
Xie and Hou Advances in Difference Equations  (2015) 2015:288 
DOI 10.1186/s13662-015-0616-2

R E S E A R C H Open Access

Properties of right fractional sum and
right fractional difference operators and
application
Zuoshi Xie1 and Chengmin Hou2*

*Correspondence:
cmhou@foxmail.com
2Department of Mathematics,
Yanbian University, Yanji, 133002,
P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, the concepts of a right fractional sum and right fractional difference
operators are introduced. Some basic properties of a right fractional sum and right
fractional difference operators are proved. According to these properties of a right
fractional sum and right fractional difference operators, we studied an initial problem
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the present work will facilitate solving a fractional difference equation with right
fractional difference operators.
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1 Introduction
Recently, there appeared a number of papers on the discrete fractional calculus, which
has helped to build up some of the basic theory of this area. For example, Atici and Eloe
discussed the properties of the generalized falling function, a corresponding power rule
for fractional delta-operators, and the commutativity of fractional sums in []. Goodrich
studied a fractional boundary value problem in [], which gave the existence results for a
certain two-point boundary value problem of right-focal type for a fractional difference
equation. The authors of [] have developed a well-posed initial value problem and pro-
posed multiple solution algorithms. An interesting recent paper by Atici and Sengül []
addressed the use of fractional difference equations in tumor growth modeling. For re-
cent studies in discrete fractional calculus involving initial boundary value problems, see
[–].

From the above works, we can see in fact, although the discrete fractional calculus have
been studied by many authors, to the best of our knowledge, that the properties of a right
fractional difference operator have not been discussed. Our objective is twofold. On one
hand we proceed to develop the theory of fractional difference calculus, namely we intro-
duce the concepts of a right fractional sum and right fractional difference operators and
prove some basic properties of a right fractional sum and right fractional difference oper-
ators. On the other hand, according to these properties of a right fractional sum and right
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fractional difference operators, we studied an initial problem and a boundary value prob-
lem with two-point boundary conditions. The proofs are similar to those of earlier work
by both Goodrich [] and Holm []; there nonetheless is something new and interesting
here. The contributions of this article aim to initiate the study of right fractional difference
operator. This interest is in part due to the useful applications of the fractional calculus
together with its interesting and often nontrivial mathematical theory. On the other hand,
it might be of interest to see what happens in the case of more complicated boundary con-
ditions or a higher-order problem. Due to the lack of commutativity of the right fractional
difference, the sequential boundary value problem is of interest. Furthermore, combining
the results of Goodrich [] and Holm [], there seem to be considerable possibilities for
future work to address the sequential boundary value problems with left and right frac-
tional difference operators, and such investigations might provide interesting future work.
We believe that the present work facilitates solving a fractional difference equation with a
right fractional difference operator.

2 Right fractional sum and right fractional difference operators
In this section, the concepts of a right fractional sum and right fractional difference oper-
ators are introduced and their some basic properties are proved.

Denote bN := {b} – N = {. . . , b – , b – , b}, b ∈R.

Definition  (see []) We define tν := �(t+)
�(t+–ν) , for any t and ν for which the right-hand

side is defined. We also appeal to the convention that if t +  – ν is a pole of the Gamma
function and if t +  is not a pole, then tν = .

Definition  The νth order right fractional sum of a function f defined on bN, for ν > ,
is defined to be

b∇–ν f (t) =


�(ν)

b∑

s=t+ν

(s – t – )ν–f (s), t ∈ b–νN. (.)

We also define the trivial right sum by b∇–f (t) = f (t), for t ∈ bN.

Definition  Let f :b N→R and ν >  be given, and let N ∈N be chosen such that N –  <
ν ≤ N . The νth order right fractional difference of f is given by

(
b∇ν f

)
(t) = b∇ν f (t) = (–)N∇N

b∇–(N–ν)f (t), t ∈ b–N+νN. (.)

Using Definition  together with a function f : bN → R and an order ν >  with N –  <
ν ≤ N , we may calculate the domain of the νth order right fractional difference as

D
{

b∇ν f
}

= D
{∇N

b∇–(N–ν)f
}

= D
{

b∇–(N–ν)f
}

= b–N+νN.

