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Abstract
We prove that the generalized Hyers-Ulam stability of linear differential equations of
nth order (defined on I) is invariant under any monotone one-to-one correspondence
τ : I → J which is n times continuously differentiable. Moreover, using this result, we
investigate the generalized Hyers-Ulam stability of the linear differential equation of
second order and the Cauchy-Euler equation.
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1 Introduction
Throughout this paper, let n be a positive integer and let I and J be non-degenerate inter-
vals of R. We will consider the (linear) differential equation of nth order

F
(
y(n), y(n–), . . . , y′, y, x

)
=  ()

defined on I , where y : I → R is an n times continuously differentiable function.
For an arbitrary ε > , assume that an n times continuously differentiable function y :

I → R satisfies the differential inequality

∣
∣F

(
y(n), y(n–), . . . , y′, y, x

)∣∣ ≤ ε ()

for all x ∈ I . If for each function y : I → R satisfying the inequality (), there exists a solu-
tion y : I → R of the differential equation () such that

∣∣y(x) – y(x)
∣∣ ≤ K(ε) ()

for any x ∈ I , where K(ε) depends on ε only and satisfies limε→ K(ε) = , then we say
that the differential equation () satisfies (or has) the Hyers-Ulam stability (or the local
Hyers-Ulam stability if the domain I is not the whole space R). When the above state-
ment also holds even though we replace ε and K(ε) with some appropriate ϕ(x) and �(x),
respectively, then we say that the differential equation () satisfies the generalized Hyers-
Ulam stability (or the Hyers-Ulam-Rassias stability). For a more detailed definition of the
Hyers-Ulam stability, refer to [–].
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Obłoza seems to be the first author who investigated the Hyers-Ulam stability of linear
differential equations (see [, ]): Given real-valued constants a and b, let g, r : (a, b) → R
be continuous functions with

∫ b
a |g(x)|dx < ∞. Assume that ε >  is an arbitrary real num-

ber. Obłoza proved that if a differentiable function y : (a, b) → R satisfies the inequal-
ity |y′(x) + g(x)y(x) – r(x)| ≤ ε for all x ∈ (a, b) and if a function y : (a, b) → R satisfies
y′

(x) + g(x)y(x) = r(x) for all x ∈ (a, b) and y(τ ) = y(τ ) for some τ ∈ (a, b), then there
exists a constant δ >  such that |y(x) – y(x)| ≤ δ for all x ∈ (a, b).

Thereafter, Alsina and Ger [] proved that if a differentiable function y : (a, b) → R satis-
fies the differential inequality |y′(x) – y(x)| ≤ ε, then there exists a function y : (a, b) → R
such that y′

(x) = y(x) and |y(x) – y(x)| ≤ ε for all x ∈ (a, b). This result of Alsina and Ger
was generalized by Takahasi et al. []. Indeed, they proved the Hyers-Ulam stability of the
Banach space valued differential equation y′(x) = λy(x) (see also [–]).

Assume that there exists a monotone one-to-one correspondence τ : I → J , which is n
times continuously differentiable. Let σ : J → I be the inverse of τ . If we make a change
of variable t = τ (x) and define an m times continuously differentiable function z : J → R
by z(t) = y(σ (t)), where m is an appropriate positive integer (possibly m = n), then we can
substitute x = σ (t), y(x) = z(t), and

y(k)(x) =
k∑

i=

ak,iz(i)(t)
k∏

j=

τ (j)(x)bk,j

in () for each k ∈ {, , . . . , n}, where ak,i ∈ N and bk,j ∈ {, , . . . , k}, to reduce the linear
differential equation () to another equation of the form

G
(
z(m), z(m–), . . . , z′, z, t

)
=  ()

defined on J . For this case, an n times continuously differentiable function y : I → R is a
solution of the differential equation () if and only if the function z : J → R is a solution of
the differential equation ().

The main goal of this paper is to prove that the (generalized) Hyers-Ulam stability of the
linear differential equations is invariant under any monotone one-to-one correspondence
which is n times continuously differentiable. In other words, if the differential equation ()
has the (generalized) Hyers-Ulam stability, then the reduced differential equation () also
has the (generalized) Hyers-Ulam stability, and vice versa.

