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Abstract
The Lax equation is introduced on a time-space scale. The viscous Burgers and the
nonlinear Schrodinger dynamic equations on a time-space scale are deduced from
the Lax equation by using the Ablowitz-Kaup-Newel-Segur-Ladik method. It is shown
that the Burgers equation turns to the heat equation on a time-space scale by the
Cole-Hopf transformation. Further, using the separation of variables, we deduce the
formula for solutions of the boundary value problem for the heat and Burgers
equation on a time-space scale in terms of Fourier series by Hilger exponential
functions.
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1 Introduction
In  Lax [] introduced the linear operator equation equivalent to the nonlinear
Korteweg-de Vries (KdV) equation that describes the traveling solitary waves. The im-
portance of Lax’s observation is that any equation that can be cast into such a framework
may have remarkable properties of the KdV equation, including the integrability and an
infinite number of local conservation laws. Lax equation may be used to generate other
nonlinear dynamic equations with the properties mentioned above.

There are several other methods to generate the integrable hierarchy of nonlinear
dynamic equations: Ablowitz-Kaup-Newel-Segur (AKNS) method [], Gelfand-Dickey
method [], Ablowitz-Kaup-Newel-Segur-Ladik (AKNSL) method [], which is the ex-
tension of AKNS method on difference equations. Other nonlinear dynamic equations
are studied in [–].

In [] Hilger introduced the time scale calculus that unifies continuous and discrete
analysis.

The papers [–] are the first articles dedicated to KdV-like dynamic equations on time
scales. In [] the notion of regular-discrete time scale was introduced (see Section ). Also
in [] some KdV-like equations on a regular-discrete space scale were deduced by using
the Gelfand-Dickey method.
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Let T and X be arbitrary nonempty closed subsets of real numbers. The sets T, X are
called the time and space scales correspondingly. The set T × X = {(t, x), t ∈ T, x ∈ X} we
call the time-space scale.

In [] soliton-like equations on a regular-discrete time-space scale were obtained by
using the AKNSL method.

In this paper we extend the Lax matrix equation on a time-space scale dynamic system.
From this equation we deduce the viscous Burgers (see (.) below) and the nonlinear
Schrodinger dynamic equations on a time-space scale by using the AKNSL method.

We expect that this extension will give a wider range of integrable nonlinear dynamic
equations that could be used in modeling.

We show that the Burgers equation on a time-space scale can be linearized by using
the Cole-Hopf transformation. We also derive the formulas for solutions of the boundary
value problem for the Burgers equation (see (.) and the heat equation on a time-space
scale. These formulas are pretty simple and may be used to study the wave motion on a
time-space scale.

2 Basic notations from the time scale calculus
For t ∈ T and x ∈X, we define backward jump operators σ (t) : T → T, ρ(x) : X →X

σ (t) := sup{s ∈ T : s < t}, ρ(x) := sup{y ∈X : y < x}. (.)

For x ∈X, we define the forward jump operator β(x) : X →X by

β(x) := inf{y ∈X : y > x}. (.)

The graininess functions μ(t) : T→ [,∞), ν(x),α(x) : X → [,∞) are defined as

μ(t) = t – σ (t), ν(x) = x – ρ(x), α(x) = β(x) – x. (.)

We are considering nabla time and space derivatives [] instead of delta derivatives []
since in physics the applications of nabla derivatives by time variable are casual.

If T has a right-scattered minimum m, define Tκ := T – {m}; otherwise, set Tκ = T.
For v : T → R and t ∈ Tκ , define the nabla derivative [] of v at t, denoted by v∇t (t),

to be the number (provided it exists) with the property that given any ε > , there is a
neighborhood U of t such that |v(ρ(t)) – v(s) – v∇t (t)[ρ(t) – s]| ≤ ε|ρ(t) – s| for all s ∈ U .
For T = R, we have v∇t (t) = vt(t), the usual derivative, and for T = Z, we have the backward
difference operator v∇t (t) := v(t) – v(t – ).

In the same way one can define the nabla derivative v∇x (x) by space (x) variable.
We are going to use the following denotations:

w(t)(t, x) := w∇t (t, x) = lim
s→t

w(s) – w(σ (t))
s – σ (t)

, (.)

w(x)(t, x) = w∇x (t, x) := w∇x (x) = lim
y→x

w(y) – w(ρ(x))
y – ρ(x)

, (.)

where

f ρ(t, x) := f
(
t,ρ(x)

)
, f σ (t, x) := f

(
σ (t), x

)
.
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In view of the assumption that μ(t) depends only on time variable and ν(x) depends only
on space variable, we have

μ(x)(t) = ν(t)(x) = , f σρ(t, x) = f ρσ (t, x) := f
(
σ (t),ρ(x)

)
.

Lemma . If the functions f (t, x), μ(t), ν(x) are twice nabla differentiable, then

f (tx)(t, x) = f (xt)(t, x), f ρt(t, x) = f tρ(t, x). (.)

For the proof of this lemma, see [].
Frequently we are going to use the product and the quotient rules (see [])

(
f (t, x)g(t, x)

)(t) = f (t)(t, x)g(t, x) + f σ (t, x)g(t)(t, x),
(

f (t, x)
g(t, x)

)(t)

=
f (t)(t, x)g(t, x) – f (t, x)g(t)(t, x)

gσ (t, x)g(t, x)
,

(
f (t, x)g(t, x)

)(x) = f (x)(t, x)g(t, x) + f ρ(t, x)g(x)(t, x),
(

f (t, x)
g(t, x)

)(x)

=
f (x)(t, x)g(t, x) – f (t, x)g(x)(t, x)

gρ(t, x)g(t, x)
.

