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Abstract
This paper studies a fractional difference equation of two point boundary value
problem (BVP) type, which is recognized as the ‘discrete’ BVP. Certain cases are
expressed under which the discrete boundary value problems (DBVP) will have a
single solution. The novelty hither comprises a method selection of metric and
employment of Hölder’s inequality. This attitude allows the related functions to be
contractive, which were earlier non-contractive in classical regularities. This
consequently qualifies an enhanced application of Banach’s fixed point theorem for
classifying a more extensive framework of issues than those which appeared in the
current designs.
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1 Introduction
In [], Diaz and Osler concluded that the fractional difference by choice is a normal method
of letting the index of differences, in the criterion appearance for the nth difference, to be
any number (real or complex). Farther along, Hirota [] employed the fractional difference
operator (FDO) for any real number utilizing a Taylor’s series. In [], Nagai assumed dif-
ferent description of FDO by adapting Hirota’s [] concept. Newly, in [], Deekshitulu and
Mohan improved Nagai’s definition []. In [], Jumarie suggested another formula of frac-
tional difference operator, of which the leading features are a new fractional Taylor series
and its companion Rolle’s formula which are employed to non-differentiable functions. In
[, ], the authors generalized Gâteaux derivative by employing a fractional discrete opera-
tor for a Jumarie fractional operator. The method of finding solutions was based on critical
point theorems of finite dimensional Banach spaces. Other techniques can be found in []
and [].

Investigators in the areas of control systems, neural networks, computer science, food
processing and economics rely on mathematical modeling because it surely affects non-
linear difference equations. Consequently, many novelists have widely established various
procedures and patterns, such as fixed point theorems, upper and lower solutions and
Brouwer degree, to consider discrete problems [, ]. The investigation of fractional dif-
ferential equations (FDE) was started to establish the existence and uniqueness of findings
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for various classes of FDE. Moreover, the theory of integro-differential equations has been
almost settled parallel to the theory of FDE. However, the theory of fractional difference
equations led to a very minor development of itself.

This paper aims to study a fractional difference equation of two point BVP type, which
was realized as the discrete BVP. Certain classes are formulated in which the discrete
boundary value problems will have a single solution. The novelty hither comprises a
method selection of metric and employment of Hölder’s inequality. This investigation al-
lows the related functions to be contractive, which were earlier non-contractive in classical
regularities. This work, unlike those which appeared in the current designs, consequently
grants the enhanced applications of Banach’s fixed point theorem for classifying an exten-
sive framework of issues.

2 Main methods
This section concerns some concepts as well as preliminaries.

Definition . Let ℘ ∈R and k ∈ Z such that k –  < ℘ ≤ k. The FDO ∇ of order ℘ , with
step length κ , is introduced as

∇℘μ(n) :=

⎧
⎪⎨

⎪⎩

κk–℘
∑n–

j=
(
℘–k

j
)
(–)j∇kμ(n – j), ℘ > ,

μ(n), ℘ = ,
κ–℘

∑n–
j=

(
℘

j
)
(–)jμ(n – j), ℘ < ,

where the extended binomial coefficient, for ε ∈R, n ∈ Z, is defined by

(
ε

n

)

=

⎧
⎪⎨

⎪⎩

�(ε+)
�(ε+–n)�(n+) , n > ,
, n = ,
, n < .

The above formula is hard to study the properties of findings (solutions). Therefore,
Mohan and Deekshitulu [] introduced the following formula for κ = k = .

Definition . The FDO of order  < ℘ <  is given by

∇–℘μ(n) =
n–∑

j=

(
j + ℘ – 

j

)

μ(n – j).

And the FDO of order ℘ is given by

∇℘μ(n) =
n–∑

j=

(
j – ℘

j

)

∇μ(n – j)

=
n∑

j=

(
n – j – ℘ – 

n – j

)

μ(j) –
(

n – ℘ – 
n – 

)

μ().