Moreover, we investigate the generalized Hyers-Ulam stability of the linear differential
equation of second order and the Cauchy-Euler equation.

2 Hyers-Ulam stability is invariant
In the following main theorem, we prove that the (generalized) Hyers-Ulam stability of
the linear differential equation of nth order is invariant.

Theorem . Assume that the linear differential equation () defined on I can be reduced
to another differential equation () defined on J via a monotone one-to-one correspondence
τ : I → J which is n times continuously differentiable. If the differential equation () has the
(generalized) Hyers-Ulam stability, so does the reduced differential equation ().
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Proof If the differential equation () has the Hyers-Ulam stability and if an n times con-
tinuously differentiable function y : I → R satisfies the inequality () for all x ∈ I and for
some ε > , then there exists a solution y : I → R of the differential equation () such
that the inequality () holds for any x ∈ I , where K(ε) depends on ε only and satisfies
limε→ K(ε) = .

Since the differential equation () can be reduced from () by using a monotone one-
to-one correspondence τ : I → J and there exists the inverse σ : J → I of τ , if we define
a function z : J → R by z(t) = y(σ (t)), then we can reduce the inequality () to a new in-
equality

∣∣G
(
z(m), z(m–), . . . , z′, z, t

)∣∣ ≤ ε ()

for all t ∈ J . Moreover, if we set z(t) = y(σ (t)), then the inequality () is reduced to

∣∣z(t) – z(t)
∣∣ ≤ K(ε) ()

for all t ∈ J .
Finally, it is obvious that z is a solution of the differential equation () by considering

the last part of the Introduction.
To prove this theorem for the case of generalized Hyers-Ulam stability, we consider the

inequalities

∣∣F
(
y(n), y(n–), . . . , y′, y, x

)∣∣ ≤ ϕ(x)

and

∣
∣y(x) – y(x)

∣
∣ ≤ �(x)

instead of () and (), respectively, where ϕ,� : I → [,∞) are continuous functions. Then
the inequalities () and () are replaced by

∣∣G
(
z(m), z(m–), . . . , z′, z, t

)∣∣ ≤ ψ(t)

and

∣∣z(t) – z(t)
∣∣ ≤ 
(t),

respectively, where ψ := ϕ ◦ σ and 
 := � ◦ σ .
The rest of the proof runs analogously to the first part of this proof. �

By exchanging the roles of the monotone one-to-one correspondence τ : I → J and its
inverse σ : J → I , we can prove a corollary to Theorem ..

Corollary . If the differential equation () has the (generalized) Hyers-Ulam stability,
so does the original differential equation ().
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3 Stability of linear differential equation of second order
Throughout this section, we assume that I is a non-degenerate interval of R. We now
consider the linear inhomogeneous differential equation of the second order

y′′(x) + f (x)y′(x) + g(x)y(x) = r(x), ()

where f , g, r : I → R are given continuous functions. The Hyers-Ulam stability of the differ-
ential equation () has been proved under various additional conditions (see [–]). We
will now investigate the generalized Hyers-Ulam stability of the linear differential equation
() under weaker conditions in comparison with those of [–].

The proof of the following lemma can be found in [], Section ..

Lemma . Assume that the homogeneous differential equation corresponding to (),

y′′(x) + f (x)y′(x) + g(x)y(x) = , ()

has a general solution yh : I → R of the form

yh(x) = cy(x) + cy(x),

where c and c are arbitrary real-valued constants. Then the inhomogeneous linear differ-
ential equation () has a general solution y : I → R of the form

y(x) = cy(x) + cy(x) – y(x)
∫ x

a

y(t)r(t)
W (y, y)(t)

dt + y(x)
∫ x

a

y(t)r(t)
W (y, y)(t)

dt,

where a and a are arbitrarily chosen points of I and

W (y, y)(x) := y(x)y′
(x) – y′

(x)y(x)

is the Wronskian of y and y.