(.)

We say that a function θ (·, x) : T → R is t-regressive provided θ (·, x) is ld-continuous and
 – μ(t)θ (t, x) �=  holds for all t ∈ T and all x ∈ X. We say that a function θ (t, ·) : X → R is
x-regressive provided θ (t, ·) is ld-continuous and  – ν(x)θ (t, x) �=  holds for all t ∈ T and
all x ∈X.

If θ (t, x) is t-regressive, the nabla t-exponential function êθ (t, t, x) on a time scale T can
be defined as the unique solution of the initial value problem (see [, ])

ê(t)
θ (t, t, x) = θ (t, x)êθ (t, t, x), êθ (t, x, x) = . (.)

If θ (t, x) is x-regressive, the nabla x-exponential function êθ (t, x, x) on a space scale X is
defined similarly as the unique solution of the initial value problem

ê(x)
θ (t, x, x) = θ (t, x)êθ (t, x, x), êθ (t, x, x) = . (.)

Note that

f ρ(t, x) = f (t, x) – ν(x)f (x)(t, x), f σ (t, x) = f (t, x) – μ(t)v(t)(t, x). (.)

3 Lax equation
Consider the nabla dynamic systems

v(x)(t, x) = M(t, x)v(t, x), M(t, x) =

(
M(t, x, z) M(t, x)
M(t, x) M(t, x, z)

)

, (.)

v(t)(t, x) = N(t, x)v(t, x), N(t, x) =

(
A(t, x) B(t, x)
C(t, x) D(t, x)

)

, (.)
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where v(t, x) =
( v(t,x)

v(t,x)
)

and Mkj(t, x, z), k, j = , , are the functions that may depend on the
spectral parameter z as well.

We derive the Lax equation as the compatibility condition of two linear dynamic systems
(.), (.).

From (.), (.) by differentiation and usage of the product rule we get

v(xt) = M(t)v + Mσ v(t) =
(
M(t)v + Mσ N

)
v,

v(tx) = N (x)v + Nρv(x) =
(
N (x)v + NρM

)
v.

Here and further we often suppress (t, x) or (t, x, z) variables to shorten the formulas.
By equating the mixed derivatives v(xt) = v(tx), we get the Lax matrix equation

N (x)(t, x) + Nρ(t, x)M(t, x, z) = M(t)(t, x, z) + Mσ (t, x, z)N(t, x), (.)

or in component form

A(x) + AρM + BρM = M(t)
 + Mσ

A + Mσ
C,

C(x) + CρM + DρM = M(t)
 + Mσ

A + Mσ
C,

B(x) + AρM + BρM = M(t)
 + Mσ

B + Mσ
D,

D(x) + CρM + DρM = M(t)
 + Mσ

B + Mσ
D.

(.)

In view of Aρ = A – ν(x)A(x), Aσ = A – μ(t)A(t), we get

A(x)( – ν(x)M
)

+ BρM – Mσ
C = M(t)


(
 – μ(t)A

)
,

D(x)( – ν(x)M
)

+ CρM – Mσ
B = M(t)


(
 – μ(t)D

)
,

C(x)( – ν(x)M
)

+ C
(
M – Mσ


)

+
(
Dρ – A

)
M = M(t)


(
 – μ(t)A

)
,

B(x)( – ν(x)M
)

+ B
(
M – Mσ


)

+
(
Aρ – D

)
M = M(t)


(
 – μ(t)D

)
.

Choosing

M(t, x, z) = Q(t, x), M(t, x, z) = R(t, x),

we have

A(x)( – ν(x)M
)

+ BρR – Qσ C = M(t)


(
 – μ(t)A

)
,

D(x)( – ν(x)M
)

+ CρQ – Rσ B = M(t)


(
 – μ(t)D

)
,

C(x)( – ν(x)M
)

+ C
(
M – Mσ


)

+
(
Dρ – A

)
R = R(t)( – μ(t)A

)
,

B(x)( – ν(x)M
)

+ B
(
M – Mσ


)

+
(
Aρ – D

)
Q = Q(t)( – μ(t)D

)
.

(.)

From this system one can derive numerous nonlinear equations with respect to the func-
tions Q(t, x), R(t, x) that may have the properties of Korteweg-de Vries equation (indepen-
dence of the spectral parameter on time, infinite number of conservation laws, integrabil-
ity) by taking the spectral expansions N =

∑m
k=–m Nkzk .
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In a continuous time scale μ(t) = , Mσ (t, x) = M(t, x) system (.) is simplified as fol-
lows:

A(x)( – νM) = Mt + QC – BρR,

D(x)( – νM) = Mt + RB – QCρ ,

C(M – M) = R
(
A – Dρ

)
– C(x)( – νM) + R(t),

B(M – M) = B(x)( – νM) – Q
(
D – Aρ

)
– Q(t).

(.)

If both time scale and space scale are continuous, that is, T = R, X = R, ν(x) = μ(t) ≡ ,
system (.) is further simplified, and we get the system of Lax equations introduced in
[]:

Ax = Mt + QC – BR, Dx = Mt + RB – QC,

C(M – M) = R(A – D) – Cx + Rt , B(M – M) = Q(A – D) + Bx – Qt .