Remark . The solution for the nonlinear fractional difference equation

∇℘μ(n + ) = φ
(
n,μ(n)

)
, μ() = μ,
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is given by the form

μ(n) = μ +
n–∑

j=

β(n – ,℘; j)φ
(
j,μ(j)

)
,

where

β(m,℘; j) :=
(

m – j + ℘ – 
m – j

)

,  ≤ j ≤ m,

stands as the extended binomial coefficient and φ : N → R denotes a function of n. It is
clear that  ≤ β(m,℘; j) ≤  for ℘ ∈ [, ]. Moreover, the coefficient β(m,℘; j) satisfies

m∑

j=

β(m,℘; j) =
m∑

j=

�(m – j + ℘)
�(℘)�(m – j + )

=


�(m + )

m∑

j=

(
m
j

)

()j(℘)m–j

=


�(m + )
( + ℘)m

=
(

m + ℘

m

)

,

where (x)m := �(x+m)
�(x) is the Pochhammer symbol, which satisfies

(x + y)m =
m∑

j=

(
m
j

)

(x)m–j(y)j.

Example . Consider the problem

∇℘μ(n + ) = α(n)μ(n) + γ (n), μ() = μ,

where α and γ are nonnegative functions on n; thus the solution can be expressed by

μ(n) = μ

n–∏

j=

[
 + β(n – ,℘; j)α(j)

]

+
n–∑

j=

β(n – ,℘; j)γ (j)
n–∏

k=j+

[
 + β(n – ,℘; j)α(k)

]
.

This paper studies a boundary value problem that includes a nonlinear difference equa-
tion. Let φ : [, N] ×R →R be continuous and consider the discrete BVP

∇℘μi+


℘
= φ(ti,μi), i = , , . . . , n ()

(aμ + bμn = c, a + b �= ),

where a, b, c are constants and  < ℘ < ,  < 
 = N/n < N , ti = i
, i = , , . . . , n.
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3 Main findings
The main result is as follows.

Theorem . Let φ : [, N] ×R →R be continuous and a + b �= . Assume that there exist
constants L > , λ ∈ (, N) and p > . If

∣
∣φ(t,μ) – φ(t,ν)

∣
∣ ≤ L|μ – ν|, ∀t ∈ [, N], (μ,ν) ∈R



and

λL < ,

where

 := max
i

{ n–∑

j=

∣
∣(i, j)

∣
∣

}

with

(i, j) :=

{
β(i – ,℘; j) – bβ(n – ,℘; j), j ≤ i – ,
bβ(n – ,℘; j), j ≥ i,

then problem () has a unique solution for each | 
℘

a+b | ≤ λ.

Proof Consider the metric space (� := R
n+, dp) and for all μ,ν ∈ �,

dp(μ,ν) =
n∑

i=

(|μi – νi|p
)/p.

It is easy to show that (�, dp) is a complete metric space for all p ≥ . In view of Remark .,
it can be shown that the discrete BVP () is equivalent to the summation equation

μi =
c

a + b
+


℘

a + b

n–∑

j=

(i, j)φ(tj,μj), i = , , . . . , n, ()

where

(i, j) =

{
β(i – ,℘; j) – bβ(n – ,℘; j), j ≤ i – ,
bβ(n – ,℘; j), j ≥ i.

Our aim is to prove that () has a unique solution. We define the operator

(�μ)(i) =
c

a + b
+


℘

a + b

n–∑

j=

(i, j)φ(tj,μj), i = , , . . . , n. ()

So that

(�μ) =
(
(�μ)(), . . . , (�μ)(n)

)
.



Ibrahim and Jalab Advances in Difference Equations  (2015) 2015:269 Page 5 of 12

Obviously, �(μ) is bounded

∣
∣(�μ)

∣
∣ =

∣
∣
∣
∣
∣

c
a + b

+

℘

a + b

n–∑

j=

(i, j)φ(tj,μj)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

c
a + b

∣
∣
∣
∣ +

∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣

n–∑

j=

∣
∣(i, j)

∣
∣
∣
∣φ(tj,μj) – φ(tj, o) + φ(tj, o)

∣
∣

≤
∣
∣
∣
∣

c
a + b

∣
∣
∣
∣ +

∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣

n–∑

j=

∣
∣(i, j)

∣
∣
(
L|μ| +

∣
∣φ(t, o)

∣
∣
)

≤
∣
∣
∣
∣

c
a + b

∣
∣
∣
∣ + λ

(
L|μ| +

∣
∣φ(t, o)

∣
∣
)
,

where o is the zero element in R
n+.