Moreover, the domains of all four sum and difference compositions are given below.
Let f : bN →R and ν,μ >  be given. Let N , M ∈N be chosen so that N –  < ν ≤ N and

M –  < μ ≤ M. Then

D
{

b–μ∇–ν
b∇–μf

}
= b–μ–νN, D

{
b–μ∇ν

b∇–μf
}

= b–μ–N+νN,

D
{

b–M+μ∇–ν
b∇μf

}
= b–M+μ–νN, D

{
b–M+μ∇ν

b∇μf
}

= b–M+μ–N+νN.
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Theorem  Let f : bN → R and ν >  be given, with N –  < ν ≤ N . The following two
definitions for the right fractional difference b∇ν f : b–N+νN→R are equivalent:

b∇ν f (t) = (–)N∇N
b ∇–(N–ν)f (t), (.)

b∇ν f (t) =

{


�(–ν)
∑b

s=t–ν(s – t – )–ν–f (s), N –  < ν ≤ N ,
(–)N∇N f (t), ν = N .

(.)

Proof Let f and ν be given as in the statement of the theorem. We are proposing two
definitions (.) and (.) and demonstrating that they are identically equal.

If ν = N , then (.) and (.) are clearly equivalent, since in this case,

b∇ν f (t) = (–)N∇N
b∇–(N–ν)f (t) = (–)N∇N

b∇–f (t) = (–)N∇N f (t).

If N –  < ν < N , then a direct application of (.) yields

b∇ν f (t) = (–)N∇N
b∇–(N–ν)f (t)

= (–)N∇N

(


�(N – ν)

b∑

s=t+N–ν

(s – t – )N–ν–f (s)

)

= (–)N∇N–∇
(


�(N – ν)

b∑

s=t+N–ν

(s – t – )N–ν–f (s)

)

= (–)N∇N–

(


�(N – ν)

b∑

s=t+N–ν

(s – t – )N–ν–f (s)

–


�(N – ν)

b∑

s=t+N–ν–

(s – t)N–ν–f (s)

)

= (–)N–∇N–

(


�(N – ν – )

b∑

s=t+N–ν–

(s – t – )N–ν–f (s)

)

...

=


�(–ν)

b∑

s=t–ν

(s – t – )–ν–f (s). �

Lemma  Let b ∈R and μ >  be given. Then

∇(b – t)μ = –μ(b – t)μ– (.)

for any t, for which both sides are well defined.
Furthermore, for ν >  with N –  < ν ≤ N ,

b–μ∇–ν(b – t)μ = μ–ν(b – t)μ+ν , t ∈ b–μ–νN (.)

and

b–μ∇ν(b – t)μ = μν(b – t)μ–ν , t ∈ b–μ–N+νN. (.)
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Proof It is easy to show (.) using the definition of the nabla difference and properties of
the gamma function. For (.) and (.), we first note that (b – t)μ, (b – t)μ+ν , and (b – t)μ–ν

are all well defined and positive on their respective domains b–μN, b–μ–νN, b–μ–N+νN.
We next show that (.) and (.) hold. The course of this proof as regards the techniques

heavily relies on Holm []. For convenience of the reader, we display it as follows.
For ν = , we see from direct calculation that

b–μ∇–(b – t)μ = b–μ∇–
(

–
∇(b – t)μ+

μ + 

)

=
b–μ∑

s=t+

(s – t – )
(

–
∇(b – s)μ+

μ + 

)

=
b–μ∑

s=t+

(
(b – s + )μ+

μ + 
–

(b – s)μ+

μ + 

)

=
(b – t)μ+

μ + 
–

μμ+

μ + 

= μ–(b – t)μ+.

For ν ∈ (, ) ∪ (, +∞), define for t ∈ b–μ–νN the functions

g(t) = b–μ∇–ν(b – t)μ

and

g(t) = μ–ν(b – t)μ+ν .

We will show that both g and g solve the well-posed, first-order initial value problem
{

(b – t – μ – ν + )∇g(t) + (μ + ν)g(t) = , t ∈ b–μ–νN,
g(b – μ – ν) = �(μ + ).