4 Burgers equation on a time-space scale
The viscous Burgers equation occurs in mathematical models of gas dynamics, traffic flow,
the flow through a shock wave traveling in a viscous fluid, and some probabilistic models
[, ].

To derive a time-space scale version of the Burgers equation, consider the Lax equation
(.) in the scalar case (A = A, B = C = D = R = Q = M ≡ )

A(x)
 (t, x)

(
 – ν(x)M(t, x, z)

)
= M(t)

 (t, x, z)
(
 – μ(t)A(t, x)

)
. (.)

By choosing

M(t, x, z) = F(t, x)z + F(t, x),

we get

A(x)
 (t, x)

(
 – ν(x)F(t, x)z – ν(x)F(t, x)

)

=
(
F (t)

 (t, x)z + F (t)
 (t, x)

)(
 – μ(t)A(t, x)

)
, (.)

or, assuming that z is an arbitrary spectral parameter that does not depend on time t, we
get

A(x)


(
 – ν(x)F

)
= F (t)


(
 – μ(t)A

)
, –A(x)

 ν(x)F = F (t)


(
 – μ(t)A

)
,

or

ν(x)A(x)


( – μ(t)A)
=

ν(x)F (t)


 – νF
= –

F (t)


F
, F (t)

 ( – νF) + νF (t)
 F = .

Using the quotient differentiation rule on a time scale

(
F

F

)(t)

=
F (t)

 F – F (t)
 F

Fσ
 F

,
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we get

F (t)
 + ν(x)

(
F (t)

 F – F (t)
 F

)
= ,

F (t)


Fσ
 F

+ ν(x)
(

F

F

)(t)

= ,

(
ν(x)F

F
–


F

)(t)

= ,
ν(x)F – 

F
= C = constant,

F (t)
 =

 – ν(x)F

 – μ(t)A
A(x)

 .

Choosing

F(t, x) :=
F(t, x)

p , A =
A
p ,

A(t, x) := F(t, x) +
(
p – ν(x)F(t, x)

)
F (x)(t, x),

(.)

we get the Burgers equation on a time-space scale

F (t)(t, x) =
p – ν(x)F(t, x)
p – μ(t)A(t, x)

A(x)(t, x), (.)

where A(t, x) is given in (.) and p is a viscosity constant coefficient.
In a continuous time scale T = R, μ(t) ≡ , we get the equation

Ft(t, x) =
(
 – νF(t, x)/p)(F(t, x) +

(
p – ν(x)F(t, x)

)
F (x)(t, x)

)(x). (.)

Note that the Burgers equation (.) on a space scale first was introduced in [].
If both time scale and space scale are continuous, that is, T = R, X = R, ν(x) = μ(t) ≡ ,

(.) turns to the classical Burgers equation []

Ft(t, x) =
(
F(t, x) + pFx(t, x)

)
x. (.)

To linearize (.), consider the Cole-Hopf transformation

F(t, x) =
pv(x)(t, x)

v(t, x)
. (.)

By using the quotient rule we have

F (x) =
v(xx)v – v(x)v(x)

vρv
p, F (t) =

v(xt)v – v(x)v(t)

vσ v
p,

 –
ν(x)
p F =  – ν(x)

vx

v
=

vρ

v
,

A = F +
(
p – ν(x)F

)
F (x) =

(pv(x))

v +
pvρ

v
· v(xx)v – v(x)v(x)

vρv
=

pv(xx)

v
,

and if

vt(t, x) = pv(xx)(t, x), (.)
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then

A =
pv(xx)

v
=

pv(t)

v
,  –

μ

p A =  – μ
v(t)

v
=

vσ

v
,

and in view of

vσ

(
v(x)

v

)(t)

= vρ

(
v(t)

v

)(x)

,

equation (.)

F (t) =
vρ

vσ
A(x)

turns to the identity

(
pv(x)

v

)(t)

=
vρ

vσ

(
pv(t)

v

)(x)

.

So if v(t, x) satisfies the heat equation (.), then F(t, x) = pv(x)(t,x)
v(t,x) satisfies the Burgers

equation (.).
Consider the initial value problem for the heat equation on a time-space scale

v(t)(t, x) = pv(xx)(t, x), v(t, x) = ϕ(x), x ∈X, t, t ∈ T. (.)

One can solve (.) by looking for a solution in a product form (the separation or Fourier
method [])

v(t, x) = T(t)X(x).

By the substitution in (.) and the separation of variables, we get

T (t)(t)
T(t)

=
pX(xx)(x)

X(x)
= –λ = const,

T(t) = ê–λ (t, t), X(x) = K(λ)êiλ/p(x, x) + K(λ)ê–iλ/p(x, x),

where K(λ), K(λ) are independent of (t, x), ê–λ (t, t) and ê±iλ/p(x, x) are the nabla expo-
nential functions on T and X correspondingly.

Thus v(t, x,λ) = ê–λ (t, t)K(λ)êiλ/p(x, x) satisfies (.).
Since equation (.) is linear, it satisfies the superposition principle, that is, a linear com-

bination of solutions is a solution (see []).
By the superposition principle the solution of (.) may be written in the form (see [])

v(t, x) =
∫ ∞

–∞
K(λ)ê–λ (t, t)êiλ/p(x, x) dλ. (.)