We now investigate the generalized Hyers-Ulam stability of the linear inhomogeneous
differential equation of the second order () in the class of twice continuously differentiable
functions.

Theorem . Let f , g, r : I → R be continuous functions. Assume that the homogeneous dif-
ferential equation () has a general solution yh : I → R of the form yh(x) = cy(x) + cy(x),
where c and c are arbitrary real-valued constants. If a twice continuously differentiable
function y : I → R satisfies the inequality

∣∣y′′(x) + f (x)y′(x) + g(x)y(x) – r(x)
∣∣ ≤ ϕ(x) ()

for all x ∈ I , where ϕ : I → [,∞) is given such that each of the following integrals exists,
then there exists a solution y : I → R of () such that

∣∣y(x) – y(x)
∣∣ ≤ ∣∣y(x)

∣∣
∣
∣∣
∣

∫ x

a

∣
∣∣
∣

y(t)
W (y, y)(t)

∣
∣∣
∣ϕ(t) dt

∣
∣∣
∣ +

∣∣y(x)
∣∣
∣
∣∣
∣

∫ x

a

∣
∣∣
∣

y(t)
W (y, y)(t)

∣
∣∣
∣ϕ(t) dt

∣
∣∣
∣

for all x ∈ I , where a, a are arbitrarily chosen points of I .
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Proof If we define a continuous function s : I → R by

s(x) := y′′(x) + f (x)y′(x) + g(x)y(x) ()

for all x ∈ I , then it follows from () that

∣∣s(x) – r(x)
∣∣ ≤ ϕ(x) ()

for all x ∈ I . In view of Lemma . and (), there exist real-valued constants α and α

such that

y(x) = αy(x) + αy(x)

– y(x)
∫ x

a

y(t)s(t)
W (y, y)(t)

dt + y(x)
∫ x

a

y(t)s(t)
W (y, y)(t)

dt, ()

where a, a ∈ I are arbitrarily chosen and W (y, y)(t) �=  for all t ∈ I because y and y

are linearly independent.
We now define a function y : I → R by

y(x) := αy(x) + αy(x)

– y(x)
∫ x

a

y(t)r(t)
W (y, y)(t)

dt + y(x)
∫ x

a

y(t)r(t)
W (y, y)(t)

dt ()

for each x ∈ I . According to Lemma ., it is obvious that y is a solution of (). Moreover,
it follows from (), (), and () that

∣
∣y(x) – y(x)

∣
∣

=
∣∣
∣∣y(x)

∫ x

a

y(t)
W (y, y)(t)

(
r(t) – s(t)

)
dt + y(x)

∫ x

a

y(t)
W (y, y)(t)

(
s(t) – r(t)

)
dt

∣∣
∣∣

≤ ∣∣y(x)
∣∣
∣
∣∣
∣

∫ x

a

∣
∣∣
∣

y(t)
W (y, y)(t)

∣
∣∣
∣ϕ(t) dt

∣
∣∣
∣ +

∣∣y(x)
∣∣
∣
∣∣
∣

∫ x

a

∣
∣∣
∣

y(t)
W (y, y)(t)

∣
∣∣
∣ϕ(t) dt

∣
∣∣
∣ ()

for any x ∈ I . �

If we set c := a = a in Theorem . and use the equality (), then we obtain the fol-
lowing corollary.

Corollary . Let f , g, r : I → R be continuous functions. Assume that the homogeneous
differential equation () has a general solution yh : I → R of the form yh(x) = cy(x) +
cy(x), where c and c are arbitrary real-valued constants. If a twice continuously dif-
ferentiable function y : I → R satisfies the inequality () for all x ∈ I , where ϕ : I → [,∞)
is given such that the following integral exists, then there exists a solution y : I → R of ()
such that

∣
∣y(x) – y(x)

∣
∣ ≤

∣∣
∣∣

∫ x

c

∣∣
∣∣
y(x)y(t) – y(t)y(x)

W (y, y)(t)

∣∣
∣∣ϕ(t) dt

∣∣
∣∣

for all x ∈ I , where c is an arbitrarily chosen point of I .
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4 Hyers-Ulam stability of Cauchy-Euler equation
In this section, we consider the (inhomogeneous) Cauchy-Euler (differential) equation

xy′′(x) + αxy′(x) + βy(x) = r(x), ()

where α and β are real-valued coefficients and r : (,∞) → R is a differentiable function,
and we will investigate the generalized Hyers-Ulam stability of this differential equation.
Indeed, the generalized Hyers-Ulam stability of the Cauchy-Euler equation () has been
proved under some additional conditions (see [, ]).

