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Abstract
In this paper, we consider a discrete risk model with delayed claims and randomized
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1 Introduction
In the compound binomial model, the surplus process for an insurance company is de-
scribed as follows:

Ut = u + t – [Xξ + Xξ + · · · + Xtξt], t = , , , . . . ,

where u is a nonnegative integer denoting the initial surplus, {Xt}∞t= is a sequence of i.i.d.
random variables denoting the individual claim sizes. Let X denote the generic version of
Xt ’s and define their common probability function by

fk = Pr(X = k), k = , , . . . .

The Bernoulli sequence {ξt}∞t= is used to denote claim occurrence such that ξt =  if a claim
occurs in the time period (t – , t], and ξt =  if no claim occurs in the time period (t – , t].
It is assumed that

Pr(ξ = ) = q, Pr(ξ = ) =  – q,

where  < q < .
The compound binomial risk model has been studied by many authors, for example,

Gerber [], Shiu [], Willmot [] and Dickson []. Recently, some extensions have been
made on this model. Yang et al. [] study the ruin probabilities in a discrete Markov risk
model. Yang and Zhang [] consider a discrete renewal risk model with two-sided jumps.
Gerber et al. [] modify the compound binomial risk model by dividend payments. Chen
et al. [] study the survival probabilities in a discrete semi-Markov risk model.

In reality, insurance claims may be delayed due to various reasons. The compound bi-
nomial risk model can be extended by involving two types of insurance claims, namely
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the main claims and the by-claims. We use {Xt} and {ξt} to denote the main claim sizes
and the indicators for their occurrences, respectively. We assume that each main claim
induces a by-claim. The by-claim and its associated main claim may occur simultaneously
with probability p ( < p < ), or the occurrence of the by-claim may be delayed to the next
time period with probability  – p. Let {Yt}∞t= be an i.i.d. sequence to denote by-claim sizes
and let Y be a generic variable of the by-claim. Define the probability mass function of Y
by

gl = Pr(Y = l), l = , , . . . .

Let SX
t and SY

t be, respectively, the total main claims and by-claims up to time t, where the
superscripts X and Y are used to indicate main claim and by-claim, respectively. Then the
delayed risk model U∞ = {U∞

t }∞t= can be described as follows: U∞
 = u and for t = , , . . . ,

U∞
t = u + t – SX

t – SY
t .

For the study on risk models with delayed claims, we refer the interested readers to Yuen
and Guo [], Yuen et al. [] and Xiao and Guo [].

Recently, risk models with randomized dividend strategy have received a lot of atten-
tion in the literature. Albrecher et al. [] study the expected discounted dividends in the
compound Poisson model with randomized dividend decision times. Avanzi et al. []
consider a periodic dividend strategy in the dual model. Zhang [] considers a perturbed
compound Poisson risk model with a randomized dividend strategy. Zhang and Cheung
[] investigate the randomized dividend strategy in a Markov additive risk model. For the
discrete risk model, Tan and Yang [] propose a randomized dividend strategy by modify-
ing the compound binomial model. In their model, whenever the surplus process is larger
or equal to a barrier b (a positive integer), the company will possibly pay dividends at the
end of the next period. He and Yang [] consider a compound binomial model, where
dividends are randomly paid to shareholders and policyholders. In this paper, we employ
a randomized dividend strategy to modify the delayed risk model U∞, and denote the
modified model by Ub = {Ub

t }∞t=. As in Tan and Yang [], for t = , , . . . , we assume that
whenever Ub

t ≥ b, a dividend of size ηt+ is possibly paid at the beginning of the (t + )th
period (t, t + ], where {ηt}∞t= is a Bernoulli sequence such that

Pr(ηt = ) = θ , Pr(ηt = ) =  – θ ,  < θ < .

Now the total dividends paid up to time t can be expressed as

Zt =
t∑

j=

ηj(Ub
j–≥b), t = , , . . . .

Starting from the initial surplus Ub
 = u, we have for t = , , . . . ,

Ub
t = u + t – SX

t – SY
t – Zt .

Associated with the model Ub, we define the ruin time by

τ b = inf
{

t ≥  : Ub
t < 

}
,
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where τ b = ∞ if Ub
t ≥  for all t. The total discounted dividends paid off before ruin are

given by

D =
τb∑

t=

vt–ηt(Ub
t–≥b),

where  < v <  is a discount factor. Given the initial surplus u, we define

V (u; b) = E
[
D|Ub

 = u
]

as the expected present value of discounted dividends paid off prior to ruin.

