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Abstract
In this paper, by using Nevanlinna value distribution theory, we consider a certain
type of difference equation, which originates with the difference Painlevé I equation,
f (z + 1) + f (z – 1) = A(z)

f (z) + C(z), where A(z), C(z) are small meromorphic functions
relative to f (z), and we obtain the existence and the forms of rational solutions. We
also discuss the properties of the Borel exceptional value, zeros, poles, and fixed
points of finite order transcendental meromorphic solutions.
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1 Introduction
In this paper, a meromorphic function means meromorphic in the whole complex planeC.
We assume that the reader is familiar with the standard symbols and fundamental results
of Nevanlinna theory; see e.g. [, ]. For a meromorphic function f (z), let σ (f ) be the order
of growth of f (z). Further, let λ(f ) (resp. λ(/f )) be the exponent of convergence of the zeros
(resp. poles) of f (z). We also use the notation τ (f ) to denote the exponent of convergence
of fixed points of f (z), which is defined by

τ (f ) = lim
r→∞

log N(r, 
f (z)–z )

log r
.

Moreover, we use the notation degf R(z, f ) for the degree of a rational function R(z, f ) with
respect to f (z), where R(z, f ) is rational in both of its arguments with small functions rel-
ative to f (z) as its coefficients. In what follows F(f ) denotes the field of small functions
relative to f (z).

Halburd and Korhonen [] used ideas related to the singularity confinement test [] in
its proof, and considered a difference equation of type

f (z + ) + f (z – ) = R(z, f ). (.)

The solutions of (.) are called admissible. If (.) has at least one admissible meromor-
phic solution of finite order, they both showed that either f (z) satisfies a difference Riccati
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equation, or (.) can be transformed into a difference Painlevé or a linear equation. Now,
we recall their result.

Theorem .A (Theorem . of []) If the equation

f (z + ) + f (z – ) = R(z, f ),

where R(z, f ) is rational in f (z) and meromorphic in z, has an admissible meromorphic
solution of finite order, then either f (z) satisfies a difference Riccati equation,

f (z + ) =
pf (z) + q
f (z) + p

,

where p, q ∈ F(f ), or (.) can be transformed by a linear change in f (z) into one of the
following equations:

f (z + ) + f (z) + f (z – ) =
πz + π

f (z)
+ κ, (.)

f (z + ) – f (z) + f (z – ) =
πz + π

f (z)
+ (–)zκ,

f (z + ) + f (z – ) =
πz + π

f (z)
+ π, (.)

f (z + ) + f (z – ) =
πz + κ

f (z)
+

π

f (z) , (.)

f (z + ) + f (z – ) =
(πz + κ)f (z) + π

(–)–z – f (z) ,

f (z + ) + f (z – ) =
(πz + κ)f (z) + π

 – f (z) ,

f (z + )f (z) + f (z)f (z – ) = p,

f (z + ) + f (z – ) = pf (z) + q,

where πk ,κk ∈ F(f ) are arbitrary finite order periodic functions with period k.

Recently, due to the difference analog of the lemma on the logarithmic derivative given
by Halburd and Korhonen in [], and Chiang and Feng in [] independently, many authors
focused their interest on the complex difference analogs of Nevanlinna theory and com-
plex difference equations (see [–]). But most of them mainly dealt with the growth of
order of meromorphic solutions of difference equations (see e.g. [, , ]).

Though there are few papers on the existence of finite order meromorphic solution of
difference equations (see [, , , ]), there is only one paper concerning with the exis-
tence of rational solution of difference Painlevé I equation (see []). In this paper, we will
discuss the existence and forms of rational solutions, and investigate the properties on fi-
nite order transcendental meromorphic solutions of a certain type of difference equation
originating with the difference Painlevé I equation.
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2 The existence and forms of rational solutions
Chen and Shon considered the difference Painlevé I equation

f (z + ) + f (z – ) =
az + b
f (z)

+ c (.)

and obtained the following result.

Theorem .A (Theorem  of []) Let a, b, c be constants, where a, b are not both equal to
zero. Then

(i) if a �= , then (.) has no rational solution;
(ii) if a = , and b �= , then (.) has a nonzero constant solution f (z) = A, where A

satisfies

A – cA – b = .