By using Theorem . and Corollary ., we prove the generalized Hyers-Ulam stability
of the Cauchy-Euler equation () for the case of (α – ) – β > .

Theorem . If the real-valued constants α and β are given with (α – ) – β > , then the
Cauchy-Euler equation () has the generalized Hyers-Ulam stability. In particular, let c be
a positive real-valued constant and let m, m be the distinct roots of the indicial equation
m + (α – )m + β = , i.e.,

m =
–(α – ) –

√
(α – ) – β


, m =

–(α – ) +
√

(α – ) – β


. ()

If r : (,∞) → R is a differentiable function and y : (,∞) → R is a twice continuously
differentiable function such that the inequality

∣∣xy′′(x) + αxy′(x) + βy(x) – r(x)
∣∣ ≤ ϕ(x) ()

holds for any x ∈ (,∞), where ϕ : (,∞) → [,∞) is a given function such that the fol-
lowing integral exists, then there exists a solution y : (,∞) → R of the inhomogeneous
Cauchy-Euler equation () such that

∣∣y(x) – y(x)
∣∣ ≤ 

m – m

∣
∣∣
∣

∫ x

c

∣
∣∣
∣

(
x
ζ

)m

–
(

x
ζ

)m ∣∣∣
∣
ϕ(ζ )
ζ

dζ

∣
∣∣
∣

for all x ∈ (,∞).

Proof If we define a monotone one-to-one correspondence τ : (,∞) → R by

τ (x) := ln x = t,

then x = et for each t ∈ R. We now define a twice continuously differentiable function
z : R → R by

z(t) := y(x) = y
(
et)

and we get

xy′(x) = x
d

dx
y(x) = x

d
dt

y
(
et) dt

dx
= z′(t),

xy′′(x) = x d
dx

y′(x) = x d
dt

(
e–tz′(t)

) dt
dx

= z′′(t) – z′(t).
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Using these relations, we can reduce the Cauchy-Euler equation () to the linear differ-
ential equation

z′′(t) + (α – )z′(t) + βz(t) = r
(
et). ()

Similarly, the inverse σ : R → (,∞) of τ given by σ (t) := et = x reduces the linear differ-
ential equation () to the Cauchy-Euler equation ().

Furthermore, by Corollary ., the linear differential equation () has the generalized
Hyers-Ulam stability. Therefore, due to Theorem ., the Cauchy-Euler equation () has
the generalized Hyers-Ulam stability.

In fact, as we did for (), we can apply the monotone one-to-one correspondence τ to
reduce the inequality () to

∣∣z′′(t) + (α – )z′(t) + βz(t) – r
(
et)∣∣ ≤ ϕ

(
et) ()

for all t ∈ R. According to () and Corollary . with z(t), α – , β , r(et), ϕ(et), and (ln c)
instead of y(x), f (x), g(x), r(x), ϕ(x), and a, respectively, there exist real-valued constants
c and c such that

z(t) = cemt + cemt

–
emt

m – m

∫ t

ln c
e–mηr

(
eη

)
dη +

emt

m – m

∫ t

ln c
e–mηr

(
eη

)
dη

and

∣∣z(t) – z(t)
∣∣ ≤ 

m – m

∣
∣∣
∣

∫ t

ln c

∣∣em(t–η) – em(t–η)∣∣ϕ
(
eη

)
dη

∣
∣∣
∣

for any t ∈ R.
If we set t = ln x and z(t) = y(x) in the previous equality for z(t) and if we substitute ζ

for eη in the integrals, then we get

y(x) = cxm + cxm –
xm

m – m

∫ x

c

r(ζ )
ζ m+ dζ +

xm

m – m

∫ x

c

r(ζ )
ζ m+ dζ ,

which is a solution of the inhomogeneous Cauchy-Euler equation (). Moreover, if we
set t = ln x, z(t) = y(x), z(t) = y(x), and if we substitute ζ for eη in the integral of the last
inequality for |z(t) – z(t)|, then we obtain the inequality for |y(x) – y(x)| given in the
statement of this theorem. �

If we set ϕ(x) = ε in Theorem ., then we get the following corollary.

Corollary . Assume that the real-valued constants α, β are given with (α – ) – β > 
and ε is an arbitrarily given positive constant. Let c be a positive real-valued constant and
let m, m be given as (). If r : (,∞) → R is a differentiable function and y : (,∞) → R
is a twice continuously differentiable function such that the inequality

∣∣xy′′(x) + αxy′(x) + βy(x) – r(x)
∣∣ ≤ ε ()
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holds for any x ∈ (,∞), then there exists a solution y : (,∞) → R of the inhomogeneous
Cauchy-Euler equation () such that

∣∣y(x) – y(x)
∣∣ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
mm

+ ε
m–m

( 
m

( x
c )m – 

m
( x

c )m ) (for m �=  �= m),
ε

m


(( x
c )m – ) – ε

m
ln x

c (for m = ),
ε

m


(( x
c )m – ) – ε

m
ln x

c (for m = )

for all x ∈ (,∞).

Proof According to Theorem ., there exists a solution y : (,∞) → R of the inhomo-
geneous Cauchy-Euler equation () such that

∣
∣y(x) – y(x)

∣
∣ ≤ 

m – m

∣∣
∣∣

∫ x

c

∣∣
∣∣

(
x
ζ

)m

–
(

x
ζ

)m ∣∣
∣∣
ε

ζ
dζ

∣∣
∣∣

=

⎧
⎨

⎩

ε
m–m

∫ x
c ( xm

ζm+ – xm
ζm+ ) dζ (for c ≤ x),

ε
m–m

∫ c
x ( xm

ζm+ – xm
ζm+ ) dζ (for x < c)

=
ε

m – m

∫ x

c

(
xm

ζ m+ –
xm

ζ m+

)
dζ

for all x ∈ (,∞). We can integrate the last inequality case by case and obtain the inequality
for |y(x) – y(x)|. �

We now consider the case when (α – ) – β =  and use Theorem . and Corollary .
to prove the generalized Hyers-Ulam stability of the inhomogeneous Cauchy-Euler equa-
tion ().

Theorem . If the real-valued constants α and β are given with α �=  and β = (α–)

 , then
the Cauchy-Euler equation () has the generalized Hyers-Ulam stability. In particular, let
c be a positive real-valued constant and let λ = – α–

 . If r : (,∞) → R is a differentiable
function and y : (,∞) → R is a twice continuously differentiable function such that the
inequality

∣∣∣
∣x

y′′(x) + αxy′(x) +
(α – )


y(x) – r(x)

∣∣∣
∣ ≤ ϕ(x) ()

holds for each x ∈ (,∞), where ϕ : (,∞) → [,∞) is a given function such that the fol-
lowing integral exists, then there exists a solution y : (,∞) → R of the inhomogeneous
Cauchy-Euler equation () with β = (α–)

 such that

∣∣y(x) – y(x)
∣∣ ≤

∣
∣∣
∣

∫ x

c

∣
∣∣
∣ln

x
ζ

∣
∣∣
∣

(
x
ζ

)λ
ϕ(ζ )
ζ

dζ

∣
∣∣
∣

for all x ∈ (,∞).

Proof Analogously to the proof of Theorem ., we define a monotone one-to-one corre-
spondence τ : (,∞) → R and a twice continuously differentiable function z : R → R by
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τ (x) = ln x = t and z(t) = y(x) = y(et), respectively. In a similar way to the first part of the
proof of Theorem ., the Cauchy-Euler equation () has the generalized Hyers-Ulam
stability.

