
Han and Wang Advances in Difference Equations  (2015) 2015:333 
DOI 10.1186/s13662-015-0628-y

R E S E A R C H Open Access

On extinction of infectious diseases for
multi-group SIRS models with saturated
incidence rate
Qixing Han1 and Zhigang Wang2,3*

*Correspondence:
wangzg2003205@163.com
2School of Mathematical Sciences,
Harbin Normal University, Harbin,
150500, P.R. China
3College of Mathematics, Jilin
University, Changchun, 130012,
P.R. China
Full list of author information is
available at the end of the article

Abstract
We generalize the deterministic and the stochastic single-group SIRS epidemic
models with saturated incidence rate introduced by Lahrouz, Omari, and Kiouach to
the multi-group versions. In the deterministic multi-group model, the fact is
highlighted that if the threshold R0 ≤ 1, then the infective condition disappears and
it means the extinction of the disease. If R0 > 1, then there exists an endemic
equilibrium in a feasible region. Allowing the noise perturbation, for the stochastic
version, we utilize stochastic Lyapunov functions to show the stability of the
disease-free equilibrium of system. A detailed analysis is performed on almost surely
exponential stability and pth moment exponential stability of the disease-free
equilibrium. We also go into several numerical simulations to illustrate how exactly
the theoretical results are verified. Good agreement was observed between our
theoretical results and numerical simulations. A comprehensive conclusion is
provided.

Keywords: multi-group SIRS model; stochastic perturbation; saturated incidence
rate; Brownian motion

1 Introduction
Epidemiology models have been widely studied by many mathematicians and biologists
[–]. Most of the single-group models were considered in previous studies. Consider-
ing a heterogeneous population whose individuals are distinguishable by age, geography,
and/or stage of disease and so on, it will be more realistic and reasonable to divide the indi-
vidual hosts into groups. Therefore, many mathematicians devote themselves to realistic
multi-group models for the spreading dynamics of infections. For example, Lajmanovich
and Yorke in [] have established a multi-group model for gonorrhea in a heterogeneous
population where recovery is not immunized. Subsequently, this lead to increased inves-
tigations of the multi-group model; see [, –]. Considering the effect of nonlinear in-
cidence rates for some disease transmissions, Capasso and Serio in [] have put forward
the saturated incidence rate taking the form βSI

+aI when they studied the cholera epidemic
spread in Bari in . The crowding effect of the infective individuals can be well reflected
by 

+aI and the infection force of the disease can be measured by βI . Concerning this fac-
tor, Lahrouz et al. also incorporated the saturated incidence rate into deterministic and
stochastic SIRS epidemic models []. The deterministic system formulated by them is as

© 2015 Han and Wang. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-015-0628-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0628-y&domain=pdf
mailto:wangzg2003205@163.com


Han and Wang Advances in Difference Equations  (2015) 2015:333 Page 2 of 20

Table 1 Summary of notation

Notation Explanation

βkj Rate of disease transmission between compartments Sk and Ij
dSk , d

I
k , d

R
k Nature mortality of S, I, R compartments in the kth group, respectively

�k Recruitment rate of the population into the kth group
εk Fatality rate in the kth group
γk Recovery rate of infected individuals in the kth group
δk Removed rate of recovered individuals in the kth group
αk Positive parameter related to kth group

follows:
⎧
⎪⎨

⎪⎩

dS
dt = b – μS – βSI

+aI + γ R,
dI
dt = –(μ + c + α)I + βSI

+aI ,
dR
dt = –(μ + γ )R + αI.

(.)

Correspondingly, the stochastic model is as follows []:

⎧
⎪⎨

⎪⎩

dS = [b – μS – βSI
+aI + γ R] dt – σ SI

+aI dB,
dI = [–(μ + c + α)I + βSI

+aI ] dt + σ SI
+aI dB,

dR = [–(μ + γ )R + αI] dt.
(.)

We put forward the multi-group version of the deterministic equation (.).