The other rational solution f (z) satisfies f (z) = P(z)
Q(z) + A, where P(z) and Q(z) are relatively

prime polynomials and satisfy deg P < deg Q.

What will happen if we consider a certain type of difference equation originating with
the difference Painlevé I equation (.)? Here, we obtain the following result.

Theorem . Let C be a nonzero constant, and A(z) = m(z)
n(z) be an irreducible rational func-

tion, where m(z) and n(z) are polynomials with deg m(z) = m and deg n(z) = n.
(i) Suppose that m ≥ n and m – n is an even number or zero. If the difference equation

f (z + ) + f (z – ) =
A(z)
f (z)

+ C (.)

has an irreducible rational solution f (z) = P(z)
Q(z) , where P(z) and Q(z) are polynomials

with deg P(z) = p and deg Q(z) = q, then

p – q =
m – n


.

(ii) Suppose that m < n. If the difference equation (.) has an irreducible rational
solution f (z) = P(z)

Q(z) , then

q – p = n – m ≥  or q – p = .

(iii) Suppose that m > n and m – n is an odd number.
Then the difference equation (.) has no rational solution.

Remark . We know that (.), (.), and (.) are difference Painlevé I equations. Why
do we only consider the existence and forms of rational solutions of (.)? We cannot know
the limits of the type  · ∞ when we investigate (.) and (.) by using the same method
below.

Example ., Example ., and Example . show that the difference equations have ra-
tional solutions satisfying Theorem .(i), and Example . and Example . show that the
difference equations have rational solutions satisfying Theorem .(ii).
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Example . The difference equation

f (z + ) + f (z – ) =
z – Cz

f (z)
+ C

has a rational solution f (z) = z, where m = , n = , p = , q = , and p – q =  = m–n
 .

Example . The difference equation

f (z + ) + f (z – ) =
z–Cz+z+C

z–z
f (z)

+ C

has a rational solution f (z) = z + 
z , where m = , n = , p = , q = , and p – q =  = m–n

 .

Example . The difference equation

f (z + ) + f (z – ) =
(–C)z+(+C)z–(–C)z–

z–z+z
f (z)

+ C

has a rational solution f (z) = z+
z– , where C �= , m = n = , p = q = , and p – q =  = m–n

 .

Example . The difference equation

f (z + ) + f (z – ) =
–Cz+z+C

z–z
f (z)

+ C

has a rational solution f (z) = 
z , where C �= , m = , n = , p = , q = , and q – p =  = n – m.

Example . The difference equation

f (z + ) + f (z – ) =
(z+)
z(z–)

f (z)
+ 

has a rational solution f (z) = z+
z– , where m = , n = , p = q = , and q – p = .

Proof of Theorem . Suppose that f (z) = P(z)
Q(z) is a rational solution of (.). Then f (z) can

be written as

f (z) =
P(z)
Q(z)

=
k∑

j=

[ cjλj

(z – zj)λj
+

cjλj–

(z – zj)λj–
+ · · · +

cj

z – zj

]

+ B + Bz + · · · + Bνzν , (.)

where cjλj (�= ), cjλj– , . . . , cj (j = , , . . . , k), and B, B, . . . , Bν are constants, zj (j = , , . . . , k)
are poles of f (z) with multiplicities λj, respectively.
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(i) Suppose that m > n and m – n is an even number. We conclude from (.) and (.)
that

P(z)
Q(z)

[
P(z + )
Q(z + )

+
P(z – )
Q(z – )

]
=

m(z)
n(z)

+ C
P(z)
Q(z)

. (.)

If deg P(z) = p < q = deg Q(z), then P(z)
Q(z) → , P(z+)

Q(z+) → , and P(z–)
Q(z–) →  as z → ∞, while

m(z)
n(z) → ∞ as z → ∞. Thus, (.) is a contradiction.

If deg P(z) = p = q = deg Q(z), then P(z)
Q(z) → a, P(z+)

Q(z+) → a, and P(z–)
Q(z–) → a as z → ∞, where

a is a nonzero constant, while m(z)
n(z) → ∞ as z → ∞. Thus, (.) is also a contradiction.