In particular, we apply the monotone one-to-one correspondence τ to reduce the in-
equality () to

∣∣
∣∣z

′′(t) + (α – )z′(t) +
(α – )


z(t) – r

(
et)

∣∣
∣∣ ≤ ϕ

(
et)

for any t ∈ R. According to () and Corollary . with z(t), α – , (α–)

 , r(et), ϕ(et), and
(ln c) instead of y(x), f (x), g(x), r(x), ϕ(x), and a, respectively, there exist real-valued con-
stants c and c such that

z(t) = ceλt + cteλt – eλt
∫ t

ln c
ηe–ληr

(
eη

)
dη + teλt

∫ t

ln c
e–ληr

(
eη

)
dη

and

∣∣z(t) – z(t)
∣∣ ≤

∣
∣∣
∣

∫ t

ln c
|t – η|eλ(t–η)ϕ

(
eη

)
dη

∣
∣∣
∣

for all t ∈ R.
If we set t = ln x and z(t) = y(x) in the previous equality for z(t) and if we substitute ζ

for eη in the integrals, then we get

y(x) = cxλ + cxλ ln x – xλ

∫ x

c
(ln ζ )

r(ζ )
ζ λ+ dζ + xλ(ln x)

∫ x

c

r(ζ )
ζ λ+ dζ ,

which is obviously a solution of the inhomogeneous Cauchy-Euler equation () with β =
(α–)

 . Furthermore, if we set t = ln x, z(t) = y(x), z(t) = y(x), and if we substitute ζ for eη

in the integral of the previous inequality for |z(t) – z(t)|, then we get the inequality for
|y(x) – y(x)| described in the statement of the present theorem. �

If we set ϕ(x) = ε in Theorem ., then we obtain the following corollary.

Corollary . Assume that the real-valued constants α and β are given with α �= , β =
(α–)

 and ε is an arbitrarily given positive constant. Let c be a positive real-valued constant
and let λ = – α–

 . If r : (,∞) → R is a differentiable function and y : (,∞) → R is a twice
continuously differentiable function such that the inequality

∣∣
∣∣x

y′′(x) + αxy′(x) +
(α – )


y(x) – r(x)

∣∣
∣∣ ≤ ε

holds for all x ∈ (,∞), then there exists a solution y : (,∞) → R of the inhomogeneous
Cauchy-Euler equation () with β = (α–)

 such that

∣
∣y(x) – y(x)

∣
∣ ≤ ε

λ +
ε

λ

(
x
c

)λ(
ln

x
c

–

λ

)

for all x ∈ (,∞).
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Proof According to Theorem ., there exists a solution y : (,∞) → R of the inhomo-
geneous Cauchy-Euler equation () with β = (α–)

 such that

∣∣y(x) – y(x)
∣∣ ≤

∣
∣∣
∣

∫ x

c

∣
∣∣
∣ln

x
ζ

∣
∣∣
∣

(
x
ζ

)λ
ε

ζ
dζ

∣
∣∣
∣

=

⎧
⎨

⎩

∫ x
c ( x

ζ
)λ(ln x

ζ
) ε
ζ

dζ (for c ≤ x),
∫ c

x ( x
ζ

)λ(ln ζ

x ) ε
ζ

dζ (for x < c)

=
∫ x

c

εxλ

ζ λ+ ln
x
ζ

dζ

=
ε

λ +
ε

λ

(
x
c

)λ(
ln

x
c

–

λ

)

for all x ∈ (,∞). �

We apply Theorem . and Corollary . to prove the generalized Hyers-Ulam stability
of the Cauchy-Euler equation () for the case of (α – ) – β < .

Theorem . If the real-valued constants α and β are given with (α – ) – β < , then
the Cauchy-Euler equation () has the generalized Hyers-Ulam stability. In particular, let
c >  be a given real-valued constant and let

λ = –
α – 


and μ =



√

β – (α – ).

