from (.)
that for each (t, x) ∈ [, T] × Rm, we have

E
[∫ T

t+η

(
Fn

(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
))

{|Xt,x
s |≤k} ds

]
→  as n, m → ∞.
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Finally,

∣∣∣∣E
[∫ T

t+η

(
Fn

(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
))

{|Xt,x
s |>k} ds

]∣∣∣∣

≤ C
{

E
[∫ T

t+η

{|Xt,x
s |>k} ds

]} q–
q

{
E
[∫ T

t+η

∣∣Fn
(
s, Xt,x

s
)

– Fm
(
s, Xt,x

s
)∣∣q ds

]} 
q

≤ Ck– q–
q .

Therefore, for each (t, x) ∈ [, T] × Rm, (ς n(t, x))n≥ is a Cauchy sequence, and then
there exists a Borelian application ς  on [, T] × Rm such that for each (t, x) ∈ [, T] ×
Rm, limn→∞ ς n(t, x) = ς (t, x), which indicates that for t ∈ [, T], limn→∞ Y n;(,a)

t (ω) =
ς (t, X,a

t ), P-a.s. Taking account of (.) and Lebesgue’s dominated convergence the-
orem, we obtain that the sequence ((Y n;(,a)

t )≤t≤T )n≥ converges to Y  = (ς (t, X,a
t ))≤t≤T

in Lp([, T] × Rm) for any p ≥ , that is,

E
[∫ T



∣∣Y n;(,a)
t – Y 

t
∣∣p dt

]
→ , as n → ∞. (.)

Next, we will show that for any p > , Zn;(,a) = ((zn(t, X,a
t ))≤t≤T )n≥ has a limit in

H
T (Rm). Besides, (Y n;(,a))n≥ is convergent in S

T (R) as well. We now focus on the first
claim. For n, m ≥  and  ≤ t ≤ T , using Itô’s formula with (Y n

t – Y m
t ) (we omit the sub-

script (, a) for convenience) and considering (.)(b), we get

∣∣Y n
t – Y m

t
∣∣ +

∫ T

t

∣∣Zn
s – Zm

s
∣∣ ds

= 
∫ T

t

(
Y n

s – Y m
s

)(
Hn

(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)

– Hm
(
s, X,a

s , Y m
s , Y m

s , Zm
s , Zm

s
))

ds – 
∫ T

t

(
Y n

s – Y m
s

)(
Zn

s – Zm
s

)
dBs

≤ C
∫ T

t

∣∣Y n
s – Y m

s
∣∣[(∣∣Zn

s
∣∣ +

∣∣Zm
s

∣∣)( +
∣∣X,a

s
∣∣)

+
∣∣Y n

s
∣∣ +

∣∣Y m
s

∣∣ +
(
 +

∣∣X,a
s

∣∣)γ ]
ds – 

∫ T

t

(
Y n

s – Y m
s

)(
Zn

s – Zm
s

)
dBs.

Since for any x, y, z ∈ R, |xyz| ≤ 
a |x|a + 

b |y|b + 
c |z|c with 

a + 
b + 

c = , then for any ε > 
we have

∣∣Y n
t – Y m

t
∣∣ +

∫ T

t

∣∣Zn
s – Zm

s
∣∣ ds

≤ C
{

ε



∫ T

t

(∣∣Zn
s

∣∣ +
∣∣Zm

s
∣∣) ds +

ε



∫ T

t

(
 +

∣∣X,a
s

∣∣) ds

+


ε

∫ T

t

∣∣Y n
s – Y m

s
∣∣ ds +

ε



∫ T

t

(∣∣Y n
s

∣∣ +
∣∣Y m

s
∣∣) ds

+
ε



∫ T

t

(
 +

∣∣X,a
s

∣∣)γ ds +


ε

∫ T

t

∣∣Y n
s – Y m

s
∣∣ ds

}

– 
∫ T

t

(
Y n

s – Y m
s

)(
Zn

s – Zm
s

)
dBs. (.)
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Taking now t =  in (.), expectation on both sides and the limit w.r.t. n and m, we deduce
that

lim sup
n,m→∞

E
[∫ T



∣∣Zn
s – Zm

s
∣∣ ds

]
≤ C

{
ε


+

ε


+

ε



}
, (.)

due to (.), (.) and the convergence of (.). As ε is arbitrary, then the sequence
(Zn)n≥ is convergent in H

T to a process Z.
Now, returning to inequality (.), taking the supremum over [, T] and using BDG’s

inequality, we obtain that

E
[

sup
≤t≤T

∣∣Y n
t – Y m

t
∣∣ +

∫ T



∣∣Zn
s – Zm

s
∣∣ ds

]

≤ C
{

ε


+

ε


+

ε



}
+




E
[

sup
≤t≤T

∣∣Y n
t – Y m

t
∣∣

]
+ E

[∫ T



∣∣Zn
s – Zm

s
∣∣ ds

]
,

which implies that

lim sup
n,m→∞

E
[

sup
≤t≤T

∣∣Y n
t – Y m

t
∣∣

]
= ,

since ε is arbitrary and (.). Thus, the sequence of (Y n)n≥ converges to Y  in S
T , which

is a continuous process.
Finally, repeating the procedure for player i = , we have also the convergence of (Zn)n≥

(resp. (Y n)n≥) in H
T (resp. S

T ) to Z (resp. Y  = ς(., X,x)).
Step . The limit process (Y i

t , Zi
t)≤t≤T , i = , , is the solution of BSDE (.).