We aim to show that (�μ) = μ for a unique μ ∈ �. Since φ is well defined on [, N] ×R,
it follows that � : � → �. We proceed to show that � is a contraction mapping on � with
respect dp, i.e., there is a constant  < σ <  such that

dp(�μ,�ν) ≤ σdp(μ,ν), ∀μ,ν ∈ R
n+.

A computation yields, for  < ℘ < ,

∣
∣(�μ) – (�ν)

∣
∣ =

∣
∣
∣
∣
∣


℘

a + b

n–∑

j=

(i, j)φ(tj,μj) –

℘

a + b

n–∑

j=

(i, j)φ(tj,νj)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣

n–∑

j=

∣
∣(i, j)

∣
∣
∣
∣φ(tj,μj) – φ(tj,νj)

∣
∣

≤ L
∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣

n–∑

j=

∣
∣(i, j)

∣
∣|μj – νj|.

This yields

∣
∣(�μ) – (�ν)

∣
∣ ≤ L

∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣

( n–∑

j=

|μj – νj|p
)/p

. ()

Hence, we obtain

∣
∣(�μ) – (�ν)

∣
∣ ≤ L

∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣dp(μi,νi).

Consequently, we have

∣
∣(�μ) – (�ν)

∣
∣p ≤

(

L

∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣

)p

dp
p(μi,νi)

≤ (λL)pdp
p(μi,νi).
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Thus, for all μ,ν ∈R
n+, we attain

dp
(
(�μ), (�ν)

) ≤ σdp(μ,ν),

where  < σ := λL < . Thus, � is a contraction mapping on R
n+ with respect to the dp

metric and therefore, all of the assumptions of Banach’s fixed point theorem are accorded.
So, there is a unique μ ∈R

n+ such that �μ = μ, giving the existence of a unique solution
to problem (). �

Theorem . Let φ : [, N] ×R→R be continuous and a + b �= . Assume that there exist
constants L > , λ ∈ (, N); p > , q >  such that 

p + 
q = . If

∣
∣φ(t,μ) – φ(t,ν)

∣
∣ ≤ L|μ – ν|, ∀t ∈ [, N], (μ,ν) ∈R



and

λL
|a + b|

( n∑

i=

(
i|a|q + n|b|q)p/q

)/p

< , |a| ≥ ,

then problem () has a unique solution for each 
℘ ≤ λ.

Proof Operator () implies

∣
∣(�μ) – (�ν)

∣
∣ ≤

∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣

n–∑

j=

∣
∣(i, j)

∣
∣
∣
∣φ(tj,μj) – φ(tj,νj)

∣
∣

≤ λ

|a + b|L
n–∑

j=

∣
∣(i, j)

∣
∣|μj – νj|.

An application of Hölder’s inequality yields

∣
∣(�μ) – (�ν)

∣
∣ ≤ λ

|a + b|L

( n–∑

j=

|μj – νj|p
)/p( n–∑

j=

∣
∣(i, j)

∣
∣q

)/q

. ()

By applying the boundary condition and taking account of  ≤ β(m,℘; j) ≤ , we obtain

( n–∑

j=

∣
∣(i, j)

∣
∣q

)

≤ i|a|q + n|b|q, i = , , . . . , n.

Thus, we attain

∣
∣(�μ) – (�ν)

∣
∣ ≤ dp(μi,νi)

λL
|a + b|

(
i|a|q + n|b|q)/q.

Consequently, this leads to

∣
∣(�μ) – (�ν)

∣
∣p ≤ dp

p(μi,νi)
(

λL
|a + b|

)p(
i|a|q + n|b|q)p/q.
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For all u, v ∈ R
n+, we have

dp
(
(�μ), (�ν)

)
=

( n∑

i=

∣
∣(�μ) – (�ν)

∣
∣p

)/p

≤ dp(μ,ν)
(

λL
|a + b|

)( n∑

i=

(
i|a|q + n|b|q)p/q

)/p

≤ dp(μ,ν)
(

λL
|a + b|

)( n∑

i=

(
i|a|q + n|b|q)p/q

)/p

.

Thus, we conclude that

dp
(
(�μ), (�ν)

) ≤ σdp(μ,ν),

with

σ :=
(

λL
|a + b|

)( n∑

i=

(
i|a|q + n|b|q)p/q

)/p

< .