If r : (,∞) → R is a differentiable function and y : (,∞) → R is a twice continuously dif-
ferentiable function such that the inequality () holds for all x ∈ (,∞), where ϕ : (,∞) →
[,∞) is a given function such that the following integral exists, then there exists a solution
y : (,∞) → R of the inhomogeneous Cauchy-Euler equation () such that

∣
∣y(x) – y(x)

∣
∣ ≤ 

μ

∣∣
∣∣

∫ x

c

xλ

ζ λ+

∣∣
∣∣sin

(
μ ln

x
ζ

)∣∣
∣∣ϕ(ζ ) dζ

∣∣
∣∣

for all x ∈ (,∞).

Proof In a similar way to the proofs of Theorems . and ., we conclude that the Cauchy-
Euler equation () has the generalized Hyers-Ulam stability.

Using the monotone one-to-one correspondence τ : (,∞) → R defined by τ (x) = ln x,
we can reduce the inequality () to () and we apply () and Corollary . to verify the
existence of real-valued constants c and c such that

z(t) = ceλt cosμt + ceλt sinμt –
eλt cosμt

μ

∫ t

ln c
e–λη(sinμη)r

(
eη

)
dη

+
eλt sinμt

μ

∫ t

ln c
e–λη(cosμη)r

(
eη

)
dη

and

∣∣z(t) – z(t)
∣∣ ≤ 

μ

∣
∣∣
∣

∫ t

ln c
eλ(t–η)∣∣sinμ(t – η)

∣∣ϕ
(
eη

)
dη

∣
∣∣
∣

for all t ∈ R, where μ > .
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If we set t = ln x and z(t) = y(x) in the previous equality for z(t) and if we substitute ζ

for eη in the integrals, then we get

y(x) = cxλ cos(μ ln x) + cxλ sin(μ ln x)

–
xλ cos(μ ln x)

μ

∫ x

c

sin(μ ln ζ )
ζ λ+ r(ζ ) dζ

+
xλ sin(μ ln x)

μ

∫ x

c

cos(μ ln ζ )
ζ λ+ r(ζ ) dζ ,

which is obviously a solution of the inhomogeneous Cauchy-Euler equation () with
(α – ) – β < . Finally, if we let t = ln x, z(t) = y(x), z(t) = y(x), and if we substitute
ζ for eη in the integral of the inequality for |z(t) – z(t)|, then we obtain the inequality for
|y(x) – y(x)| given in the present theorem. �

If we set ϕ(x) = ε in Theorem ., then we can easily prove the following corollary.

Corollary . Assume that the real-valued constants α and β are given with (α–) –β <
 and ε is an arbitrarily given positive constant. Let c >  be a given real-valued constant
and let

λ = –
α – 


and μ =



√

β – (α – ).

If a differentiable function r : (,∞) → R and a twice continuously differentiable function
y : (,∞) → R satisfy the inequality () for all x ∈ (,∞), then there exists a solution
y : (,∞) → R of the inhomogeneous Cauchy-Euler equation () such that

∣
∣y(x) – y(x)

∣
∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε| 
βμ

( x
c )λ(λ sin(μ ln x

c ) – μ cos(μ ln x
c )) + (–)mx

β
eλ π

μ mx |
+ ε

∑mx
m=


|β| e

λ π
μ (m–)|eλ π

μ + | (for x ≥ c),

ε| (–)mc
βμ

( x
c )λeλ π

μ mc (λ sin(μ ln x
c ) – μ cos(μ ln x

c )) + 
β
|

+ ε
∑mc

m= | 
βμ

( x
c )λeλ π

μ (m–)(λ sin(μ ln x
c ) – μ cos(μ ln x

c ))

× (eλ π
μ + )| (for  < x < c),

where mx and mc are defined in () and ().