Indeed, we need to show that (for case i = )

F
(
t, X,a

t
)

= H
(
s, X,a

s , Y 
s , Y 

s , Z
s , Z

s
)

dt ⊗ dP-a.e.

For k ≥ , we have

E
[∫ T



∣∣Hn
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)

– H
(
s, X,a

s , Y 
s , Y 

s , Z
s , Z

s
)∣∣ds

]

≤ E
[∫ T



∣∣Hn
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)

– H
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)∣∣ · {|Y n

s |+|Y n
s |+|Zn

s |+|Zn
s |<k} ds

]

+ E
[∫ T



∣∣Hn
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)

– H
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)∣∣ · {|Y n

s |+|Y n
s |+|Zn

s |+|Zn
s |≥k} ds

]

+ E
[∫ T



∣∣H
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)

– H
(
s, X,a

s , Y 
s , Y 

s , Z
s , Z

s
)∣∣ds

]

:= In
 + In

 + In
 . (.)



Mu and Wu Advances in Difference Equations  (2015) 2015:265 Page 12 of 15

The sequence In
 , n ≥ , converges to . On the one hand, for n ≥ , property (.)(b) in

Step  implies that

∣∣Hn
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)

– H
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)∣∣

· {|Y n
s |+|Y n

s |+|Zn
s |+|Zn

s |<k}

≤ C
(
 +

∣∣X,a
s

∣∣)k + Ch
(
 +

∣∣X,a
s

∣∣γ + k
)
.

On the other hand, considering property (.)(d), we obtain that

∣∣Hn
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)

– H
(
s, X,a

s , Y n
s , Y n

s , Zn
s , Zn

s
)∣∣

· {|Y n
s |+|Y n

s |+|Zn
s |+|Zn

s |<k}

≤ sup
(y

s ,y
s ,z

s ,z
s )

|y
s |+|y

s |+|z
s |+|z

s |<k

∣∣Hn
(
s, X,a

s , y
s , y

s , z
s , z

s
)

– H
(
s, X,a

s , y
s , y

s , z
s , z

s
)∣∣

→ 

as n → ∞. Thanks to Lebesgue’s dominated convergence theorem, the sequence In
 of

(.) converges to  in H
T .

The sequence In
 in (.) is bounded by C

k(q–)/q with q ∈ (, ). Actually, from property
(.)(b) and Markov’s inequality, for q ∈ (, ), we get

In
 ≤ C

{
E
[∫ T



(
 +

∣∣X,a
s

∣∣)q∣∣Zn
s

∣∣q +
(
 +

∣∣X,a
s

∣∣γ +
∣∣Y n

s
∣∣)q ds

]} 
q

×
{

E
[∫ T


{|Y n

s |+|Y n
s |+|Zn

s |+|Zn
s |≥k} ds

]} q–
q

≤ C
{

E
[∫ T



∣∣Zn
s

∣∣ ds
]

+ E
[∫ T



(
 +

∣∣X,a
s

∣∣) q
–q ds

]

+ E
[∫ T



∣∣Y n
s

∣∣ ds
]

+ E
[∫ T



(
 +

∣∣X,a
s

∣∣)γ q ds
]} 

q

× {E[
∫ T

 |Y n
s | + |Y n

s | + |Zn
s | + |Zn

s | ds]} q–
q

(k)
q–

q

≤ C

k
(q–)

q
.

The last inequality is a straightforward result of estimates (.), (.) and (.).
The third sequence In

 , n ≥ , in (.) also converges to , at least for a subsequence. Ac-
tually, since the sequence (Zn)n≥ converges to Z in H

T , then there exists a subsequence
(Znk )k≥ such that it converges to Z, dt⊗dP-a.e.; and furthermore, supk≥ |Znk

t (ω)| ∈H
T .

On the other hand, (Y nk )k≥ converges to Y , dt ⊗dP-a.e. Thus, by the continuity of func-
tion H(t, x, y, y, z, z) w.r.t. (y, y, z, z), we obtain that

H
(
t, X,a

t , Y nk
t , Y nk

t , Znk
t , Znk

t
)

k→∞−−−→ H
(
t, X,a

t , Y 
t , Y 

t , Z
t , Z

t
)

dt ⊗ dP-a.e.



Mu and Wu Advances in Difference Equations  (2015) 2015:265 Page 13 of 15

In addition, considering that

sup
k≥

∣∣H
(
t, X,a

t , Y nk
t , Y nk

t , Znk
t , Znk

t
)∣∣ ∈Hq

T (R) for  < q < ,

which follows from (.). Finally, by the dominated convergence theorem, one can get
that

H
(
t, X,a

t , Y nk
t , Y nk

t , Znk
t , Znk

t
) k→∞−−−→ H

(
t, X,a

t , Y 
t , Y 

t , Z
t , Z

t
)

in Hq
T ,

which yields the convergence of In
 in (.) to .