If deg P(z) = p > q = deg Q(z), then we can assume that Bμ �=  and Bj ≡  ( ≤ μ ≤ ν ,
μ < j ≤ ν). We obtain, by (.), for all sufficiently large z,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (z) = Bμzμ( + o(z–)),
f (z + ) = Bμzμ( + o(z–)),
f (z – ) = Bμzμ( + o(z–)),
A(z) = m(z)

n(z) = Azm–n( + o(z–)),

where A is a nonzero constant. Therefore, we obtain from (.), for all sufficiently large z,

B
μzμ

(
 + o

(
z–)) = Azm–n( + o

(
z–)) + CBμzμ

(
 + o

(
z–)). (.)

Thus, we deduce from (.) that

p – q = μ =
m – n


.

Now we suppose that m = n. So, for all sufficiently large z,

A(z) =
m(z)
n(z)

= A∗( + o
(
z–)),

where A∗ is a nonzero constant.
If deg P(z) = p < q = deg Q(z), then using the same method as above, we get a contradic-

tion.
If deg P(z) = p > q = deg Q(z), using the same method as above, we deduce that, for all

sufficiently large z,

B
μzμ

(
 + o

(
z–)) = A∗ + CBμzμ

(
 + o

(
z–)).

This is a contradiction. Hence,

p – q =  =
m – n


.

From the above, if m ≥ n and m – n is an even number or zero, f (z) = P(z)
Q(z) is a rational

solution of (.), the degree of P(z) and Q(z) satisfy

p – q =
m – n


.
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(ii) Suppose that m < n. Then, for all sufficiently large z, we get

A(z) =
m(z)
n(z)

→ . (.)

If deg P(z) = p > q = deg Q(z), then we can assume that Bμ �=  and Bj ≡  ( ≤ μ ≤ ν ,
μ < j ≤ ν). Using the same method as above, we deduce that, for all sufficiently large z,

B
μzμ

(
 + o

(
z–)) = CBμzμ

(
 + o

(
z–)).

This is a contradiction.
If deg P(z) = p < q = deg Q(z), we conclude from f (z) = P(z)

Q(z) and (.) that

m(z)Q(z)Q(z + )Q(z – ) + Cn(z)P(z)Q(z + )Q(z – )

– n(z)P(z)
[
P(z + )Q(z – ) + P(z – )Q(z + )

]
= . (.)

So, (.) yields

⎧
⎪⎨

⎪⎩

deg n(z)P(z)[P(z + )Q(z – ) + P(z – )Q(z + )] = n + p + q,
deg m(z)Q(z)Q(z + )Q(z – ) = m + q,
deg Cn(z)P(z)Q(z + )Q(z – ) = n + p + q.

Now, we compare the degree of three terms in (.). If m + p + q = m + q, then q – p =
n–m

 . When n – m is an odd number, it is a contradiction obviously. When n – m is an even
number, we conclude that

(n + p + q) – (m + q) =
n – m


>  and (n + p + q) – (n + p + q) =

n – m


> .

This shows that there is only one term –Cn(z)P(z)Q(z + )Q(z – ) in (.) which has the
highest degree. This is also a contradiction. If m + p + q = n + p + q, then q – p = .
This is a contradiction since p < q. If m + q = n + p + q, then q – p = n – m ≥  and
(m + q) – (n + p + q) = q – p ≥ .

If deg P(z) = p = q = deg Q(z), then we may assume that B �=  and Bj =  (j = , , . . . ,ν).
Thus, for all sufficiently large z, we have

⎧
⎪⎨

⎪⎩

f (z) = B( + o(z–)),
f (z + ) = B( + o(z–)),
f (z – ) = B( + o(z–)).

Therefore we obtain from (.) and (.), for all sufficiently large z,

B

(
 + o

(
z–)) = CB

(
 + o

(
z–)).

This means that p = q is possible if

lim
z→∞

P(z)
Q(z)

=
C


.
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Thus, if n < m, then the degrees of P(z) and Q(z) satisfy

q – p = n – m ≥  or q – p = .

(iii) Suppose that n > m and n – m is an odd number, and that (.) has a rational solution
f (z) = P(z)

Q(z) . By the proof in (i), we also get p – q = m–n
 . This is a contradiction. Thus, (.)

has no rational solution. The proof of Theorem . is completed. �

3 Value distribution of finite order meromorphic solutions
Let f (z) be an admissible meromorphic solution of the equation

f (z + ) + f (z – ) =
A(z)
f (z)

+ C(z), (.)

where A(z), C(z) ∈ F(f ). Suppose that there exist k ≥  and α <  such that

n
(
f (z + ) + f (z – )

) ≤ αn
(
r + k, f (z)

)
.