Proof According to Theorem ., there exists a solution y : (,∞) → R of the inhomo-
geneous Cauchy-Euler equation () such that

∣∣y(x) – y(x)
∣∣ ≤ ε

μ

∣
∣∣
∣

∫ x

c

xλ

ζ λ+

∣
∣∣
∣sin

(
μ ln

x
ζ

)∣
∣∣
∣dζ

∣
∣∣
∣

=

⎧
⎨

⎩

ε
μ

∫ x
c

xλ

ζλ+ | sin(μ ln x
ζ

)|dζ (for c ≤ x),
ε
μ

∫ c
x

xλ

ζλ+ | sin(μ ln x
ζ

)|dζ (for x < c)
()

for all x ∈ (,∞).
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If  < c ≤ x then we set

γx(m) := xe– mπ
μ and mx :=

[
μ

π
ln

x
c

]
, ()

where [z] denotes the greatest integer not exceeding the given real number z. Then we
have

[c, x] =
[
c,γx(mx)

] ∪
mx⋃

m=

[
γx(m),γx(m – )

]
()

for each x ≥ c. Hence, it follows from () and () that

∣
∣y(x) – y(x)

∣
∣ ≤ ε

μ

∣∣
∣∣

∫ γx(mx)

c

xλ

ζ λ+ sin

(
μ ln

x
ζ

)
dζ

∣∣
∣∣

+
ε

μ

mx∑

m=

∣
∣∣
∣

∫ γx(m–)

γx(m)

xλ

ζ λ+ sin

(
μ ln

x
ζ

)
dζ

∣
∣∣
∣

for any x ≥ c. Moreover, if we substitute η = ln x
ζ

in the above integrals, then we have

∣∣y(x) – y(x)
∣∣

≤ ε

μ

∣
∣∣∣–

∫ π
μ mx

ln x
c

eλη sin(μη) dη

∣
∣∣∣ +

ε

μ

mx∑

m=

∣
∣∣∣–

∫ π
μ (m–)

π
μ m

eλη sin(μη) dη

∣
∣∣∣

= ε

∣∣
∣∣


βμ

(
x
c

)λ(
λ sin

(
μ ln

x
c

)
– μ cos

(
μ ln

x
c

))
+

(–)mx

β
eλ π

μ mx

∣∣
∣∣

+ ε

mx∑

m=


|β|eλ π

μ (m–)∣∣eλ π
μ + 

∣∣

for all x ≥ c.
If  < x < c then we set

γc(m) := ce– mπ
μ and mc :=

[
μ

π
ln

c
x

]
. ()

Then we obtain

[x, c] =
[
x,γc(mc)

] ∪
mc⋃

m=

[
γc(m),γc(m – )

]
()

for any  < x < c. Thus, it follows from () and () that

∣
∣y(x) – y(x)

∣
∣ ≤ ε

μ

∣∣
∣∣

∫ γc(mc)

x

xλ

ζ λ+ sin

(
μ ln

x
ζ

)
dζ

∣∣
∣∣

+
ε

μ

mc∑

m=

∣
∣∣∣

∫ γc(m–)

γc(m)

xλ

ζ λ+ sin

(
μ ln

x
ζ

)
dζ

∣
∣∣∣



Choi and Jung Advances in Difference Equations  (2015) 2015:277 Page 13 of 14

for each  < x < c. Furthermore, if we substitute η = ln x
ζ

in the last integrals, then we have

∣∣y(x) – y(x)
∣∣

≤ ε

μ

∣
∣∣
∣–

∫ π
μ mc+ln x

c


eλη sin(μη) dη

∣
∣∣
∣ +

ε

μ

mc∑

m=

∣
∣∣
∣–

∫ π
μ (m–)+ln x

c

π
μ m+ln x

c

eλη sin(μη) dη

∣
∣∣
∣

= ε

∣
∣∣∣
(–)mc

βμ

(
x
c

)λ

eλ π
μ mc

(
λ sin

(
μ ln

x
c

)
– μ cos

(
μ ln

x
c

))
+


β

∣
∣∣∣

+ ε

mc∑

m=

∣
∣∣
∣


βμ

(
x
c

)λ

eλ π
μ (m–)

(
λ sin

(
μ ln

x
c

)
– μ cos

(
μ ln

x
c

))
(
eλ π

μ + 
)
∣
∣∣
∣

for all  < x < c. �
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