2 Difference equations
In this section, we derive difference equations for the expected discounted dividends paid
before ruin. First, we introduce an auxiliary process Ūb

t defined as Ūb
 = u and for t =

, , . . . ,

Ūb
t = u + t – Ȳ – SX

t – SY
t – Z̄t ,

where Ȳ independent of other random variables is distributed like Y , and

Z̄t =
t∑

j=

ηj(Ūb
j–≥b), t = , , . . . .

Accordingly, we define the ruin time by

τ̄ b = inf
{

t ≥  : Ūb
t < 

}

with τ̄ b = ∞ if Ūb
t ≥  for all t. For the risk model Ūb, the discounted dividends paid before

ruin are given by

D̄ =
τ̄b∑

t=

vt–ηt(Ūb
t–≥b).

Define the expected present value of discounted dividends paid before ruin by

V̄ (u; b) = E
[
D̄|Ūb

 = u
]
.

For the surplus process Ub, consider the following situations:
() no claim occurs in (, ] and no dividend is paid in (, ];
() no claim occurs in (, ] and a dividend of  is paid in (, ] (if u < b, this case does

not exist);
() a main claim and its by-claim occur simultaneously in (, ], and no dividend is paid

in (, ];
() a main claim and its by-claim occur simultaneously in (, ], and a dividend of  is

paid in (, ] (if u < b, this case does not exist);
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() a main claim occurs in (, ] and its by-claim is delayed to the next period, and no
dividend is paid in (, ];

() a main claim occurs in (, ] and its by-claim is delayed to the next period, and a
dividend of  is paid in (, ] (if u < b, this case does not exist).

Note that in situations ()-(), the surplus process Ub will regenerate itself after the first
period; whereas in ()-(), Ub will switch to Ūb. For  ≤ u < b, no dividends will be paid
in the first time period, then we have

V (u; b) = v( – q)V (u + ; b) + vq( – p)
∑

k≤u+

fkV̄ (u +  – k; b)

+ vqp
∑

k+l≤u+

fkglV (u +  – k – l; b), (.)

where we use the convention
∑j

x=i · =  for i > j. Whereas for u ≥ b, a dividend will be paid
at the beginning of the first time period with probability θ , then we have

V (u; b) = θ + v( – q)( – θ )V (u + ; b) + v( – q)θV (u; b)

+ vq( – p)( – θ )
∑

k≤u+

fkV̄ (u +  – k; b)

+ vq( – p)θ
∑

k≤u

fkV̄ (u – k; b)

+ vqp( – θ )
∑

k+l≤u+

fkglV (u +  – k – l; b)

+ vqpθ
∑

k+l≤u

fkglV (u – k – l; b). (.)

Similarly, for model Ūb, we have for  ≤ u < b,

V̄ (u; b) = v( – q)
∑

l≤u+

glV (u +  – l; b) + vq( – p)
∑

k+l≤u+

fkglV̄ (u +  – k – l; b)

+ vqp
∑

k+l+m≤u+

fkglgmV (u +  – k – l – m; b), (.)

and for u ≥ b,

V̄ (u; b) = θ + v( – q)( – θ )
∑

l≤u+

glV (u +  – l; b) + v( – q)θ
∑

l≤u

glV (u – l; b)

+ vq( – p)( – θ )
∑

k+l≤u+

fkglV̄ (u +  – k – l; b)

+ vq( – p)θ
∑

k+l≤u

fkglV̄ (u – k – l; b)

+ vqp( – θ )
∑

k+l+m≤u+

fkglgmV (u +  – k – l – m; b)

+ vqpθ
∑

k+l+m≤u

fkglgmV (u – k – l – m; b). (.)
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3 The case 0 ≤ u < b
In this section, we consider the case  ≤ u < b. In order to simplify (.) and (.), we define
the following auxiliary functions:

q–,(x) =

⎧
⎪⎨

⎪⎩

v( – q), x = ,
–, x = ,
vqp

∑
k+l=x fkgl, x = , , . . . ,

q–,(x) =

{
, x = ,
vq( – p)fx, x = , , . . . ,

q–,(x) =

⎧
⎪⎨

⎪⎩

, x = ,
v( – q)gx, x = , ,
v( – q)gx + vqp

∑
k+l+m=x fkglgm, x = , , . . . ,

q–,(x) =

⎧
⎪⎨

⎪⎩

, x = ,
–, x = ,
vq( – p)

∑
k+l=x fkgl, x = , , . . . .