(.)

Since

g(b – μ – ν) =


�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ
∣∣
t=b–μ–ν

=


�(ν)

b–μ∑

s=b–μ

(s – b + μ + ν – )ν–(b – s)μ

=


�(ν)
(ν – )ν–μμ

= �(μ + )

and

g(b – μ – ν) = μ–ν(μ + ν)μ+ν = �(μ + ),

both g and g satisfy the initial condition in (.).



Xie and Hou Advances in Difference Equations  (2015) 2015:288 Page 5 of 16

An effort is required to show that g satisfies the difference equation in (.). For t ∈
b–μ–νN,

∇g(t) = ∇
(


�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ
)

=


�(ν)

( b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ –
b–μ∑

s=t+ν–

(s – t)ν–(b – s)μ
)

=
–(ν – )

�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ – (b – t +  – ν)μ.

Also, we may manipulate g directly to obtain

g(t) =


�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ

=


�(ν)

b–μ∑

s=t+ν

(
s – t –  – (ν – )

)
(s – t – )ν–(b – s)μ

=


�(ν)

b–μ∑

s=t+ν

[(
b – t – (μ + ν) + 

)
– (b – s – μ)

]
(s – t – )ν–(b – s)μ

=
b – t – μ – ν + 

�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ

–


�(ν)

b–μ∑

s=t+ν

(b – s – μ)(s – t – )ν–(b – s)μ

=
b – t – μ – ν + 

�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ

–


�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ+

= h(t) – k(t),

where

{
h(t) := b–t–μ–ν+

�(ν)
∑b–μ

s=t+ν(s – t – )ν–(b – s)μ,
k(t) := 

�(ν)
∑b–μ

s=t+ν(s – t – )ν–(b – s)μ+.

Summing k(t) by parts, we obtain

k(t) =


�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ+

=


�(ν)

b–μ∑

s=t+ν

(b – s)μ+�s

(
(s – t – )ν–

ν – 

)
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=


�(ν)
(b – s)μ+ (s – t)ν–

ν – 

∣∣∣∣
b–μ+

s=t+ν

+


�(ν)

b–μ∑

s=t+ν

(s – t)ν–

ν – 
(μ + )(b – s – )μ

=


ν – 

[
μ + 
�(ν)

b–μ∑

s=t+ν

(s – t)ν–(b – s – )μ – (b – t – ν)μ+

]

=


ν – 

[
μ + 
�(ν)

b–μ+∑

u=t+ν+

(u – t – )ν–(b – u)μ – (b – t – ν)μ+

]

=


ν – 

[
μ + 
�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ

–
μ + 
�(ν)

(ν – )ν–(b – t – ν)μ – (b – t – ν)μ+

]

=


ν – 

[
μ + 
�(ν)

b–μ∑

s=t+ν

(s – t – )ν–(b – s)μ – (b – t – ν + )μ+

]
.

It follows from the above work that

–(b – t – μ – ν + )∇g(t) = (ν – )h(t) + (b – t – ν + )μ+,

(μ + )g(t) – (ν – )k(t) = (b – t – ν + )μ+.

Hence,

(b – t – μ – ν + )∇g(t) + (μ + ν)g(t) = .

Finally, g also satisfies the difference equation (.):

(b – t – μ – ν + )∇g(t) = (b – t – μ – ν + )μ–ν
[
(b – t)μ+ν – (b – t + )μ+ν

]

= –(b – t – μ – ν + )μ–ν(μ + ν)(b – t)μ+ν–

= –(μ + ν)g(t).

By the uniqueness of the solutions to the well-posed initial value problem (.), we con-
clude that g ≡ g on b–μ–νN.

