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1 Introduction
In this paper, we consider the following initial value problem for nonlinear fractional dif-
ferential equation with sequential fractional derivative:

Dy (I°Dy'y(®) [P~ <D y(x) = f (%, y(x)), x>0, @)

¥(0)=bo,  °Dg'y(0) = by, '
where D!, Dj? are Caputo fractional derivatives, 0 < aj,a5 <1, p > 1, by, b; € R and
x%f(x,y) is continuous on [0, +00) X R, 0 < ¢ < ap. When p = 2, the equation in (1.1) be-
comes a sequential fractional differential equation. Here, we follow the definition of se-
quential fractional derivative presented by Podlubny [1]

Dy(x) = D" D" ...D"y(x), meN,, 1.2)

where the symbol DV (i = 1,2,...,m) means the Caputo derivative or the Riemann-
Liouville derivative. It is easy to see that (1.2) is a generalized expression presented by
Miller and Ross in [2].
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Fractional differential equations have been of great interest for the past three decades.
This is due to the intensive development of the theory of fractional calculus itself as well
as its applications. Apart from diverse areas of pure mathematics, fractional differential
equations can be used in modeling of various fields of science and engineering such as
rheology, dynamical processes in self similar, porous media, fluid flows, viscoelasticity,
electrochemistry, control, electromagnetic, and many other branches of science, see [3-8].
Recently, we note that the investigation for fractional differential equations with sequen-
tial fractional derivative has attracted considerable attention of researchers (see [9-19]).
For example, in [9, 10], Baleanu et al. investigated the existence and nonexistence of the
solutions for initial value problem of the following linear sequential fractional differential

equation:
(D‘(’)‘y), +alx)y=0, x>0.

Besides, for a class of nonlinear sequential fractional differential equations with initial
value conditions, the authors [14, 18] considered the existence and uniqueness of solutions
on the local interval.

To the best of our knowledge, there is no paper dealing with the existence and unique-
ness of solutions of sequential fractional differential equations with initial value condi-
tions on [0, +00). In our previous paper [20], we show that the problem (1.1) always has
a local solution for any fixed initial value, and further, maximum interval of existence of
the local solution is actually [0, +00) under certain condition. Now, in this paper, we are
concerned with the existence and uniqueness of solutions of the initial value problem
(1.1). We first establish the local existence and uniqueness of solutions on the local in-
terval by the Banach fixed point theorem, and then extend them to [0, +c0) by using an
inductive method. The main results of this paper are divided into three cases: 1 < p < 2,
p >2 and p = 2. It is worthy of mentioning that due to the singularity of (1.1) in the case
1< p < 2, a growth condition imposed on f is needed to guarantee the existence and
uniqueness of solutions on [0, +c0). In addition, the existence and uniqueness of solu-
tions of ordinary differential equations with p-Laplacian follow as a special case of our
results.

The paper is organized as follows. In Section 2, we present some necessary defini-
tions and preliminary results that will be used in our discussions. The main results and
their proofs are given in Section 3. In Section 4, we give an example to illustrate our re-

sults.

2 Preliminaries
In this section, we introduce some basic definitions and notations (see the monographs [1,
2] for further details) and give several useful preliminary results which are used through-

out this paper.

Definition 2.1 Let o > 0. The Riemann-Liouville fractional integral of a function y :

(0, +00) — R of order « is given by

1

Joy(x) = m

/ x(x - )" y(t)de
0
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provided that the right-hand side is pointwise defined on (0, +00). Here and in what follows
I' is the gamma function.

Definition 2.2 Let o > 0 and 7 be the smallest integer that exceeds «. The Riemann-
Liouville fractional derivative of a continuous function y : (0, +00) — R of order « is given
by

o . 1 i § ¥ _ a1
Diy(x) := 7F(n_a)<dx> /O(x )" y() de

provided that the right-hand side is pointwise defined on (0, +00).

Theorem 2.1 Let 0 < « < 1. Assume that y is such that Ji*y is absolutely continuous. Then

a—1

o Yo _ _ X . 1-a
Jo Doy(x) = y(x) ) Zl_l>r(l)l+]0 y(z), x>0.