From the initial condition v(t, x) = ϕ(x) we get

ϕ(x) =
∫ ∞

–∞
K(λ)êiλ/p(x, x) dλ. (.)
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So the formal solution of the initial value problem (.) is given by (.), where K(λ) is
the solution of the integral equation (.).

Consider the initial value problem for Burgers equation

F (t)(t, x) =
p – ν(x)F(t, x)
p – μ(t)A(t, x)

A(x)(t, x), F(t, x) = f (x), (.)

where A(t, x) = F(t, x) + (p – ν(x)F(t, x))F (x)(t, x).
From the initial condition

f (x) = F(t, x) =
pv(x)(t, x)

v(t, x)
=

pϕ(x)(x)
ϕ(x)

we get

ϕ(x) = êf /p (x, x), x ∈X.

By substitution (.) into (.) we obtain the representation of solutions of the Burgers
equation on a time-space scale

F(t, x) =
∫ ∞

–∞ iλpK(λ)ê–λ (t, t)êiλ/p(x, x) dλ
∫ ∞

–∞ K(λ)ê–λ (t, t)êiλ(x, x) dλ
, (.)

where K(λ) may be found by inversion of the Fourier transformation

êf /p (x, x) =
∫ ∞

–∞
K(λ)êiλ/p(x, x) dλ. (.)

Note that the inversion of a Fourier transformation on some time scales was studied in
[, ], but there is no inversion formula for an arbitrary time (space) scale.

Consider the boundary value problem

v(t, x) = ϕ(x), v(x)(t, x) = v(x)(t, b) = , x, b, x ∈X, t, t ∈ T, (.)

for heat equation (.) on a time-space scale.
Introducing Bohner-Peterson’s trigonometric functions on a space scale X (see [, ,

])

sinλ/p(x, x) =
êiλ/p(x, x) – ê–iλ/p(x, x)

i
,

cosλ/p(x, x) =
êiλ/p(x, x) + ê–iλ/p(x, x)


,

and using the method of separation of variables v(t, x) = T(t)X(x), one can rewrite the
solutions of pXxx + λX(x) =  in the form

X(x) = C sinλ/p(x, x) + C cosλ/p(x, x), p,λ ∈R. (.)

From the boundary conditions (.) we get

C = , sinλ/p(b, x) = . (.)
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In the case ν(x) =  the boundary condition turns to

sin
(
λ(b – x)/p

)
= ,

which is satisfied if

λ = �k :=
–πk

b – x
, k ∈ Z,ν(x) = , (.)

and the solution of (.), (.) is given by the classical Fourier series formula

v(t, x) =
∞∑

k=

Bk cos
(
�k(x – x)/p

)
ê–�

k
(t, t), (.)

B =


b – x

∫ b

x

v(t, x) dx,

Bm =


b – x

∫ b

x

v(t, x) cos
(
�m(x – x)

)
dx, m = , , . . . . (.)

Lemma . If ν(x) >  and

λk = –
p tan(K)

ν(x)
=

ip(eiK – )
ν(eiK + )

,

K =
kπν

b – x
, a = –

ieiK

ν(x)
sin(K), k ∈ Z,

(.)

then

êa(b, x) = , sinλk /p(b, x) = ,
∫ b

x

êa(x, x)∇x = . (.)

Note that using L’Hospital’s rule one can prove

lim
ν→

λk = �k =
–πk

b – x
, lim

ν→
a =

–ikπ

b – x
, lim

ν→
êa(b, x) = ea(b–x) = .

Proof Indeed, if ν > , we have

a = –
ieiK

ν(x)
sin(K) =

 – eiK

ν(x)
,

êa(b, x) = exp
∫ b

x

lim
q↘ν(y)

Log( – aq)
–q

∇y = exp
∫ b

x

Log( – aν(y))
–ν(y)

∇y

= exp
∫ b

x

iK∇y
–ν(y)

= exp

(∫ b

x

–ikπ

b – x
∇y

)
∇x = exp(–kiπ ) = ,

and since

iλk

p + iλkν
=

 – eiK

ν
= a,
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we get

êiλk /p(b, x)
ê–iλk /p(b, x)

= êiλk /(p+iλkν)(b, x) = êa(b, x) = ,

and

sinλk /p(b, x) =
êiλk /p(b, x) – ê–iλk /p(b, x)

i
= ,

∫ b

x

êa(x, x)∇x =
êa(x, x)

a

∣∣
∣
b

x
=

êa(b, x) – 
a

= . �

Remark . To obtain the formula for coefficients Bk on an arbitrary space scale similar
to the remarkable formula (.) on a continuous space scale, it would be interesting to
extend the orthogonality of the exponential functions on the unit circle to Hilger expo-
nential functions, but we do not think it is possible.

Indeed, if M = mπν
b–x

, we have on an arbitrary space scale (ν(x) > )


b – x

∫ b

x

ê(–ei(K–M))/ν(x, x)∇x = δkm =

⎧
⎨

⎩
, k = m,

, k �= m,

but this property does not imply the orthogonality of Hilger exponents as we have for usual
exponential functions eikπ (x–x)/(b–x), e–imπ (x–x)/(b–x):


b – x

∫ b

x

eikπ (x–x)/(b–x)e–imπ (x–x)/(b–x) dx = δkm, k, m ∈ Z.