We next employ (.) and (.) to show (.) follows. For t ∈ b–μ–N+νN,

b–μ∇ν(b – t)μ = (–)N∇N
b–μ∇–(N–ν)(b – t)μ

= (–)N∇N(
μ–(N–ν)(b – t)μ+N–ν

)

= (–)N∇N
(

�(μ + )
�(μ +  + N – ν)

(b – t)μ+N–ν

)

= (–)N∇N–
(

�(μ + )
�(μ +  + N – ν)

(
(b – t)μ+N–ν – (b – t + )μ+N–ν

))

= (–)N–∇N–
(

�(μ + )
�(μ + N – ν)

(b – t)μ+N–ν–
)

...
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=
�(μ + )

�(μ +  – ν)
(b – t)μ–ν

= μν(b – t)μ–ν . �

Theorem  Let f : bN→ R be given and suppose μ,ν > . Then

b–μ∇–ν
b∇–μf (t) = b∇–μ–ν f (t) = b–ν∇–μ

b∇–ν f (t), t ∈ b–μ–νN.

Proof Suppose f : bN →R and μ,ν > . Then for t ∈ b–μ–νN,

b–μ∇–ν
b∇–μf (t) =


�(ν)

b–μ∑

s=t+ν

(s – t – )ν– 
�(μ)

b∑

u=s+μ

(u – s – )μ–f (u)

=


�(ν)�(μ)

b–(μ+ν)∑

s=t

b∑

u=s+μ+ν

(s + ν – t – )ν–(u – s – ν – )μ–f (u)

=


�(ν)�(μ)

b–μ–ν∑

s=t

b–μ–ν∑

r=s
(s + ν – t – )ν–(r + μ – s – )μ–f (r + μ + ν)

=


�(ν)�(μ)

b–μ–ν∑

r=t

r∑

s=t
(s + ν – t – )ν–(r + μ – s – )μ–f (r + μ + ν)

=


�(ν)�(μ)

b–μ–ν∑

r=t
f (r + μ + ν)

×
r∑

s=t–ν+ν

(
s – (t – ν) – 

)ν–(r + μ – s – )μ–

=


�(μ)

b–μ–ν∑

r=t
f (r + μ + ν)(r+μ–)–(μ–)∇–ν(r + μ –  – t)μ–∣∣

t–ν

=


�(μ)

b–μ–ν∑

r=t
f (r + μ + ν)(μ – )–ν

(
r + μ –  – (t – ν)

)μ+ν–

=


�(ν + μ)

b∑

r=t+μ+ν

(r – t – )μ+ν–f (r)

= b∇–μ–ν f (t).

Since ν and μ are arbitrary, we conclude more generally that

b–μ∇–ν
b∇–μf (t) = b∇–μ–ν f (t) = b–ν∇–μ

b∇–ν f (t), t ∈ b–μ–νN. �

Lemma  Let f : bN →R be given. For any k ∈N and μ >  with M –  < μ ≤ M, we have

b–μ∇k(
b∇–μf (t)

)
= b∇k–μf (t), t ∈ b–μN, (.)

b–M+μ∇k(
b∇μf (t)

)
= b∇k+μf (t), t ∈ b–M+μN. (.)

Proof Let f , μ, M, and k be as given in the statement of the lemma. We first prove (.).
We consider two cases.
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Case . μ = M.
Observe that for t ∈ b–N,

∇b∇–f (t) = ∇
( b∑

s=t+

f (s)

)
= –f (t).

Furthermore, for any k ∈ N
+ and t ∈ b–kN, by Theorem , we have

∇k
b∇–kf (t) = ∇k–(∇b–k+∇–(

b∇–(k–)f (t)
))

= –∇k–(
b∇–(k–)f (t)

)

...

= (–)kf (t).

Therefore, for any t ∈ b–MN, we obtain

b–M∇k
b∇–Mf (t) = (–)k∇k

b∇–Mf (t)

= (–)k∇k–M∇M
b∇–Mf (t)

= (–)k∇k–Mf (t)

= b∇k–Mf (t), if k ≥ M;

b–M∇k
b∇–Mf (t) = (–)k∇k

b∇–Mf (t)

= (–)k∇k
b–M+k∇–k

b∇–(M–k)f (t)

= b∇k–Mf (t), if k < M.

Case . M –  < μ < M.

∇b∇–μf (t) = ∇ 
�(μ)

b∑

s=t+μ

(s – t – )μ–f (s)

=


�(μ)

[ b∑

s=t+μ

(s – t – )μ–f (s) –
b∑

s=t+μ–

(s – t)μ–f (s)

]

= –


�(μ – )

b∑

s=t+μ–

(s – t – )μ–f (s)

= –b∇–μf (t).