Definition 2.3 Let o > 0 and # be the smallest integer that exceeds . The Caputo frac-
tional derivative of a continuous function y: (0, +00) — R of order « is given by

n-1 (k)
o - 5220 o

k=0

provided that the right-hand side is pointwise defined on (0, +00).
We give the definition of solutions for the initial value problem (1.1).
Definition 2.4 A function y is called a solution of (1.1) on [0, +00) if, for any T > 0,
(i) y,°D*y e C([0, T1), “Dy*(|°Dy'yP~>Dy'y) € C((0, T1);
(ii) y satisfies problem (1.1) on (0, 7.

Next, we give several useful preliminary results which will be used in this paper.

Lemma2.1 Let0 < p <« <1.Ifg is a continuous function defined on [0, +00), then f(f(x -
)% Lt Hg(¢) dt is continuous with respect to x in [0, +00).

Proof Let x¢ > 0 and take 8y € (0,xp). For |§| < 89, we have

x0+68 X0
/ (ko +8 —t)* 't g(t)dt — / (ko — )t g(t) dt’
0 0

=

x0+6 X0
/ (ko +8 —1)* 't Hg(t)dt — / (o + 8 —£)* Lt g(t) dt‘
0 0

+

X0 X0
/ (ko +8 —t)* 1t g(t)de - / (ko — )1t g(t) dt‘
0 0

x0+0
/ (ko + 8 —t)* Lt g(t) dt‘

*0

+ / ’ |((xo +8 = )% = (w0 —£)* ")t g (t)| dt. (2.1)
0
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Since g is continuous and bounded in the neighborhood of xy, we conclude that

x0+6
/ (ko + 8 —t)* Lt g(t) dt‘

X0
x0+8 ¢ a-1
/ (1 - > tH dt’
%0 Xo + 1)

1
/ (1-z)* 1z dz‘

0/(x0+3)

< Clxo +8)*

< Clxo + 8"

80(
<C—; (2.2)
oxg

and

/ B |((o +8 = )" = (%o — )" ")t #g(t)| dt
0

Hxg+6 -l
<Cxg " / ( - z> —(1-2*"!
0 X0
1 1+8/x¢ S a-1
/ 1-2)%1z*dz - / <1 +— - z> 7% dz
0 0 X0
1+8/x9 8 a-1
+/ (1+——z> z*dz
1 X0
1 1+8/x9 S a-1
/ (1-2)*'z*dz - / (1 +— = z) z*dz
0 0 X0
1+8/x0 $ a-1
/ <1+ ——z) (z-1)"dz
1 X0

z *dz

= Cx%H
= Cx,

<Cxy "

a-p
+ Cx

I'(oe)I'(1- s \** s\
§fo§_“M 1-(1+— +| = , (2.3)
Flo+1-p) X0 X0
where C = supg_,_ ,s, |€(®)|. Combining (2.1), (2.2) with (2.3), we arrive at
x0+8 *0
Slin% f (ko +8 —1)* Mt Hg(t)dt - / (w0 —)* 7 g(t) dt‘ =0.
—YJo 0
In addition, it is easy to see that
X
/ e g(t) dtl < Cx*H,
0
Therefore, fox (x — £)*Lt7#g(¢) dt is continuous with respect to x in [0, +00). O

Remark 2.1 Let y € C([0, +00)). Then x°f(x, y(x)) is continuous on [0, +00). According to
Lemma 2.1, the function

1
I (o)

J2F (6, y(@)) = /0 (6= %27 (,5(0)) dt

is also continuous with respect to x in [0, +00) and J3*£(0,y(0)) = 0.
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The equivalence between the initial value problem (1.1) and an integral equation is es-

tablished in the following lemma. For the convenience of the readers, we list some special

notations that will be used in this paper: g = p%l and @,(s) = |s|9 s for s € R.