Hence, � is a contraction mapping on R
n+ with respect to the dp metric and so, all of

the conditions of Banach’s fixed point theorem are achieved. Therefore, there is a unique
μ ∈R

n+ such that �μ = μ, yielding the existence of a unique solution to problem (). �

As a special case, for p = q = , we have the following result.

Corollary . Let φ : [, N] ×R →R be continuous and a + b �= . If there exist L >  and
λ ∈ (, N) such that

∣
∣φ(t,μ) – φ(t,ν)

∣
∣ ≤ L|μ – ν|, ∀t ∈ [, N],∀(μ,ν) ∈R

;

L
√

N + λN <
√

|a + b|√
a + b

, ℘ ∈ (, ),

then problem () has a unique solution.

Example . Consider the problem

∇.μ


. =



(t + μ), N =  ()

(aμ + bμn = , a + b �= ),

where  < 
 = / < . For λ = | 
℘

 | ≈ ., a = b = , then the condition of Corollary . is
satisfied for

L
√

N + λN = . <
√

|a + b|√
a + b

= , L = ..

Hence problem () has a unique solution.
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Theorem . Let φ : [, N] ×R→R be continuous and a + b �= . Assume that there exist
constants L > , λ ∈ (, N). If

∣
∣φ(t,μ) – φ(t,ν)

∣
∣ ≤ L|μ – ν|, ∀t ∈ [, N], (μ,ν) ∈R



and

λLN < ,

then problem () has a unique solution for each | 
℘

a+b | ≤ λ.

Proof Consider the metric space (� := R
n+, ∂) and for all μ,ν ∈ �,

∂(μ,ν) = max
i

|μi – νi|.

It is easy to show that (�, ∂) is a complete metric space. Operator () yields

∣
∣(�μ) – (�ν)

∣
∣ ≤

∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣

n–∑

j=

∣
∣(i, j)

∣
∣
∣
∣φ(tj,μj) – φ(tj,νj)

∣
∣

≤
∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣L

n–∑

j=

∣
∣(i, j)

∣
∣|μj – νj|

≤
∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣L

n–∑

j=

∣
∣(i, j)

∣
∣|μj – νj|

≤
∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣L

n–∑

j=

|μj – νj|.

Taking the max, we obtain

∂(�μ,�ν) ≤ λLN∂(μ,ν).

Thus, we conclude that

∂(�μ,�ν) ≤ σ∂(μ,ν)

with

σ := λLN < .

Hence, � is a contraction mapping on R
n+ with respect to the ∂ metric and so, all of the

conditions of Banach’s fixed point theorem are satisfied. Hence, there is a unique μ ∈R
n+

such that �μ = μ, implying the existence of a unique solution to problem (). �

Example . Consider problem () with

(aμ + bμn = , a + b �= )
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and  < 
 = / < . For λ = ., N = a = b = , then the condition of Theorem . is
achieved for

LNλ = . < ,  = , L = ..

Hence problem () has a unique solution.

Example . Assume problem () with

(aμ + bμn = , a + b �= )

and  < 
 = / < . If λ = ., N = , a = –, b = , then the condition of Theorem . is
satisfied for

LNλ = . < ,  = , L = ..

Hence, problem () has a unique solution. It is interesting to note that the condition of
Corollary . does not hold for

L
√

N + λN = . >
√

|a + b|√
a + b

= ..

Next, we study a boundary value problem that includes a nonlinear difference equation
of Volterra type of order ℘ . Let φ : [, N]×R→R be continuous and consider the discrete
BVP

∇℘μi+


℘
= φ(ti,μi) +

i–∑

k=

f (ti, tk ;μk) ()

(aμ + bμn = c, a + b �= ),

where a, b, c are constants,  < 
 = N/n < N , ti = i
, and φ, f are any two functions defined
for i, k ∈N, k ≤ i. The solution of problem () can be expressed as follows:

μi =
c

a + b
+


℘

a + b

n–∑

j=

(i, j)

[

φ(tj,μj) +
j–∑

k=

f (tj, tk ;μk)

]

, i = , , . . . , n, ()

where

(i, j) :=

{
β(i – ,℘; j) – bβ(n – ,℘; j), j ≤ i – ,
bβ(n – ,℘; j), j ≥ i.