Repeating the above process, we may see that (.) holds.
Next, by (.), we get

b–M+μ∇k(
b∇μf (t)

)
= (–)k∇k(–)M∇M(

b∇–(M–μ)f (t)
)

= (–)k+M∇k+M(
b∇–(M–μ)f (t)

)

= b–M+μ∇k+M(
b∇–(M–μ)f (t)

)
= b∇k+μf (t),

and hence (.) holds. �
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Theorem  Let f : bN →R be given and suppose μ,ν >  with N –  < ν < N . Then

b–μ∇ν
b∇–μf (t) = b∇ν–μf (t), t ∈ b–μ–N+νN. (.)

Proof Let f , ν , N , and μ be given as in the statement of the theorem and let t ∈ b–μ–N+νN.
Then by Theorem  and Lemma , we have

b–μ∇ν
b∇–μf (t) = (–)N∇N

b–μ∇–(N–ν)
b∇–μf (t)

= (–)N∇N
b∇–(N–ν)–μf (t)

= b∇ν–μf (t). �

Theorem  Let f : bN→R be given and suppose k ∈N be given. Then for t ∈ b–νN,

b∇–ν
b∇kf (t) = b∇k–ν f (t) –

k–∑

j=

b∇ jf (b)
�(ν – k + j + )

(b – t)ν–k+j. (.)

Moreover, if μ >  with M –  < μ < M, then for t ∈ b–M+μ–νN,

b–M+μ∇–ν
b∇μf (t) = b∇μ–ν f (t) –

M–∑

j=

b∇ j–M+μf (b – M + μ)
�(ν – M + j + )

(b – M + μ – t)ν–M+j. (.)

Proof We first consider (.). Let k ∈N be given. Then

b∇–ν
b∇kf (t) = (–)k

b∇–ν∇kf (t)

= (–)k 
�(ν)

b∑

s=t+ν

(s – t – )ν–∇kf (s)

= (–)k 
�(ν)

( b∑

s=t+ν

(s – t – )ν–�(∇k–f (s – )
)
)

= (–)k 
�(ν)

(
(s – t – )ν–∇k–f (s – )

∣∣b+
s=t+ν

–
b∑

s=t+ν

(ν – )(s – t – )ν–∇k–f (s)

)

= (–)k

(
–


�(ν – )

b∑

s=t+ν–

(s – t – )ν–∇k–f (s) +
∇k–f (b)

�(ν)
(b – t)ν–

)

= (–)k– 
�(ν – )

b∑

s=t+ν–

(s – t – )ν–∇k–f (s) – b∇k–f (b)
�(ν)

(b – t)ν–

= (–)k– 
�(ν – )

b∑

s=t+ν–

(s – t – )ν–∇k–f (s)

– b∇k–f (b)
�(ν – )

(b – t)ν– – b∇k–f (b)
�(ν)

(b – t)ν–

...
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=


�(ν – k)

b∑

s=t+ν–k

(s – t – )ν–k–f (s)

–
k–∑

j=

b∇ jf (b)
�(ν – k + j + )

(b – t)ν–k+j.

We next consider (.). Suppose that ν,μ >  with M –  < μ ≤ M. Defining

g(t) := b∇–(M–μ)f (t) and a := b – M + μ,

where a is the domain of the first point g , we have, for t ∈ b–M+μ–νN,

b–M+μ∇–ν
b∇μf (t) = b–M+μ∇–ν(–)M∇M

b∇–(M–μ)f (t)

= (–)M
b–M+μ∇–ν∇Mg(t)

= b–M+μ∇–ν
b–M+μ∇Mg(t)

= b–M+μ∇M–νg(t) –
M–∑

j=

b–M+μ∇ jg(a)
�(ν – M + j + )

(a – t)ν–M+j

= b–M+μ∇M–ν
b∇–(M–μ)f (t)

–
M–∑

j=

b–M+μ∇ j
b∇–(M–μ)f (a)

�(ν – M + j + )
(a – t)ν–M+j

= b∇μ–ν f (t) –
M–∑

j=

b∇–(M–μ)+jf (b – M + μ)
�(ν – M + j + )