It follows that the sequence (Hn(t, X,a
t , Y n

t , Y n
t , Zn

t , Zn
t )≤t≤T )n≥ converges to (H(t,

X,a
t , Y 

t , Y 
t , Z

t , Z
t ))≤t≤T in L([, T]×�, dt ⊗dP) and then F(t, X,a

t ) = H(t, X,a
t , Y 

t , Y 
t ,

Z
t , Z

t ), dt ⊗ dP-a.e. In the same way, we have F(t, X,x
t ) = H(t, X,a

t , Y 
t , Y 

t , Z
t , Z

t ),
dt ⊗ dP-a.e. Thus, the processes (Y i, Zi), i = , , are the solutions of the backward equa-
tion (.). �

4 Generalizations
As we can see from Assumption .(i), this model deals with BSDE (.) with stochastic
linear growth generators. However, when x takes value of X,a, the coefficient of the com-
ponent yi in (.) is deterministic. Therefore, one possible generalization is to improve
this model by considering the following assumption instead of Assumption ..

Assumption .
(i) For each (t, x, y, . . . , yn, z, . . . , zn) ∈ [, T] × Rm × Rn × Rnm, there exist a constant C

and  < γ <  such that, for each i = , , . . . , n,

∣∣Hi
(
t, x, y, . . . , yn, z, . . . , zn)∣∣ ≤ C

(
 + |x|)∣∣zi∣∣ + C

(
 + |x|γ )∣∣yi∣∣; (.)

(ii) the mapping (y, . . . , yn, z, . . . , zn) ∈ Rn × Rnm �−→ Hi(t, x, y, . . . , yn, z, . . . , zn) ∈ R is
continuous for any fixed (t, x) ∈ [, T] × Rm.

Then we will obtain a similar conclusion below. However, notice that we can only con-
veniently deal with the case when γ is strictly smaller than .

Theorem . Let a ∈ Rm be fixed. Then, under Assumptions ., . and ., there exist two
pairs of P-measurable processes (Y i, Zi) with values in R+m, i = , , and two deterministic
functions ς i(t, x) with the growth property as follows, |ς i(t, x)| ≤ eC(+|x|γ ) with  < γ < ,
i = , , such that equations (.) hold true.

Sketch of the proof One can follow the same method of the proof of Theorem .. We only
point out here some difference in Step  related to the growth property of the deterministic
function ς n.

In Step , we consider the following BSDE sequence:

Ȳ n
s = g(Xt,x

T
)

+
∫ T

t
C

(
 +

∣∣ϕn
(
Xt,x

r
)∣∣)∣∣Z̄n

r
∣∣

+ C
(
 +

∣∣ϕn
(
Xt,x

r
)∣∣γ )∣∣Ȳ n

r
∣∣dr –

∫ T

s
Z̄n

r dBr . (.)
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After changing probability following the same line as (.), we obtain

Ȳ n
s = g(Xt,x

T
)

+
∫ T

t
C

(
 +

∣∣ϕn
(
Xt,x

r
)∣∣γ )∣∣Ȳ n

r
∣∣dr –

∫ T

s
Z̄n

r dBn
r , s ∈ [t, T]. (.)

Considering Ȳ n
s = ς̄ n(s, Xt,x

s ) for the deterministic function ς̄ n, we obviously have

ς̄ n(t, x) = En[g(Xt,x
T

)
e
∫ T

t C(+|ϕn(Xt,x
r )|γ ) sign(Ȳ n

r ) dr]

≤ En[eC sup≤s≤T (+|Xt,x
s |γ )]

= E
[
eC sup≤s≤T (+|Xt,x

s |γ )ET
]

≤ eC(+|x|γ ).

This inequality is obtained from the integrability of ET in Lp for some p ∈ (, ) and the
fact that ( + |x|) < e+|x| for any x. Therefore, by comparison theorem, we know ς n(t, x) ≤
eC(+|x|γ ). In a similar way, we can also show that ς n(t, x) ≥ e–C(+|x|γ ).

Combining this growth property and the fact that Y n:(t,x)
s = ς n(s, Xt,x

s ), we conclude that,
for any α >  and  < γ < ,

E
[

sup
t≤s≤T

∣∣Y in;(t,x)
s

∣∣α]
≤ C,

since

E
[

sup
t≤s≤T

eC(+|Xt,x
s |γ )

]
≤ C (.)

is true only for positive γ strictly smaller than . When γ touches  or bigger than , then
estimate (.) is not necessarily true for arbitrary T > . In this case, (.) may explode,
and this is the reason why we only consider γ ∈ (, ) in Assumption .. However, for
γ ≥ , we can still expect that (.) holds true for T small enough.

The rest of the proof will have no practical difficulties, therefore, we omit it.
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