So the second condition (.) is satisfied if the eigenvalues λk are chosen as in (.),
and the formal solution of the boundary value problem (.), (.) is given by Fourier
series formula with Bohner-Peterson’s trigonometric functions

v(t, x) =
∞∑

k=

Bk cosλk /p(x, x)ê–λ
k
(t, t), (.)

and Bk could be found from the initial condition

ϕ(x) =
∞∑

k=

Bk cosλk /p(x, x). (.)

Consider the boundary value problem

F(t, x) = f (x), F(t, x) = F(t, b) = , t, t ∈ T, x, x ∈X (.)

for the Burgers equation (.).
By substitution (.) into (.) we get the representation of solutions of boundary value

problem (.), (.)

F(t, x) = –
p
∑∞

k= λkBk sinλk /p(x, x)ê–λ
k
(t, t)

∑∞
k= Bk cosλk /p(x, x)ê–λ

k
(t, t)

, (.)
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where the numbers Bk may be found from the initial condition

êf /p (x, x) =
∞∑

k=

Bk cosλk /p(x, x), (.)

since by taking t = t in (.), we get

f (x) =
pϕ(x)(x)

ϕ(x)
, ϕ(x) = êf /p (x, x).

Example . Consider the case X = hZ. From (.) we get

λ = λk = –
p
h

tan

(
khπ

b – x

)
, k = , , , . . . , N .

Since b–x = Nh, where N is some natural number, we have the finite numbers of different
λk , that is,  ≤ k < N .

By taking x = xm, m = , , . . . , N – , we get the linear system with respect to unknown
numbers Bk

ϕ(xm) =
N–∑

k=

Bk cosλk /p(xm, x), m = , , , . . . , N – .

Remark . The formal formulas (.), (.), (.), (.) have sense if the Fourier
integrals or series are convergent. In the case X = nZ the sums in (.) and (.) are
finite and there is no need to prove the convergence.

It would be interesting to figure out for which class of functions ϕ(x) the series (.),
(.) are convergent for an arbitrary space scale. This could be a topic of a separate paper.

Note that to prove the convergence similar to the classical harmonic analysis in an arbi-
trary space scale, one needs to use the following properties:

() boundedness of the functions cos(λk(x – x)/p), ê–λ
k
(t, t).

() limk→∞ λk = ∞.
() The space scale analogue of formula (.).
Note that property () may be proved, but property () is not true since from (.)

limk→∞ λk does not exist in the case ν(x) > .

To compare with the classical case, consider the continuous space scale X = R. In this
case if ϕ(x) ∈ L(R) and ϕ(x) is continuous on R, (.) turns to the usual Fourier transfor-
mation, and using the inverse transformation we get from (.)

K(λ) =


π

∫ ∞

–∞
ϕ(y)e– iλ

p (y–x) dy =


π

∫ ∞

–∞
e


p

∫ y
x

f (x′) dx′– iλ
p (y–x)

dy. (.)

So in the continuous space scale by substitution (.) into (.) we get the following
formula for the solution of (.):

v(t, x) =


π

∫ ∞

–∞
ϕ(y)

∫ ∞

–∞
e

iλ
p (x–y)ê–λ (t, t) dλdy, t ∈ T, x ∈R, (.)
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and the formula for a solution of (.)

F(t, x) = p ∂

∂x
ln

(∫ ∞

–∞
exp

(


p

∫ y

x

f
(
x′)dx′

)(∫ ∞

–∞
e

iλ
p (x–y)ê–λ (t, t) dλ

)
dy

)
, (.)

where t ∈ T, x ∈ R.
If both time and space scales are continuous, that is, T = R, X = R, formula (.) may

be further simplified (we choose here t = ) as follows:

v(t, x) =


π

∫ ∞

–∞
ϕ(y)

(∫ ∞

–∞
e

iλ
p (x–y)–tλ

dλ

)
dy.

In view of

∫ ∞

–∞
e

iλ
p (x–y)–tλ

dλ =
√

π

t
exp

(
–

(x – y)

pt

)
,

we get the Poisson formula for a solution of the initial value problem (.)

v(t, x) =



√

tπ

∫ ∞

–∞
ϕ(y) exp

(
–

(x – y)

pt

)
dy.

Furthermore, one can get the well-known formula for the solution of initial value problem
for the classical viscous Burgers equation

F(t, x) = p ∂

∂x
ln

(



√

tπ

∫ ∞

–∞
exp

(


p

∫ y

x

f
(
x′)dx′ –

(x – y)

pt

)
dy

)
,

or

F(t, x) = p ∂

∂x
ln

(∫ ∞

–∞
exp

(


p

∫ y

x

f
(
x′)dx′ –

(x – y)

pt

)
dy

)
, t ∈R, x ∈R. (.)

Choosing f (x) = sech(x), x = , in view of

∫ y


sech(x′)dx′ = tanh(y),

we get

F(t, x) = p ∂

∂x
ln

(∫ ∞

–∞
exp

(


p tanh(y) –
(x – y)

pt

)
dy

)

F(t, x) =

t

(∫ ∞
–∞ y exp( 

p tanh(y) – (x–y)

pt ) dy
∫ ∞

–∞ exp( 
p tanh(y) – (x–y)

pt ) dy
– x

)
.

(.)

Note that to study the behavior of solutions of the Burgers equation, one may visualize the
graphs of (.).
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5 Nonlinear Schrodinger equation on a space scale
Choose in (.)