By the method used in Theorem . of [], we see that f (z) is of infinite order of growth.
On the other hand, using similar arguments to those shown in Theorem  of [] and

Proposition  of [], if (.) admits a finite order non-rational meromorphic solution, then
degf R(z, f ) ≤ . The proofs rely heavily on the Valiron-Mohon’ko lemma, which states that

R
(
r, f (z)

)
= degf T

(
r, f (z)

)
+ O(log r).

Now recalling the fact that

T
(
r, f (z ± )

) ≤ ( + ε)T
(
r + , f (z)

)
+ O()

holds for all ε > , if r is sufficiently large, we conclude that

T(r + ) ≥ degf (z) R(z, f (z))
( + ε)

T
(
r, f (z)

)
+ O(log r).

This implies that f (z) is of infinite order unless the degree of R(z, f ) is at most two.
The above facts imply that it is possible that (.) has finite order transcendental mero-

morphic solutions. Thus, we consider (.) and obtain the following.

Theorem . Suppose that the equation

f (z + ) + f (z – ) =
A(z)
f (z)

+ C(z),

where A(z), C(z) ∈ F(f ), admits a finite order transcendental meromorphic solution f (z).
Then:

(i) λ(f ) = λ( 
f ) = σ (f ).

(ii) f (z) has no Borel exceptional value.



Li and Huang Advances in Difference Equations  (2015) 2015:276 Page 8 of 11

(iii) If A(z) �≡ z – zC(z), then the exponent of convergence of fixed points of f (z) satisfies
τ (f ) = σ (f ).

We need some lemmas to prove Theorem ..

Lemma . (Theorem . of []) Let f (z) be a non-constant finite order meromorphic so-
lution of

P
(
z, f (z)

)
= ,

where P(z, f (z)) is a difference polynomial in f (z). If P(z, a) �≡  for a meromorphic function
a ∈ F(f ), then

m
(

r,


f (z) – a

)
= S(r, f ).

Lemma . (Theorem . of []) Let f (z) be a transcendental meromorphic solution of
finite order σ of a difference equation of the form

U(z, f )P(z, f ) = Q(z, f ),

where U(z, f ), P(z, f ), and Q(z, f ) are difference polynomials with all coefficients αλ(z) small
functions as understood in the usual Nevanlinna theory, i.e. T(r,αλ) = O(rσ–+ε) + S(r, f ).
The maximum total degree is degf U(z, f ) = n in f (z) and its shifts, and degf Q(z, f ) ≤ n.
Moreover, we assume that U(z, f ) contains just one term of maximal total degree in f (z)
and its shifts. Then, for each ε > ,

m
(
r, P(z, f )

)
= O

(
rσ–+ε

)
+ S(r, f ),

possibly outside of an exceptional set of finite logarithmic measure.

Lemma . (Theorem . of []) Let f (z) be a meromorphic function with exponent of
convergence of poles λ( 

f ) = λ < +∞, η �=  be fixed, then, for each ε > ,

N
(
r, f (z + η)

)
= N(r, f ) + O

(
rλ–+ε

)
+ O(log r).

Lemma . (Theorem . of []) Suppose that fj(z) (j = , , . . . , n) (n ≥ ) are meromor-
phic functions, and gj(z) (j = , , . . . , n) are entire functions satisfying the following condi-
tions.

()
∑n

j= fj(z)egj(z) = .
() gj(z) – gk(z) are not constants for  ≤ j < k ≤ n.
() For  ≤ j ≤ n,  ≤ h < k ≤ n,

T(r, fj) = o
{

T
(
r, egh–gk

)}
(r → +∞, r /∈ E),

where E ⊂ (, +∞) is of finite linear measure or finite logarithmic measure.
Then fj(z) ≡  (j = , , . . . , n).
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Proof of Theorem . (i) Suppose that f (z) is a finite order transcendental meromorphic
solution of (.). We obtain from (.)