Lemma 2.2 A function y is a solution of problem (1.1) if and only if it satisfies the following
integral equation:

1 X
_ _ -1
y(x) = bo + T o) /0 (x -0y ()dt, x>0, (2.4)
where

— 1 * _ -1
(py(x) = ¢q (¢p(b1) + T (arz) ‘/(; (x-1) f(t,y(t)) dt)

Proof First we prove the necessity. Let y € C([0, T]) be a solution of problem (1.1) and
define

2) = [*DPy () |2 DYy(x),

then g € C([0, T']) and g(0) = ¢,(b1). According to Definition 2.3 and Theorem 2.1, the
differential equation of problem (1.1) can be transformed into the following form:

£ (%y(x)) = DJy** (g - £(0)) (x).

Obviously, ]é_” (g—2(0)) is absolutely continuous on [0, T']. Combining with Theorem 2.1,

we have

g(x) =g(0) + Jg>“Dg’g(x)
= (b)) + 162 () ().

That is,
Dy y(x) = ¢q(¢p (1) +J5°f (-, 5()) ().
Applying Definition 2.3 and Theorem 2.1 again, we have
D y(@) = DIy (¥ = () ).
Obviously, ]é_al(y - y(0)) € CY([0, T]). Combining with Theorem 2.1, we have

y(x) = 9(0) + J§ D3 (y - 9(0)) ()
= 5(0) + S D y(x)
= by +Jo' @y (%).

Therefore, y satisfies the integral equation (2.4).
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Next, we prove the sufficiency. Let y € C([0, T]) be a solution of the integral equation
(2.4). Combined with Definition 2.1, equation (2.4) reduces to

y(x) = bo + ] Dy(x). (2.5)

From Remark 2.1, we see that J5' @, € C([0, T]) and J§' @,(0) = 0. That is, y € C([0, T]) and
9(0) = bo. Applying the operator °D*! to both sides of equation (2.5), we obtain that

Dy y(x) = Dj (bo + ]! y(x))
=D3J! Dy(x)

=Dy (x).

Then we have °Dgy € C([0, T]) and “D§y(0) = &,(0) = b;. By virtue of g, we transform the
above equation into the following form:

) = (b)) + 12 f () (). (2.6)
Similarly, applying the operator D“ to the both sides of equation (2.6), we arrive at
D (D5 @)D ) =£ (1 9@),

Therefore, y is a solution of (1.1) on [0,7]. Summing up, we complete the proof of
Lemma 2.2. g

Corollary 2.1 Assume that by, by > 0 and f(x,y) > 0 for (x,y) € (0,+00) x R. Let y be a
solution of problem (1.1), then y(x) > b, for x > 0.

3 Main results
In this section, we present the main results of this paper. The following lemma will play a
very important role in the proofs of the main results.

Lemma 3.1 Leto,R > 0. For any fixed constant C > 0, there exist numbers 0 =ty <t; <ty <
.-+ <ty =R such that forall i € {0,1,...,N — 1} and all x € [t;,R],

min{x,£41}
C f (x—2)*tdt <
t

N =

Proof The proof is divided into two cases: « >1and 0 <« < 1.
Case (i). If & > 1, we take k = supg.;—, (% — £)*1, N = [2kCR] + 1 and ¢; = iR/N for
i=0,1,...,N. Then, for x € [t;, R], we have

min{x,¢i41} tisl
C / (x-p*tdt<cC / (x—p)*tde
t ¢

<kC(ti1 - t;)

= kCR/IN

1
5

=
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Case (ii). If 0 < < 1, we take N > [R(2C/a)V*] +1 and t; = iR/N for i = 0,1,...,N. On

the one hand, for x < ¢;,;, we have

min{x,ti41}
8(x) := C/ (x—)*tdt
t,

i

= C/ (x—t)* L det
L,

i

C(R\"
()
1

3

IA

IA

On the other hand, for x > t;,1, we have

min{x,£.1} Liv1
8(x) = C/ (x—t)*tdt = C/ (x—t)*tde.
¢ ¢

i i

Since o —1 < 0, then
8(x) <8(ti1) <172, x>t
This completes the proof of Lemma 3.1. 0

Firstly, we consider the existence and uniqueness of solutions when 1 < p < 2.

Proposition 3.1 Suppose that 1 < p <2 and there exists a constant L > 0 such that

If (@, 31) = f(,90) | < ébﬁ -2l 3.1)

Jfor (x,91), (x,¥2) € (0,00) X R, where 0 < o < ay. Then, for any fixed K > 0, there exists a suf-
ficiently small constant T* such that the integral equation (2.4) has a solution in C([0, T*]).