(b – M + μ – t)ν–M+j.
�

Theorem  Let f : bN →R be given and suppose μ,ν >  with N –  < ν ≤ N and M –  <
μ ≤ M. Then for t ∈ b–M+μ–N+νN,

b–M+μ∇ν
b∇μf (t) = b∇μ+ν f (t) –

M–∑

j=

b∇ j–M+μf (b – M + μ)
�(–ν – M + j + )

(b – M + μ – t)–ν–M+j, (.)

where in agreement with both rule (.) and the standard convention on t, the terms in
the summation vanish in the case ν ∈N.

Proof Let f , ν , and μ be given as in the statement of the theorem. Recall that Lemma 
proves (.) in the case when ν = N . On the other hand, if N –  < ν < N , then by Theo-
rem , we have for t ∈ b–M+μ–N+νN,

b–M+μ∇ν
b∇μf (t) = (–)N∇N

b–M+μ∇–(N–ν)
b∇μf (t)

= (–)N∇N

[

b∇–N+ν+μf (t) –
M–∑

j=

b∇ j–M+μf (b – M + μ)
�(N – ν – M + j + )

× (b – M + μ – t)N–ν–M+j

]
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= b∇μ+ν f (t) –
M–∑

j=

b∇ j–M+μf (b – M + μ)
�(N – ν – M + j + )

× (–)N∇N (b – M + μ – t)N–ν–M+j

= b∇μ+ν f (t) –
M–∑

j=

b∇ j–M+μf (b – M + μ)
�(–ν – M + j + )

(b – M + μ – t)–ν–M+j.
�

3 Application
Theorem  Let f : bN →R and ν >  be given with N –  < ν < N , consider the initial value
problem of the νth right fractional difference equation

{
b∇νy(t) = f (t), t ∈ bN,
∇ iy(b) = Ai, i = , , . . . , N – , Ai ∈ R.

(.)

The general solution to (.) is

y(t) = b–N+ν∇–ν f (t) +
N–∑

i=

αi(b – N + ν – t)i+ν–N , (.)

where {αj}N–
j= are N real constants. Moreover, the unique solution to (.) is (.) with par-

ticular constants,

αj =


�(ν – N + j + )

j∑

k=

j–k∑

i=

(–)k+i
(

j – N + ν

k

)(
j – k

i

)
Ai,

(
α

β

)
=

�(α + )
�(β + )�(α – β + )

.

Proof By Theorem , we have

y(t) = b–N+ν∇–ν f (t) +
N–∑

j=

b∇ j–N+νy(b – N + ν)
�(ν – N + j + )

(b – N + ν – t)ν–N+j.

We have

b∇ j–N+νy(b – N + ν) =


�(N – ν – j)

b∑

s=b–j

(s – b + N – ν – )–j+N–ν–y(s)

=


�(N – ν – j)

j∑

k=

(k – j + N – ν – )–j+N–ν–y(b – j + k)

=


�(N – ν – j)

j∑

k=

�(k – j + N – ν)
�(k + )

y(b – j + k)

=
j∑

k=

(k – j + N – ν – )(k – j + N – ν – ) · · · (N – ν – j)
�(k + )

× y(b – j + k)

=
j∑

k=

(–)k
(

ν + j – N
k

)
y(b – j + k)
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=
j∑

k=

(–)k
(

ν + j – N
k

) j–k∑

i=

(–)i
(

j – k
i

)
∇ iy(b)

=
j∑

k=

j–k∑

i=

(–)i+k
(

ν + j – N
k

)(
j – k

i

)
Ai.

Therefore, αj = 
�(ν–N+j+)

∑j
k=

∑j–k
i=(–)i+k(ν+j–N

k
)(j–k

i
)
Ai.