It is easily seen that the difference equations (.) and (.) can be rewritten as follows:

{∑u+
x= q–,(x)V (u +  – x; b) +

∑u+
x= q–,(x)V̄ (u +  – x; b) = ,∑u+

x= q–,(x)V (u +  – x; b) +
∑u+

x= q–,(x)V̄ (u +  – x; b) = ,

u = , , . . . , b – . (.)

Now we relax the restriction  ≤ u < b to u ≥  in (.), and let (χ(u),χ(u)) be the
corresponding solution, i.e.

{∑u+
x= q–,(x)χ(u +  – x) +

∑u+
x= q–,(x)χ(u +  – x) = ,∑u+

x= q–,(x)χ(u +  – x) +
∑u+

x= q–,(x)χ(u +  – x) = ,

u = , , , . . . . (.)

In order to get (χ(u),χ(u)), we use the generating function method. In the rest of this
paper, we put a hat on top of a function to denote its generating function. For example,

f̂ (z) =
∞∑

k=

zkfk , ĝ(z) =
∞∑

l=

zlgl, |z| ≤ .

For the convolution

f ∗ g(x) =
∑

k+l=x

fkgl,

since f ∗ g() = f ∗ g() = , its generating function is given by

∞∑

x=

zxf ∗ g(x) =
∞∑

x=

zx
∑

k+l=x

fkgl =
∞∑

x=

zx
x–∑

k=

fkgx–k =
∞∑

k=

zkfk

∞∑

x=k+

zx–kgx–k = f̂ (z)ĝ(z).
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It is not hard to see that

q̂–,(z) = v
[
 – q + qpf̂ (z)ĝ(z)

]
– z,

q̂–,(z) = vq( – p)f̂ (z),

q̂–,(z) = vĝ(z)
[
 – q + qpf̂ (z)ĝ(z)

]
,

q̂–,(z) = vq( – p)f̂ (z)ĝ(z) – z.

For example,

q̂–,(z) =
∞∑

x=

zxq–,(x) = –z + vq( – p)
∞∑

x=

∑

k+l=x

fkgl

= vq( – p)f̂ (z)ĝ(z) – z.

For  < |z| < , multiplying the first equation in (.) by zu and then summing over u
from  to ∞, we obtain

 = q–,()
∞∑

u=

zuχ(u + ) +
∞∑

u=

zu
u+∑

x=

q–,(x)χ(u +  – x)

+
∞∑

u=

zu
u+∑

x=

q–,(x)χ(u +  – x)

= q–,()

z

∞∑

u=

zu+χ(u + ) +

z

∞∑

x=

zxq–,(x)
∞∑

u+=x

zu+–xχ(u +  – x)

+

z

∞∑

x=

zxq–,(x)
∞∑

u+=x

zu+–xχ(u +  – x)

=

z

q–,()
[
χ̂(z) – χ()

]
+


z
[
q̂–,(z) – q–,()

]
χ̂(z) +


z

q̂–,(z)χ̂(z),

which leads to

q̂–,(z)χ̂(z) + q̂–,(z)χ̂(z) = q–,()χ(). (.)

Similarly, from the second equation in (.) we can obtain

q̂–,(z)χ̂(z) + q̂–,(z)χ̂(z) = . (.)

Immediately, solving (.) and (.) gives

χ̂(z) =
q–,()q̂–,(z)χ()

z – zv[ – q + qf̂ (z)ĝ(z)]
, χ̂(z) =

–q–,()q̂–,(z)χ()
z – zv[ – q + qf̂ (z)ĝ(z)]

,

where we have used the fact

q̂–,(z)q̂–,(z) – q̂–,(z)q̂–,(z) = z – zv
[
 – q + qf̂ (z)ĝ(z)

]
.
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Hence, we conclude that the solution to the difference system (.) is uniquely determined
by the initial value χ(), from which we know that the solution to (.) can be expressed
as follows:

V (u; b) = αh–,(u), V̄ (u; b) = αh–,(u), u = , , . . . , b – , (.)

where α is an unknown constant, h–,(u) and h–,(u) are determined by the generating
functions

ĥ–,k(z) =
ŵ–,k(z)

z – v[ – q + qf̂ (z)ĝ(z)]
, k = , , (.)

with

ŵ–,(z) = v( – q)q̂–,(z)/z, ŵ–,(z) = –v( – q)q̂–,(z)/z.