We have the following existence result.

Theorem . Let φ : [, N] ×R → R and f : [, N] × [, N] ×R → R be continuous and
a + b �= . Assume that there exist constants L > , L > , λ ∈ (, N); p > , q >  such that
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p + 

q = . If

∣
∣φ(t,μ) – φ(t,ν)

∣
∣ ≤ L|μ – ν|, ∀t ∈ [, N], (μ,ν) ∈R

,

j–∑

k=

∣
∣f (tj, tk ;μk) – f (tj, tk ;νk)

∣
∣ ≤ L|μ – ν|, ∀t ∈ [, N], (μ,ν) ∈ R



and

(
λ(L + L)

|a + b|
)( n∑

i=

(
i|a|q + n|b|q)p/q

)/p

< , |a| ≥ ,

then problem () has a unique solution for each  < 
℘ ≤ λ.

Proof Consider the complete metric space (� := R
n+, dp) and for all μ,ν ∈ �,

dp(μ,ν) =
n∑

i=

(|μi – νi|p
)/p.

Our aim is to prove that () has a unique solution. We define the operator

(ϒμ)(i) =
c

a + b
+


℘

a + b

n–∑

j=

(i, j)

[

φ(tj,μj) +
j–∑

k=

f (tj, tk ;μk)

]

(i = , , . . . , n,  < ℘ < ) ()

such that

(ϒμ) =
(
(ϒμ)(), . . . , (ϒμ)(n)

)
.

Thus the operator () implies

∣
∣(ϒμ) – (ϒν)

∣
∣ ≤

∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣

n–∑

j=

∣
∣(i, j)

∣
∣

×
[
∣
∣φ(tj,μj) – φ(tj,νj)

∣
∣ +

j–∑

k=

∣
∣f (tj, tk ;μk) – f (tj, tk ;νk)

∣
∣

]

≤
∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣(L + L)

n–∑

j=

∣
∣(i, j)

∣
∣|μj – νj|, ℘ ∈ (, ).

By employing Hölder’s inequality, we receive

∣
∣(ϒμ) – (ϒν)

∣
∣ ≤

∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣(L + L)

( n–∑

j=

|μj – νj|p
)/p( n–∑

j=

∣
∣(i, j)

∣
∣q

)/q

≤
∣
∣
∣
∣


℘

a + b

∣
∣
∣
∣(L + L)

( n–∑

j=

|μj – νj|p
)/p( n–∑

j=

∣
∣(i, j)

∣
∣q

)/q

. ()
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By applying the boundary condition and the fact that β(m,℘; j) < ,

( n–∑

j=

∣
∣(i, j)

∣
∣q

)

≤ i|a|q + n|b|q, i = , , . . . , n, ()

and utilizing (), we obtain

∣
∣(ϒμ) – (ϒν)

∣
∣ ≤ dp(μi,νi)


℘(L + L)
|a + b|

(
i|a|q + (n – i)|b|q)/q.

Consequently, this leads to

∣
∣(ϒμ) – (ϒν)

∣
∣p ≤ dp

p(μi,νi)
(


℘(L + L)
|a + b|

)p(
i|a|q + n|b|q)p/q.

Now, for all u, v ∈R
n+, we have

dp
(
(ϒμ), (ϒν)

)
=

( n∑

i=

∣
∣(ϒμ)(i) – (ϒν)(i)

∣
∣p

)/p

≤ dp(μ,ν)
(


℘(L + L)
|a + b|

)( n∑

i=

(
i|a|q + n|b|q)p/q

)/p

≤ dp(μ,ν)
(

λ(L + L)
|a + b|

)( n∑

i=

(
i|a|q + n|b|q)p/q

)/p

.

Thus, we conclude that

dp
(
(ϒμ), (ϒν)

) ≤ σdp(μ,ν),

with

σ :=
(

λ(L + L)
|a + b|

)( n∑

i=

(
i|a|q + n|b|q)p/q

)/p

< .

Hence, ϒ is a contraction mapping on R
n+ with respect to the dp metric and so, all of

the conditions of Banach’s fixed point theorem are satisfied. Therefore, there is a unique
μ ∈R

n+ such that ϒμ = μ, yielding the existence of a unique solution to problem (). �
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