M(t, x, z) = F(t, x)z + F(t, x), M(t, x, z) = G(t, x)z + G(t, x), z(t) = ,

Mt(t, x, z) = Ft(t, x)z + Ft(t, x), Mt(t, x, z) = Gt(t, x) + zGt(t, x),
(.)

and consider the spectral expansion

A(t, x) = A(t, x)z + A(t, x)z + A(t, x), B(t, x) = B(t, x)z + B(t, x),

C(t, x) = C(t, x)z + C(t, x), D(t, x) = D(t, x)z + D(t, x)z + D(t, x).
(.)

Denoting

Ãj = Aj(t, x) – Dρ
j (t, x), D̃j = Dj(t, x) – Aρ

j (t, x), j = , , ,

F̃j = Fj(t, x) – Gj(t, x), j = , ,

we get from (.)

(
Az + Az + A

)(x)( – νFz – νF)

=
(
F (t)

 z + F (t)


)(
 – μAz – μAz – μA

)
+ Qσ (Cz + C) – R(Bz + B)ρ ,

(
Dz + Dz + D

)(x)( – νGz – νG)

=
(
G(t)

 z + G(t)


)(
 – μDz – μDz – μD

)
+ Rσ (Bz + B) – Q(Cz + C)ρ ,

(Cz + C)(x)( – νFz – νF) + (Cz + C)
[(

F – Gσ

)
z + F – Gσ


]

= R(t)( – μAz – μAz – μA
)

– R
[(

Dρ
 – A

)
z +

(
Dρ

 – A
)
z + Dρ

 – A
]
,

(Bz + B)(x)( – νGz – νG) + (Bz + B)
[(

G – Fσ

)
z + G – Fσ


]

= Q(t)( – μDz – μDz – μD
)

– Q
[(

Aρ
 – D

)
z +

(
Aρ

 – D
)
z + Aρ

 – D
]
.

By equating the terms next to the powers of parameter zk , k = , , , , we get

–νFA(x)
 = –μAF (t)

 ,

( – νF)A(x)
 – νFA(x)

 = –μAF (t)
 – μAF (t)

 ,

( – νG)D(x)
 – νGD(x)

 = –μDG(t)
 – μDG(t)

 ,

–νFC(x)
 + C

(
F – Gσ


)

+
(
Dρ

 – A
)
R = –μAR(t),

–νGB(x)
 + B

(
G – Fσ


)

+
(
Aρ

 – D
)
Q = –μDQ(t),

( – νF)A(x)
 – νFA(x)

 = ( – μA)F (t)
 – μAF (t)

 + Qσ C – RBρ
 ,

( – νG)D(x)
 – νGD(x)

 = ( – μD)G(t)
 – μDG(t)

 + Rσ B – QCρ
 ,

( – νF)C(x)
 – νFC(x)

 +
(
F – Gσ


)
C +

(
F – Gσ


)
C =

(
A – Dρ


)
R – μAR(t),

( – νG)B(x)
 – νGB(x)

 +
(
G – Fσ


)
B +

(
G – Fσ


)
B =

(
D – Aρ


)
Q – μDQ(t),

( – νF)A(x)
 = ( – μA)F (t)

 + Qσ C – RBρ
,
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( – νG)D(x)
 = ( – μD)G(t)

 + Rσ B – QCρ
 ,

( – μA)R(t) = ( – νF)C(x)
 + C

(
F – Gσ


)

+ R
(
Dρ

 – A
)
, (.)

( – μD)Q(t) = ( – νG)B(x)
 + B

(
G – Fσ


)

+ Q
(
Aρ

 – D
)
. (.)

Considering the continuous time scale case T = R, μ(t) ≡  and choosing

F(t, x) = , G(t, x) = , F(t, x) = G(t, x), (.)

we get

A(x)
 = D(x)

 = A(x)
 = D(x)

 ≡ , (.)

Cρ
 = RÃ, B = QÃ, νA(x)

 = RBρ
 – QC, RB – QCρ

 = , (.)

Cρ
 = RÃ – ( – νF)Cx

 , B = QÃ + ( – νF)Bx
 = QÃ + Ã( – νF)Qx, (.)

A(x)
 =

F (t)
 + QC – RBρ


 – νF

, D(x)
 =

F (t)
 + RB – QCρ


 – νF

, (.)

Rt = ( – νF)C(x)
 + R

(
Dρ

 – A
)
, Qt = ( – νF)B(x)

 + Q
(
Aρ

 – D
)
. (.)

In the case ν(x) =  from (.)-(.) we have

C = RÃ, B = QÃ, C = RÃ – RxÃ, B = QÃ + QxÃ

A = –RQÃ, D = –A = RQÃ

and the evolution equations (.) on a space scale

Rt = Cx – RA, Qt = Bx + QA

turn to the nonlinear system for unknown potentials (see []) R(t, x), Q(t, x)

Rt = RxÃ – Ã
(
Rxx – RQ

)
, Qt = QxÃ + Ã

(
Qxx – QR

)
, t ∈R, x ∈R. (.)

Considering the case ν(x) > , from (.) we get

C(x)
 (t, x) =

C(t, x)
ν(x)

–
R(t, x)Ã

ν(x)
, C(t, x) = –Ã

∫ x

x

ê/ν
(
x,ρ(y)

)R(t, y)∇y
ν(y)

, (.)

where the variation of a parameter formula (see []) is used for the solution of the first
order dynamic equation on a space scale.