Note that ŵ–,(z), ŵ–,(z) are both analytic inside the unit circle. In fact, since q–,() =
q–,() = , we have

ŵ–,(z) = v( – q)
∞∑

x=

zx–q–,(x) =
∞∑

x=

zxv( – q)q–,(x + ),

ŵ–,(z) = –v( – q)
∞∑

x=

zx–q–,(x) = –
∞∑

x=

zxv( – q)q–,(x + ).

Hence, upon inverting the above generating functions we obtain

w–,(u) = v( – q)q–,(u + ), w–,(u) = –v( – q)q–,(u + ), u = , , , . . . .

To continue, we introduce the discrete Dickson-Hipp operator defined as

Tzf (y) =
∞∑

x=y
zx–yf (x) =

∞∑

x=

zxf (x + y),

for some function f (x) defined on {, , , . . .}. As a matter of fact, Tzf (y) is the generating
function of f (y + ·). One of the nice properties of Tz is the commutative property, i.e.

TsTzf (y) = TzTsf (y) =
sTsf (y) – zTzf (y)

s – z
.

For more properties on this operator, we refer the interested readers to Li [].
For γ–(z) := z – v[ – q + qf̂ (z)ĝ(z)], we have

γ–() = –v( – q) < , γ–() =  – v > ,

which imply that there is a number ρ– ∈ (, ) such that γ–(ρ–) = . Furthermore, note that

f̂ (z)ĝ(z) =
∞∑

x=

zxf ∗ g(x) = z
∞∑

x=

zx–f ∗ g(x) = zTz(f ∗ g)().
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Then we have

γ–(z) = (z – ρ–)
γ (z) – γ(ρ–)

z – ρ–
= (z – ρ–)

(
 – vq

zTz(f ∗ g)() – ρ–Tρ– (f ∗ g)()
z – ρ–

)

= (z – ρ–)
(
 – vqTzTρ– (f ∗ g)()

)
,

which also yields for |z| ≤ ,

∣∣vqTzTρ– (f ∗ g)()
∣∣ =

∣∣∣∣∣vq
∞∑

x=

zxTρ– (f ∗ g)(x + )

∣∣∣∣∣ ≤ vq
∞∑

x=

Tρ– (f ∗ g)(x + )

= vqTTρ– (f ∗ g)() =  –
γ–()
 – ρ–

=  –
 – v

 – ρ–
< .

Hence, we conclude that φ(x) := vqTρ– (f ∗ g)(x + ) is a defective probability function.
Now for k = , ,

ĥ–,k(z) =
ŵ–,k(z)

(z – ρ–)( – vqTzTρ– (f ∗ g)())

=
∞∑

j=

[
vqTzTρ– (f ∗ g)()

]j ŵ–,k(z)
z – ρ–

.

After inverting the generating functions in the above formula, we obtain

h–,k(u) =
∞∑

j=

φ∗j ∗ w̄–,k(u), k = , , (.)

where

w̄–,k(u) = –
u∑

x=

ρ–(u–x)–
– w–,k(x), u = , , , . . . .

The j-fold convolution φ∗j(x) in (.) is recursively defined as

φ∗j(x) =
x∑

y=

φ∗(j–)(x – y)φ(y)

with the starting point φ∗(x) = (x=).

4 The case u ≥ b
In this section, we consider the case u ≥ b. First, we introduce the following auxiliary
functions to simplify (.) and (.):

q+,(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v( – q)( – θ ), x = ,
– + v( – q)θ , x = ,
vqp( – θ )fg, x = ,
vqp[( – θ )

∑
k+l=x fkgl + θ

∑
k+l=x– fkgl], x = , , . . . ,
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q+,(x) =

⎧
⎪⎨

⎪⎩

, x = ,
vq( – p)( – θ )f, x = ,
vq( – p)[( – θ )fx + θ fx–], x = , , . . . ,

q+,(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

, x = ,
v( – q)( – θ )g, x = ,
v( – q)[( – θ )g + θg], x = ,
v( – q)[( – θ )g + θg] + vqp( – θ )fgg, x = ,
v( – q)[( – θ )gx + θgx–]

+ vqp[( – θ )
∑

k+l+m=x fkglgm + θ
∑

k+l+m=x– fkglgm], x = , , . . . ,

q+,(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

, x = ,
–, x = ,
vq( – p)( – θ )fg, x = ,
vq( – p)[( – θ )

∑
k+l=x fkgl + θ

∑
k+l=x– fkgl], x = , , . . . .