Proof For any given positive constant K, choose T* > 0 sufficiently small which will be

determined later. Let

Urs i) = iy e C([0,T*]); sup |y(x) - byl 51(},

0<x<T*

Obviously, U+ is a closed, convex and nonempty subset of C([0,T*]). On this set
U+ k) we define the operator S,

1 X
=by+ —— -4l (¢) dt, ,
Sy(x) 0+F(a1)/o(x t) y(B)dt, x>0
where

1 X
(py(x) = ¢q (¢p(bl) + m /(; (x— t)“z_lf(t,y(t)) dt)
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It is easy to see that Sy € C([0, T*]) for any y € U+ k). Furthermore, for x € [0, T*], we
have

’Syx) bo ‘F( )/(x—t)“l_ldﬁy(t)dt‘

/(x p- 1¢q(|b = MT*,KF(l—a)taz_a>dt

_F( 1) 'y —0 +1)
T+ Mrsx (1~ -l
< T (it Mracl 020 e} T
'l+a) 'y —0 +1)
where
My = sup 27| (x,9)]-

x€[0,T*],ye[bo—K,bo+K]

Now we can choose T* > 0 small enough such that

T* Mo (1 - 71
I (gt Mk TA=0) oo\ e (3.2)
'l+ow) I'(ay—0o +1)

Then Sy € U(r+ k), that is, the operator S maps the set U7+ k) into itself.
In what follows, we will show that the operator S has a unique fixed point in U+ ). Let
us recall Lemma 3.1, where we take

sk
R=T% o=,

2L(g -1 (1-0)T*° My (1 - q-2
_ (g-1)Irdl-o) by Pty MK ( G)T*az_g
')l (ay—o0 +1) 'y —0 +1)

and
N =max{[2CR], [R2C/a)""]} +1

Then we have N points ; = iT*/N and N sets U, x), i =1,2,...,N. The proof will be com-
pleted by applying the Banach fixed point theorem in U, x), i = 1,2,...,N, respectively.
We first concentrate on the interval [0, £;]. For y1,y2 € Uy, k) and ¢ € [0, 1], we have

@y, (2) = @y, ()]
1 t
= |pg (q&p(bl) + m/ (t - s)“zflf(s,yl(s)) ds)
¢q<¢p by) + ) f 5) lf 5:3/2( ))d )

_ * — -2
< 2g-1) by P + wT*O‘Z—”
I () Iy —-o0+1)

X /0 (t—s)t [f(s,yl (5)) —f (s,22(5)) | ds

-2
- 2L(g-1)TI'(1-0) by P71 4 My I'(1-0) oo 7 (020
I'(ay—0 +1) oy -0 +1)
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x sup [y(t) - y2(0)]

te[0,6]

< CI'(c1) sup |y(t) - ()]

te[0,t]

By Lemma 3.1, it follows that

1 X
|Sy1(x) = Sya ()| < Ty fo (x = )17 @y, (£) — Dy, (1)] de

<C | (x-t)“tdt sup |y1(x) - (x)|
0

x€[0,t1]

1
=5 sup [»(@) -y

x€[0,¢1]

Since this inequality holds uniformly for all x € [0, £;], we deduce

’

sup [$110) — y20)] = = sup [y16) — 92(®)
xel0,4] 2 xelo)
which implies that the operator S is a contraction mapping on Uy, k). According to the
Banach fixed point theorem, S has a unique fixed point in U, x). Then equation (2.4) has
aunique solution in U, ), which is denoted by y. Next, we need to extend this existence
and uniqueness result from [0, #;] to [0, £5]. We will do this in an inductive manner, using
our result for the first interval [0, £;] as the basis. Thus we assume that the claim holds on
[0, ;] for some i, that is, (2.4) has a unique solution y in U, k), and we shall prove that if
i <N, (2.4) also has a unique solution ™V in U, x) and ¥ = yi*D for x € [0, #;]. Define
the set

E= {y € C([toytm]);)’ € Ug;,,. 10,y (%) =y (x),x € [to,ti]}'