Further from (.) we get

Cρ
 (t, x) = C(t, x) – ν(x)Cx

(t, x) = RÃ – ( – νF)
C – RÃ

ν
, (.)

RB – QCρ
 = R

[
QÃ + Ã( – Fν)Qx] – Q

[
RÃ – ( – νF)

C – RÃ

ν

]
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= Ã( – Fν)R
(
Qx – Q/ν

)
+ ( – Fν)

QC

ν
=

( – Fν)
ν

[
QC – RQρÃ

]
,

QCρ
 – RB =

 – νF

ν

[
ÃRQρ – QC

]
. (.)

From (.)

C(x)
 (t, x) =

C

ν
+

( – νF)C

ν –
( – νF)Ã + νÃ

ν R, (.)

C(t, x) =
∫ x

x

ê/ν
(
x,ρ(y)

)( ( – νF)C(t, y)
ν(y)

–
( – νF)Ã + νÃ

ν(y)
R(t, y)

)
∇y. (.)

Further

νA(x)
 = RBρ

 – QC = R
(
B – νBx


)

– Q
(
Cρ

 + νCx

)

= –νRBx
 – νQCx



= –νRQxÃ – Q(C – RÃ) = ÃR
(
Q – Qxν

)
– QC,

νA(x)
 = ÃRQρ – QC = ÃRQρ + QÃ

∫ x

x

ê/ν
(
x,ρ(y)

)R(t, y)∇y
ν(y)

.

(.)

Otherwise

QC – RBρ
 = Q

(
Cρ

 + νCx

)

– R
(
B – νBx


)

= ν
(
QCx

 + RBx

)

+ QCρ
 – RB,

QC – RBρ
 = ν

(
QCx

 + RBx

)

+
 – νF

ν

[
ÃRQρ – QC

]
,

D(x)
 =

F (t)
 + RB – QCρ


 – νF

=
F (t)


( – νF)

–

ν

[
ÃRQρ – QC

]
,

A(x)
 =

F (t)
 + QC – RBρ


 – νF

=
F (t)

 + ν(QCx
 + RBx

)
 – νF

+

ν

[
ÃRQρ – QC

]
,

νA(x)
 =

νF (t)
 + ν(QCx

 + RBx
)

 – νF
+ ÃRQρ – QC.

(.)

For the consistency of this expression and (.), we assume that F satisfies

F (t)
 (t, x) = –ν(x)

(
Q(t, x)C(x)

 (t, x) + RB(x)
 (t, x)

)
. (.)

Then

A(x)
 (t, x) + D(x)

 (t, x) =
F (t)

 (t, x)
 – ν(x)F(t, x)

,

and

D(x)
 (t, x) =

∫ x

x

Ft(t, y)∇y
 – ν(y)F(t, y)

– A(t, x). (.)
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By direct calculations from (.)

F (t)
 = –QC + QRÃ +


ν

( – νF)RQÃ – ( – νF)
QC

ν

– νRQxÃ – νRÃ
[
( – νF)Qx]x

= RÃQρ – QC – ( – νF)
QC

ν
+ ÃR

[
 – Fν

ν
Q – ν

(
( – νF)Qx)x

]
,

F (t)
 = RÃQρ – QC – ( – νF)

QC

ν
+ ÃR

[
 – Fν

ν
Qρ + ( – νF)ρQ(x)ρ

]
,

or

F (t)
 (t, x) = ÃQρR + ÃR

[
 – νF

ν
Qρ + ( – νF)ρQ(x)ρ

]
–

Cν + ( – νF)C

ν
Q. (.)

Since (.) is the first order linear partial integro-differential equation with variable co-
efficients with respect to F(t, x), one may prove the existence of a solution by using the
linear theory.

Evolution nonlinear equations (.) on a space scale

Rt(t, x) = ( – νF)Cx
 – R

(
A + Aρ

 – (A + D)ρ
)
,

Qt(t, x) = ( – νF)Bx
 + Q

(
Aρ

 – D
)
,

under the assumption that the solution F(t, x) of (.) exists, become

Rt(t, x) = ( – νF)C(x)
 – RA + νA(x)

 R + R
∫ ρ(x)

x

Ft∇x
 – νF

,

Qt(t, x) = ( – νF)
[
QÃ + ( – νF)Q(x)Ã

]x

+ Q
(

A – νA(x)
 –

∫ x

x

Ft(t, y)∇x
 – ν(y)F(t, y)

)
.

(.)

In view of (.) we have

Rt(t, x) =
( – νF(t, x))

ν(x)

(
C(t, x) – R(t, x)Ãν +

(
 – νF(t, x)

)C(t, x) – R(t, x)Ã

ν(x)

)

–
(

A(t, x) – ÃR(t, x)Qρ(t, x) + Q(t, x)C(t, x) –
∫ ρ(x)

x

Ft(t, y)∇y
 – ν(y)F(t, y)

)

× R(t, x), (.)

where C(t, x), C(t, x) are given by (.), (.).

6 Nonlinear Schrodinger equation on a regular-discrete space scale
In this section we simplify equations (.), (.) under additional assumption that the
backward jump operator ρ(x) is invertible.



Hovhannisyan et al. Advances in Difference Equations  (2015) 2015:289 Page 17 of 19

A space scale X is called regular-discrete [] if the following two conditions are satisfied
simultaneously:

ρ
(
β(x)

)
= x, β

(
ρ(x)

)
= x for all x ∈X,

where ρ and β are the backward and forward jump operators, respectively. From this def-
inition ρ is invertible for the regular-discrete space scale X and ρ– = β .