Immediately, (.) and (.) are simplified to be

{∑u+
x= q+,(x)V (u +  – x; b) +

∑u+
x= q+,(x)V̄ (u +  – x; b) + θ = ,

∑u+
x= q+,(x)V (u +  – x; b) +

∑u+
x= q+,(x)V̄ (u +  – x; b) + θ = ,

u = b, b + , . . . . (.)

We use generating function method to solve (.). By some straightforward calculations,
we obtain

q̂+,(z) =
∞∑

x=

zxq+,(x)

= v( – q)( – θ ) – z + v( – q)θz

+ vqp( – θ )
∞∑

x=

zx
∑

k+l=x

fkgl + vqpθ

∞∑

x=

zx
∑

k+l=x–

fkgl

= v( – q)( – θ ) – z + v( – q)θz + vqp( – θ )f̂ (z)ĝ(z) + vqpθzf̂ (z)ĝ(z)

= v
[
 – q + qpf̂ (z)ĝ(z)

]
( – θ + θz) – z.

Similarly, we have

q̂+,(z) = vq( – p)f̂ (z)( – θ + θz),

q̂+,(z) = vĝ(z)
[
 – q + qpf̂ (z)ĝ(z)

]
( – θ + θz),

q̂+,(z) = vq( – p)f̂ (z)ĝ(z)( – θ + θz) – z.

For  < |z| < , we have

∞∑

u=b

zu–b
u+∑

x=

q+,(x)V (u +  – x; b)

=
∞∑

u=b

zu–bq+,()V (u + ; b) +
∞∑

u=b

zu–b
u–b+∑

x=

q+,(x)V (u +  – x; b)
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+
∞∑

u=b

zu–b
u+∑

x=u–b+

q+,(x)V (u +  – x; b)

=

z

q+,()
∞∑

u=b

zu+–bV (u + ; b) +
∞∑

x=

zxq+,(x)
∞∑

u=x+b–

zu–x–bV (u +  – x; b)

+
b–∑

x=

∞∑

u=b

zu–bq+,(u +  – x)V (x; b)

=

z

q+,()
[
TzV (b; b) – V (b; b)

]
+


z
[
q̂+,(z) – q+,()

]
TzV (b; b)

+
b–∑

x=

Tzq+,(b +  – x)V (x; b)

= –

z

q+,()V (b; b) +

z

q̂+,(z)TzV (b; b) +
b–∑

x=

Tzq+,(b +  – x)V (x; b),

and similarly

∞∑

u=b

zu–b
u+∑

x=

q+,(x)V̄ (u +  – x; b) =

z

q̂+,(z)TzV̄ (b; b) +
b–∑

x=

Tzq+,(b +  – x)V̄ (x; b).

Now multiplying both sides of the first equation in (.) and summing over u from b to
∞, we obtain

q̂+,(z)TzV (b; b) + q̂+,(z)TzV̄ (b; b) = q+,()V (b; b) – αϕ̂(z) – θz( – z)–, (.)

where

ϕ̂(z) =
b–∑

x=

Tzq+,(b +  – x)h–,(x) +
b–∑

x=

Tzq+,(b +  – x)h–,(x).

Applying exactly the same arguments to the second equation in (.) gives

q̂+,(z)TzV (b; b) + q̂+,(z)TzV̄ (b; b) = –αϕ̂(z) – θz( – z)– (.)

with

ϕ̂(z) =
b–∑

x=

Tzq+,(b +  – x)h–,(x) +
b–∑

x=

Tzq+,(b +  – x)h–,(x).