Obviously, E is a closed and convex subset of C([Zo, t;;1]) and S maps E into itself. Proceed-

ing in a way that is very similar to our approach above, for y,y, € E, we see that

1 ¥ a;—1
916 = 20| < 1 /0 (= 11|, (1) — @, (1) dt

SC/O (x—t)tde sup |y1(x)—y2(x)|.

x€[0,t41]

Combining with Lemma 3.1 and noting that y; (x) = y2(x) when 0 < x < ¢;, we deduce

sup |Sy1(x)—5y2(x)| < sup |y1(x)—yz(x)

1
x€[0,t;41] 2 x€[0,t;41] ’

which implies that the operator S is a contraction mapping on E. According to the Banach
fixed point theorem, S has a unique fixed point in E, which is denoted by y*!. Then equa-
tion (2.4) has a unique solution Y in Uy, x) and ¥ (x) = y™*V(x) for x € [0,¢;]. There-
fore, by induction, the operator S has a unique fixed point y™) in Uz~ k), that is, ™) is the

unique solution of (2.4) in U(r+ k). The proof of Proposition 3.1 is completed. 0
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Remark 3.1 Obviously, the solution of (2.4) obtained in Proposition 3.1 is unique in the
set U(T*,K)-

From inequality (3.2), we see that M7« ¢ has an important impact on 7* and K. As a
result, if there exist some specific growth conditions on M7+ x with respect to 7* and K,
the solution obtained in Proposition 3.1 can be extended to C([0, +00)).

Theorem 3.1 Suppose that the conditions of Proposition 3.1 hold and there exist ¢;,¢c; > 0
and pu € [0,p — 1) such that

1
[f(x,9)| < ;(cl +olyl"), ()€ (0,00) xR, (3.3)
where 0 < o < ay, then problem (1.1) has a unique solution in C([0, 00)).

Proof It suffices to prove that problem (1.1) has a unique solution in C([0, T"]) for any fixed
T’ > 0. Since u € [0, p — 1), there exists a sufficiently large constant K77 > 0 such that

) Tay—o+1) [(K'T(+1)\'™ -
a1+ ca(1bol +K)" < i _ZG)TWZ_U (( T/all — by P

for any K’ > K. By virtue of (3.3), we have

My g = sup 27 |f(x,9)]
xe[0,T"]yelbo—K" by +K']

<c+c sup Fils
yelbo—K',bp+K']

<c +c(lbol +K')"

- I'oy—o0 +1) K'T(o;+1) p71—|b1|p’1 .
r(1-o)T— T

That is,

0] - _ q-1
T (gt Mo FA=0) o) T _ g
I'l+a) I'(oy—0 +1)

According to Proposition 3.1 and Remark 3.1, where we take 7% = 7" and K = K, problem
(1.1) has a unique solution in Uz k). Since K’ can be chosen arbitrarily large, the solution
is actually unique in C([0, T"]). So we complete the proof of Theorem 3.1. O

Corollary 3.1 Suppose that 1 < p <2, by,by > 0 and f(x,y) > 0 for (x,y) € (0,00) x R.

Moreover, if (3.1) and (3.3) hold for (x,y) € (0,00) x [by, +00), then problem (1.1) has a
unique positive solution in C([0, 00)).

Proof Following the proofs of Proposition 3.1 and Theorem 3.1 and replacing U7+ k) by
U7+ 1), where

Ulps ) = {y e C([0,T*]);bo < sup y(x) <bo+ K},

0<x<T*

we see that problem (1.1) has a unique positive solution in C([0, 00)). (|
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Secondly, we consider the existence and uniqueness of solutions when p > 2.

Theorem 3.2 Suppose that p > 2, by #0 and b,f(x,y) > 0 for (x,y) € (0,00) x R. If there
exists a constant L > 0 such that (3.1) holds in (0,00) x R, then problem (1.1) has a unique
solution in C([0, 00)).