We consider two-point boundary value problem
{

b∇νy(t) + f (t – ν + , y(t – ν + )) = , t ∈ [ν – , b + ν – ]Nν– ,
y(–) = y(b) = ,

(.)

where f : [, b]N ×R →R is a continuous function and ν ∈ (, ], b ∈N, b > .
By Theorem , we have

y(t) = –b––ν∇–ν f
(
t – ν + , y(t – ν + )

)

+ C(b –  + ν – t)ν– + C(b –  + ν – t)ν–,

= –


�(ν)

b–+ν∑

s=t+ν

(s – t – )ν–f
(
s – ν + , y(s – ν + )

)

+ C(b –  + ν – t)ν– + C(b –  + ν – t)ν–,

y(b) = C�(ν – ) = , C = ,

y(–) = –


�(ν)

b+ν–∑

s=ν–

sν–f
(
s – ν + , y(s – ν + )

)
+ C(b –  + ν)ν– = ,

C =


(b + ν – )ν–�(ν)

b+ν–∑

s=ν–

sν–f
(
s – ν + , y(s – ν + )

)
,

y(t) =
b+ν–∑

s=ν–

G(t, s)f
(
s – ν + , y(s – ν + )

)
, (.)

where

G(t, s) =


�(ν)

⎧
⎨

⎩

sν–(b–+ν–t)ν–

(b+ν–)ν– – (s – t – )ν–, ν –  ≤ t + ν –  < s ≤ b + ν – ,
sν–(b–+ν–t)ν–

(b+ν–)ν– , ν –  ≤ s ≤ t + ν –  ≤ b + ν – . �

Theorem  The Green’s function G(t, s) satisfies the following conditions:
(i) G(t, s) >  for t ∈ [, b – ]N and s ∈ [ν, b + ν – ]Nν ;

(ii) maxt∈[,b]N
G(t, s) = G(s – ν + , s), for s ∈ [ν, b + ν – ]Nν ;

(iii) there exists a positive number γ ∈ (, ) such that
mint∈[ b

 , b
 ] G(t, s) ≥ γ maxt∈[–,b]N–

G(t, s) = γ G(s – ν + , s), for
s ∈ [ν – , b + ν – ]Nν– .

Proof (i) One can see that �tG(t, s) <  for ν –  ≤ s ≤ t + ν – , and �tG(t, s) >  for
ν –  ≤ t + ν –  < s. Indeed, for ν –  ≤ t + ν –  < s, we have

�tG(t, s) =
ν – 

(b –  + ν)ν–

[
(s – t – )ν–(b –  + ν)ν– – (b + ν – t – )ν–sν–].
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Thus, �tG(t, s) >  if and only if

(s – t – )ν–(b –  + ν)ν–

(b + ν – t – )ν–sν– > .

The inequality follows from the fact that tα is increasing and t–α is decreasing if
 < α ≤ . Since

G(–, s) = G(b, s) = 

and

G(s – ν + , s) =
sν–(b + ν –  – s + ν – )ν–

(b + ν – )ν–

=
sν–(b + ν – s – )ν–

(b + ν – )ν– > , s ∈ [ν – , b + ν – ]Nν– ,

(i), (ii) are proved.
Next, we prove the (iii). Clearly,

G(t, s)
G(s – ν + , s)

=

⎧
⎨

⎩

(b+ν––t)ν–

(b+ν–s–)ν– – (s–t–)ν–(b+ν–)ν–

sν–(b+ν–s–)ν– , ν –  ≤ t + ν –  < s ≤ b + ν – ,
(b+ν––t)ν–

(b+ν–s–)ν– , ν –  ≤ s ≤ t + ν –  ≤ b + ν – .

For ν –  ≤ s ≤ t + ν –  ≤ b + ν –  and b
 ≤ t ≤ b

 ,

G(t, s)
G(s – ν + , s)

=
(b + ν –  – t)ν–

(b + ν – s – )ν– ≥ (b + ν –  – b
 )ν–

(b + ν – )ν– .