After inverting the generating functions ϕ̂(z), ϕ̂(z), we obtain for u = , , . . . ,

ϕ(u) =
b–∑

x=

q+,(u + b +  – x)h–,(x) +
b–∑

x=

q+,(u + b +  – x)h–,(x),

ϕ(u) =
b–∑

x=

q+,(u + b +  – x)h–,(x) +
b–∑

x=

q+,(u + b +  – x)h–,(x).
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Note that

q̂+,(z)q̂+,(z) – q̂+,(z)q̂+,(z) = z – zvâ(z),

where â(z) = [ – q + qf̂ (z)ĝ(z)]( – θ + θz) is a probability generating function with the
corresponding probability function given by

a(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( – q)( – θ ), x = ,
( – q)θ , x = ,
q( – θ )fg, x = ,
q( – θ )

∑
k+l=x fkgl + qθ

∑
k+l=x– fkgl, x = , , . . . .

Then solving (.) and (.) results in

TzV (b; b)

= q+,()V (b; b)q̂+,(z)/z + αq̂+,(z)ϕ̂(z) – αq̂+,(z)ϕ̂(z) + θ ( – z)–[q̂+,(z) – q̂+,(z)]
z – vâ(z)

,

(.)

TzV̄ (b; b)

= –q+,()V (b; b)q̂+,(z)/z + αq̂+,(z)ϕ̂(z) – αq̂+,(z)ϕ̂(z) + θ ( – z)–[q̂+,(z) – q̂+,(z)]
z – vâ(z)

.

(.)

For γ+(z) := z – vâ(z), we have

γ+() = –v( – q)( – θ ) < , γ+() =  – v > ,

then there exists a number ρ+ ∈ (, ) such that γ+(ρ+) = , which also implies that ρ+ is the
zero point of the common denominator of (.) and (.). Note that V (u; b) cannot grow
with an exponential rate, then we conclude that ρ+ is also zero point of the numerators of
(.) and (.), and this leads to

q+,()V (b; b)

= α
[
ρ+ϕ̂(ρ+) – ρ+ϕ̂(ρ+)q̂+,(ρ+)/q̂+,(ρ+)

]
+ θρ+( – ρ+)–[ – q̂+,(ρ+)/q̂+,(ρ+)

]

= α
[
ρ+ϕ̂(ρ+) – ρ+ϕ̂(ρ+)q̂+,(ρ+)/q̂+,(ρ+)

]
+ θρ+( – ρ+)–[ – q̂+,(ρ+)/q̂+,(ρ+)

]
,

where the second equality holds since q̂+,(ρ+)q̂+,(ρ+) – q̂+,(ρ+)q̂+,(ρ+) =  thanks to
γ+(ρ+) = . For convenience, set

k = θρ+( – ρ+)–[ – q̂+,(ρ+)/q̂+,(ρ+)
]
,

k = ρ+ϕ̂(ρ+) – ρ+ϕ̂(ρ+)q̂+,(ρ+)/q̂+,(ρ+).

Then we have

q+,()V (b; b) = k + kα. (.)
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It follows from (.) that the numerators in (.) and (.) reduce to

q+,()V (b; b)q̂+,(z)/z + αq̂+,(z)ϕ̂(z) – αq̂+,(z)ϕ̂(z)

+ θ ( – z)–[q̂+,(z) – q̂+,(z)
]

= ζ̂(z) + αζ̂(z) (.)

and

–q+,()V (b; b)q̂+,(z)/z + αq̂+,(z)ϕ̂(z) – αq̂+,(z)ϕ̂(z)

+ θ ( – z)–[q̂+,(z) – q̂+,(z)
]

= ζ̂(z) + αζ̂(z), (.)

where

ζ̂(z) = kq̂+,(z)/z + θ ( – z)–[q̂+,(z) – q̂+,(z)
]
,

ζ̂(z) = kq̂+,(z)/z + q̂+,(z)ϕ̂(z) – q̂+,(z)ϕ̂(z),

ζ̂(z) = –kq̂+,(z)/z + θ ( – z)–[q̂+,(z) – q̂+,(z)
]
,

ζ̂(z) = –kq̂+,(z)/z + q̂+,(z)ϕ̂(z) – q̂+,(z)ϕ̂(z).

After inverting the generating functions in the above formulas, we obtain for x = , ,  . . . ,

ζ(x) = kq+,(x + ) + θ

x∑

y=

[
q+,(y) – q+,(y)

]
,

ζ(x) = kq+,(x + ) + q+, ∗ ϕ(x) – q+,(z)ϕ(x),

ζ(x) = –kq+,(x + ) + θ

x∑

y=

[
q+,(y) – q+,(y)

]
,

ζ(x) = –kq̂+,(x + ) + q+, ∗ ϕ(x) – q+, ∗ ϕ(x).