Proof Tt suffices to prove that problem (1.1) has a unique solution in C([0, T']) forany T > 0.
Similar to Theorem 3.1, we define the operator S by

1 X
Sy(x) = by + —— -9 le (1)dt, x>0,
5(x) °+r<a1)f0(" e, dr, x=
where

1 X
D,(x) = P, (qﬁp(bl) + T /0 (x— t)“z’lf(t,y(t)) dt).

It is easy to see that Sy € C([0, T]) if y € C([0, T]). Let us recall the points ¢; (i = 1,2,...,N)
of Lemma 3.1, where we take

R:T, o =0,

 (p-DLI(-0)T
b2 () (o — 0 +1)

and
N =max{[2CR], [R2C/a)"*]} + 1.

Similar to Theorem 3.1, in what follows, we shall show that the operator S has a unique
fixed point in C([0, T]) by applying an inductive manner. We first concentrate on the in-
terval [0, t1]. For any y1,y2 € C([0, £1]), it is easy to see that

(¢p(b1) + ﬁ /0 @ -7 (t(0) dt)
1 ¥ any—1
x <¢p(b1) + m/o (= %27 (t,92(2)) dt) >0, 0=<x=<u4.
Then we have

(@5, (2) = @y, ()]

1 ! ay—1
o <¢p(b1) + T o) /0 (t-s) f(s,y1 (s)) ds)

1 ! an—1
4, (¢p<b1) s /0 (=9 (5.92(5)) dr)’

q-1

1 ! ap—1
BB+ 1 /o (6= 9 f (s, 1(5)) ds

q-1

1 ! op—1
30+ fo (=9 (5,72(5)) ds
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ap—1
|b1|p ZF(aZ)/ (=97 f(s,21(9)) —f (s,92(5))| ds
B |b1|p72F(a2)/0 (=927 |y(s) = y2(s)| ds

(p-DLI(1-0)T
< su (t) = y2(2)|.
b1 2T (@ — o +1) te[tof,iﬂ'” (0]

Furthermore, according to Lemma 3.1, we obtain that

|Sy1(x)—Sy2(x)| T )/ (x— t)all|q)y1(t) ¢y2(t)|dt

EC/() (x—t)7tde sup ’yl(x)—yz(x)’

x€(to.t1]
1

<= sup |[y(x) -y
2 x€(to,f1]

Since this inequality holds uniformly for all x € [0, #], we deduce

sup |Sy1 () — Sy, (x)|
x€(0,t1] x€[0,t1]
which implies that the operator S is a contraction mapping on C([0, t1]). According to the
Banach fixed point theorem, S has a unique fixed point in C([0, #;]), which is denoted by y.
Thus, y is a unique solution of (2.4) in C([0,#]). Applying an inductive manner similar
to that in the proof of Theorem 3.2, we obtain that y € C([0, T']) is a unique solution of
problem (1.1). Summing up, we complete the proof of Theorem 3.2. O

Finally, we consider the existence and uniqueness of solutions when p = 2.

Theorem 3.3 Suppose that p = 2. If there exists a constant L > 0 such that (3.1) holds in
(0,00) x R, then problem (1.1) has a unique solution in C([0, 00)).

Proof The proof is similar to that of Theorem 3.2, and we omit the details here. g

4 Example

To illustrate our main results, we present an example here.

Example 4.1 Consider the following initial value problem for nonlinear fractional differ-

ential equation:

Dy (1°Dy°y(x)1P Dy °y(x)) = f (%, 9(x)), x>0,

¥(0)=0,  °DJ%y(0) =1, (4.1)

where p > 1 and f(x,y) = x (1 + siny). If there exists a solution ¥, then y(x) > 0 for x > 0
by noting f(x,y) > 0 for (x,y) € (0, +00) x R. It is easy to see that we have

[f @, 1) = f (&, 32)| = 27| siny1 — sinys| <x7%|y1 - 32|
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for (x, y1), (%, ¥2) € (0,00) x [0, 00). Besides, when 1 < p < 2, we have
[fe,)| = 570%(1 + siny) <x7*°(1 + ")
for (x,y) € (0,00) x [0,00), where p € (0,p —1). According to Theorem 3.1, Theorem 3.2

and Theorem 3.3, problem (4.1) has a unique positive solution. Meanwhile, by a simple
computation, we have an estimate of increasing rate
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