Set x∗ = min X if there exists a finite min X, and x∗ = –∞ otherwise. Also set x∗ = max X
if there exists a finite max X, and x∗ = –∞ otherwise.

Lemma . [] A space scaleX is regular-discrete if and only if the following two conditions
hold:

() The point x∗ is right-dense and the point x∗ is left-dense.
() Each point of X – {x∗, x∗} is either two-sided dense or two-sided scattered.

In particular, R, hZ, and Kq are regular-discrete space scales.
Let us derive a nonlinear Schrodinger equation on a space scale assuming that the space

scale X is regular-discrete.
Note that the system of evolution nonlinear equations obtained in [] has sense only

on the regular-discrete space scales.
From (.)-(.) we have

C = RβÃ, B = QÃ, νA(x)
 = RBρ

 – QC = –νÃ
(
RβQ

)(x),

Cρ
 = RÃ – ( – νF)Cx

 ,
(.)

or

Cρ
 = RÃ – Ã( – νF)Rβ(x), B = QÃ + ( – νF)QxÃ. (.)

Since

RB – QCρ
 = ( – νF)Ã

(
RQx + QRβ(x)) = ( – νF)Ã

(
QRβ

)(x),

QC – RBρ
 = Q

(
Cρ

 + νCx

)

– R
(
B – νBx


)

= ν
(
QCx

 + RBx

)

– ( – νF)Ã
(
QRβ

)(x),

from (.), assuming (.) is true, we get (.) and

A(x)
 =

F (t)
 + ν(QC(x)

 + RB(x)
 )

 – νF
– Ã

(
QRβ

)(x), A(x)
 = –Ã

(
QRβ

)(x).

Further from (.) we get the linear partial differential equation with respect to unknown
function F(t, x):

Ft(t, x) = νÃ
(
Q

[
Rβ(x)β( – νF)β

](x) – R
[
Q(x)( – νF)

](x)) – νÃ
(
Rβ(x)Q + Q(x)R

)
,

or

Ft(t, x) = ν
(
ÃQRβ(x)β( – νF)β – ÃRβQ(x)( – νF) – ÃQRβ

)(x). (.)
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In view of (.)

A(t, x) – D(t, x) = A(t, x) –
∫ x

x

Ft(t, y)∇y
 – ν(y)F(t, y)

,

A(t, x) = –ÃRβ (t, x)Q(t, x),

A(t, x) – Dρ
(t, x) = A – D + νD(x)

 = A – D + ν

(
Ft

 – νF
– A(x)



)
,

A(t, x) – Dρ
(t, x) = A(t, x) – νA(x)

 (t, x) –
∫ x

x

Ft(t, y)∇y
 – ν(y)F(t, y)

+
νFt(t, x)

 – νF(t, x)
.

Further

Rt = ( – νF)Cx
 – R

(
A – Dρ


)
, Qt = ( – νF)Bx

 + Q
(
Aρ

 – D
)
,

Qt = ( – νF)
[
QÃ + ( – νF)Q(x)Ã

]x + AQ – QνA(x)
 – Q

∫ x

x

Ft

 – νF
∇x,

and we get the following nonlinear system of dynamic equations on a space scale:

Rt(t, x) = ( – νF)
[
RÃ – ( – νF)Rβ(x)Ã

]β(x) + ÃQRβR

– R
(

νÃ
(
Rβ(x)Q

)(x) –
∫ x

x

Ft∇y
 – νF

+
νFt

 – νF

)
, t ∈R, x ∈X, (.)

Qt(t, x) = ( – νF)
[
QÃ + ( – νF)Q(x)Ã

]x

+ Q
(

νÃ
(
Rβ(x)Q

)(x) – ÃQRβ –
∫ x

x

Ft

 – νF
∇x

)
, t ∈R, x ∈X. (.)

In a special case Ã = , we get more simple equations

Rt(t, x) = –Ã( – νF)
[
( – νF)Rβ(x)(t, x)

]β(x) – νÃ
(
RβQ

)(x)R(t, x)

+ ÃRβRQ(t, x)

+ R(t, x)
∫ x

x

Ft(t, y)∇y
 – νF(t, y)

–
ν(x)RFt(t, x)
 – νF(t, x)

, t ∈R, x ∈X, (.)

Qt(t, x) = Ã( – νF)
[
( – νF)Q(x)]x

+ ÃνQ
(
RβQ

)(x) – ÃRβQ – Q
∫ x

x

Ft(t, y)∇y
 – νF

, t ∈R, x ∈X, (.)

where

Ft(t, x) = Ãν
(
QRβ(x)β( – νF)β – RβQ(x)( – νF)

)(x). (.)

Note that in the case T = R, X = R we have F(t, x) ≡ , and both equations (.) turn
to the same equation

Qt(t, x) = Qx(t, x)Ã + Qxx(t, x)Ã – ̃A
∣∣Q(t, x)

∣∣Q(t, x) (.)
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under the assumption

Re[Ã] = Re[Ã] = Im[Ã] = , Q(t, x) = –R(t, x).

Furthermore, if Ã = , Ã = –i, equation (.) turns to the nonlinear Schrodinger equa-
tion

iQt(t, x) = Q(xx)(t, x) –
∣∣Q(t, x)

∣∣Q(t, x). (.)
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