Furthermore, using ζ̂j(ρ+) + αζ̂j(ρ+) = , j = , , we have

ζ̂j(z) + αζ̂j(z) = ζ̂j(z) + αζ̂j(z) –
[
ζ̂j(ρ+) + αζ̂j(ρ+)

]

=
∞∑

x=

zx[ζj(x) + αζj(x)
]

–
∞∑

x=

ρx
+
[
ζj(x) + αζj(x)

]

= z
∞∑

x=

zx–[ζj(x) + αζj(x)
]

– ρ+

∞∑

x=

ρx–
+

[
ζj(x) + αζj(x)

]

= zTzζj() – ρ+Tρ+ζ j() + α
[
zTzζj() – ρ+Tρ+ζj()

]

= (z – ρ+)
[
TzTρ+ζj() + αTzTρ+ζj()

]
. (.)

Similarly, for the common denominator in (.) and (.), using γ+(ρ+) =  we obtain

z – vâ(z) = z – ρ+ – v
[
â(z) – â(ρ+)

]
= (z – ρ+)

[
 – vTzTρ+a()

]
, (.)
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which also gives for |z| ≤ ,

∣∣vTzTρ+a()
∣∣ =

∣∣∣∣∣v
∞∑

x=

zxTρ+ a(x + )

∣∣∣∣∣ ≤
∣∣∣∣∣v

∞∑

x=

Tρ+ a(x + )

∣∣∣∣∣

=
∣∣vTTρ+a()

∣∣ =  –
 – v

 – ρ+
< .

Hence, β(x) := vTρ+ a(x + ) is a defective probability function.
Now plugging (.) and (.) into (.) gives

TzV (b; b) =
TzTρ+ζj() + αTzTρ+ζj()

 – vTzTρ+a()

=
∞∑

j=

[
vTzTρ+a()

]j[TzTρ+ζ() + αTzTρ+ζ()
]
, (.)

upon inversion, which yields

V (b + u; b) = ψ(u) + αψ(u), u = , , . . . , (.)

where

ψ(u) =
∞∑

j=

u∑

x=

β∗j(u – x)Tρ+ζ(x), ψ(u) =
∞∑

j=

u∑

x=

β∗j(u – x)Tρ+ζ(x).

Similarly, from (.) we can obtain

V̄ (b + u; b) = ψ(u) + αψ(u), u = , , . . . , (.)

where

ψ(u) =
∞∑

j=

u∑

x=

β∗j(u – x)Tρ+ζ(x), ψ(u) =
∞∑

j=

u∑

x=

β∗j(u – x)Tρ+ζ(x),

where the j-fold convolution β∗j is defined as in φ∗j.
It remains to determine the unknown constant α. To this end, we set u = b –  in the first

equation in (.) to obtain

b∑

x=

q–,(b – x)V (x; b) +
b–∑

x=

q–,(b – x)V̄ (x; b) = .

Then plugging (.) and (.) into the above equation gives

α = –
q–,()ψ()

q–,()ψ() +
∑b–

x= q–,(b – x)h–,(x) +
∑b–

x= q–,(b – x)h–,(x)
. (.)

Finally, we summarize the main results in the following theorem.
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Theorem  The expected present values of dividends V (u; b), V̄ (u; b) can be expressed as
follows:

V (u; b) =

{
αh–,(u), u = , , . . . , b – ,
ψ(u – b) + αψ(u – b), u = b, b + , . . . ,

V̄ (u; b) =

{
αh–,(u), u = , , . . . , b – ,
ψ(u – b) + αψ(u – b), u = b, b + , . . . ,

where α is given by (.).

5 Conclusion
Dividend problems are hot topics in insurance risk theory. In this paper, we consider a
compound binomial model with delayed claims. Suppose that the insurance company will
possibly pay dividends when the surplus level is larger than a given barrier b. The expected
present values of dividends paid before ruin are studied. We derive systems of difference
equations for V (u; b) and V̄ (u; b), and get the solutions by generating function method.
The main results given in Theorem  show that the analytic expressions for V (u; b) and
V̄ (u; b) can be obtained.
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