For ν –  ≤ t + ν –  < s ≤ b + ν –  and b
 ≤ t ≤ b

 , we know that G(t, s) is increasing with
respect to t, hence we have

G(t, s)
G(s – ν + , s)

≥ (b + ν –  – b
 )ν–

(b + ν – s – )ν– –
(s – b

 – )ν–(b + ν – )ν–

sν–(b + ν – s – )ν–

=


(b + ν – s – )ν–

×
[(

b


+ ν – 
)ν–

–


sν–

(
s –

b


– 
)ν–

(b + ν – )ν–
]

≥ 
(b + ν – )ν–

[(
b


+ ν – 
)ν–

–
( b

 + ν – )ν–

(b + ν – )ν– (b + ν – )ν–
]

>


(b + ν – )ν–

[(
b


+ ν – 
)ν–

–
( b

 + ν – )ν–

(b + ν – )ν– (b + ν – )ν–
]

= ,

since (s– b
 –)ν–

sν– is increasing for s.
Thus

min
t∈[ b

 , b
 ]

G(t, s) ≥ γ max
t∈[–,b]N–

G(t, s) = γ G(s – ν + , s),



Xie and Hou Advances in Difference Equations  (2015) 2015:288 Page 14 of 16

where

γ = min

{ ( b
 + ν – )ν–

(b + ν – )ν– ,


(b + ν – )ν–

[(
b


+ ν – 
)ν–

–
( b

 + ν – )ν–

(b + ν – )ν– (b + ν – )ν–
]}

. (.)
�

Below we shall employ the following fixed point result.

Lemma  (see []) Let B be a Banach space, and let P ⊂ B be a cone. Assume � and �

are open discs contained in B with  ∈ �, � ⊂ � and let A : P ∩ (�\�) → P be a
completely continuous operator such that, either

(i) ‖Ay‖ ≤ ‖y‖, y ∈P ∩ ∂� and ‖Ay‖ ≥ ‖y‖, y ∈P ∩ ∂� or
(ii) ‖Ay‖ ≥ ‖y‖, y ∈P ∩ ∂� and ‖Ay‖ ≤ ‖y‖, y ∈P ∩ ∂�.

Then A has least one fixed point in P ∩ (�\�).

Clearly, finding a solution y(t) of the FBVP (.) is equivalent to finding a solution of the
summation equation (.).

For our purpose, define the Banach space B by

B =
{

y : [, b]N →R : y(–) = y(b) = 
}

,

with norm ‖y‖ = maxt∈[–,b]N–
|y(t)|.

Let γ be defined by (.) and define cones P and P in B by

P =
{

y ∈ B : y(t) ≥  for t ∈ [–, b]N–

}
,

P =
{

y ∈P : min
t∈[ b

 , b
 ]

y(t) ≥ γ ‖y‖
}

.

Thus, y is a solution of the boundary value problem (.) if and only if y is a fixed point of
the operator T : B → B defined by

Ty(t) =
b+ν–∑

s=ν–

G(t, s)f
(
s – ν + , y(s – ν + )

)
, t ∈ [–, b]N– .

We state three hypotheses that will be used below.

(H) f (t – ν + , x) ≥ , (t, x) ∈ [ν – , b + ν – ]Nν– × [, +∞);
(H) f (t – ν + , x) = h(t – ν + )g(x), where h is a positive function, g is a nonnegative

function, and limx→+
g(x)

x = , limx→∞ g(x)
x = ∞;

(H) f (t – ν + , x) = h(t – ν + )g(x), where h is a positive function, g is a nonnegative
function, and limx→+

g(x)
x = ∞, limx→∞ g(x)

x = .

Lemma  Assume condition (H) holds. Then Ty ∈ P for all y ∈ P . In particular, the
operator T leaves the cone P invariant.
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Proof For all y ∈P , by Theorem  and (H), we have Ty(t) ≥  for all t ∈ [–, b]N– . Further,
it follows immediately from Theorem (iii) that

min
t∈[ b

 , b
 ]

(Ty)(t) ≥ γ

b+ν–∑

s=ν–

max
t∈[–,b]N–

G(t, s)f
(
s – ν + , y(s – ν + )

) ≥ γ ‖Ty‖.

Therefore, Ty ∈P. �

Theorem  Assume that conditions (H) and (H) are satisfied. Then the FBVP (.) has
at least one solution y �=  ∈P.

Theorem  Assume that conditions (H) and (H) are satisfied. Then the FBVP (.) has
at least one solution y �=  ∈P.

The proofs of Theorem  and  are similar to Theorems . and . in [] and are
skipped.
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