P
(
z, f (z)

)
= f (z)

[
f (z + ) + f (z – )

]
– C(z)f (z) – A(z) ≡ . (.)

We notice that

P(z, ) = –A(z) �≡ .

Thus we deduce from Lemma . and (.) that

m
(

r,

f

)
= S(r, f ).

Therefore,

N
(

r,

f

)
= T(r, f ) + S(r, f ),

and so λ(f ) = σ (f ).
Now we prove λ( 

f ) = σ (f ). By (.), we have

f (z)
[
f (z + ) + f (z – )

]
= C(z)f (z) + A(z). (.)

Set σ (f ) = σ < ∞. Then, by applying Lemma . to (.), we obtain

m
(
r, f (z + ) + f (z – )

)
= O

(
rσ–+ε

)
+ S(r, f ), (.)

possibly outside of an exceptional set of finite logarithmic measure.
On the other hand, we conclude from the Valiron-Mohon’ko lemma and (.) that

T
(
r, f (z + ) + f (z – )

)
= T

(
r,

A(z)
f (z)

+ C(z)
)

= T(r, f ) + S(r, f ). (.)

Hence, we deduce from Lemma ., (.), (.), and the fact λ = λ( 
f ) ≤ σ (f ) = σ < ∞

that

N(r, f ) ≥ N
(
r, f (z + ) + f (z – )

)
+ O

(
rλ–+ε

)
+ O(log r)

= T(r, f ) + O
(
rσ–+ε

)
+ S(r, f ),

possibly outside of an exceptional set of finite logarithmic measure. Therefore, λ( 
f ) = σ (f ).

(ii) Suppose that f (z) is a finite order transcendental meromorphic solution of (.). If
the conclusion does not hold, then there exists a finite value b such that λ(f –b) < σ (f –b) =
σ (f ) < ∞. This shows that there exists σ ∈ N such that σ (f – b) = σ (f ) = σ < ∞. Thus, we
can write f (z) – b in the form

f (z) – b = h(z)edzσ
, (.)



Li and Huang Advances in Difference Equations  (2015) 2015:276 Page 10 of 11

where d �=  is a constant, h(z) is a meromorphic function satisfying

σ (h) < σ (f ) = σ . (.)

We further conclude from (.) that

f (z + ) = b + h(z + )h+edzσ
, f (z – ) = b + h(z – )h–edzσ

, (.)

where

h+ = exp

{
d

σ∑

j=

(
σ

j

)
zσ–j

}
, h– = exp

{
d

σ∑

j=

(–)j
(

σ

j

)
zσ–j

}
. (.)

Now substituting (.) and (.) into (.), we conclude that

h(z)
[
h(z + )h+(z) + h(z – )h–(z)

]
edzσ

+
{

b
[
h(z + )h+(z) + h(z – )h–(z)

]

+
(
d – C(z)

)
h(z)

}
edzσ

+ d – dC(z) – A(z) ≡ . (.)

We now apply Lemma . to (.) to obtain

h(z)
[
h(z + )h+(z) + h(z – )h–(z)

] ≡ . (.)

This is impossible since h(z), h(z + ), h(z – ), h+(z), and h–(z) satisfy (.)-(.). Other-
wise, if (.) holds, then we deduce from (.) and (.) that

f (z) =
A(z)

b – C(z)
.

This is a contradiction since f (z) is transcendental and A(z), C(z) ∈ F(f ).
Hence, together with the result of (i), f (z) has no Borel exceptional value.
(iii) Suppose that f (z) is a finite order transcendental meromorphic solution of (.). Set

g(z) = f (z) – z.

Then g(z) is a finite order transcendental meromorphic function with

σ (g) = σ (f ) < ∞ and τ (f ) = λ(g).

We substitute f (z) = g(z) + z into (.) and obtain

P
(
z, g(z)

)
:=

[
g(z) + z

][
g(z + ) + g(z – )

]

+
(
z – C(z)

)
g(z) + z – zC(z) – A(z)

≡ . (.)
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Since P(z, ) = z – zC(z) – A(z) �≡ , we apply Lemma . to (.) to obtain

N
(

r,

g

)
= T(r, f ) + S(r, f ).

Therefore τ (f ) = λ(g) = σ (f ). The proof of Theorem . is completed. �
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