⎧
⎪⎪⎨

⎪⎪⎩

dSk(t) = [�k – dS
k Sk(t) –

∑n
j=

βkjSk (t)Ij(t)
+αk Ij(t) + δkRk(t)] dt,

dIk(t) = [
∑n

j=
βkjSk (t)Ij(t)

+αk Ij(t) – (dI
k + γk + εk)Ik(t)] dt,

dRk(t) = [γkIk(t) – (dR
k + δk)Rk(t)] dt, k = , , . . . , n,

(.)

here Sk(t), Ik(t), and Rk(t) represent the number of susceptible, infective, and recovered in-
dividuals of the kth group at time t, respectively. We summarize the parameters of system
(.) in Table .

It is assumed that all parameters are positive throughout this paper. Ideally, the param-
eters involved in ecological models are constant. With this understanding, one only needs
to consider the deterministic models. However, in reality, some parameters will be subject
to the influence of fluctuating environment inevitably. In other words, some data derived
from the environment are not constant but fluctuate around some average value due to
continuous fluctuations in the environment. With this in mind, some researchers try to
introduce perturbations into epidemic models. There exist two kinds of main perturba-
tion approaches in terms of containing the random effects in models. One is to perturb
the positive endemic equilibria in order for making robust the equilibria of deterministic
models. In this situation, the essence of the investigation using the approach is to check
if the asymptotic stability of the positive equilibria of deterministic models can be pre-
served. For example, Shaikhet in [] proved the stability of the positive equilibrium for a
predator-prey model with delays and stochastic perturbations. We in [] discussed the
global stability of the multi-group SEIQR model with random perturbation around the
positive equilibrium in computer network. In addition, we also applied this approach to
other epidemic models [, ]. The other important approach is with parameters pertur-
bation. Much literature on this approach can be found, such as [, –]. In this paper, we
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adopt the second approach to endow the stochastic form of the deterministic model (.)
and introduce randomness by replacing the parameters βkk by βkk + σk

dBk
dt , where Bk(t),

k = , , . . . , n, are mutual independent standard Brownian motions with Bk() = , and σk ,
k = , , . . . , n are the intensities of the white noises. We consider the stochastic version of
(.) formulated by the equations:

⎧
⎪⎪⎨

⎪⎪⎩

dSk(t) = [�k – dS
k Sk(t) –

∑n
j=

βkjSk (t)Ij(t)
+αk Ij(t) + δkRk(t)] dt – σk

Sk (t)Ik (t)
+αk Ik (t) dBk(t),

dIk(t) = [
∑n

j=
βkjSk (t)Ij(t)

+αk Ij(t) – (dI
k + γk + εk)Ik(t)] dt + σk

Sk (t)Ik (t)
+αk Ik (t) dBk(t),

dRk(t) = [γkIk(t) – (dR
k + δk)Rk(t)] dt, k = , , . . . , n.

(.)

Our overall aim here is to discuss the extinction not only for a deterministic system
but also for a stochastic system. In the course of using the Lyapunov analysis methods,
the main difficulty for a multi-dimensional stochastic system is how we can effectively
tackle drift and diffusion terms. The remaining sections are arranged as follows. Section 
has the important result of Theorem . for deterministic model (.). Globally asymp-
totic stability of the disease-free equilibrium for deterministic (.) is demonstrated when
R ≤ , which implies the extinction of the disease. The most significant results for the
current study are proposed in Section . After choosing a key stochastic Lyapunov func-
tion, we verify the disease-free equilibrium P of (.) is pth moment exponentially stable
at large and the disease-free equilibrium P is almost surely exponentially stable under a
suitable condition. By means of numerical methods, we give a dynamical analysis of (.)
in Section . In the following section, a comprehensive conclusion is provided. Taking into
account the biological meaning, in this paper, we always assume that

dS
k ≤ min

{
dI

k , dR
k
}

.

2 Deterministic multi-group SIRS model with saturated incidence rate
Extinction is one of the most important concerns in the course of studying infectious-
disease models. The substantive and core work is refined to one involving the asymptotical
stability at large of the disease-free equilibrium. In this section, we devote ourselves to
the deterministic equation (.). The objective is to find suitable conditions determining
the extinction of disease for (.). In addition, a sufficient criterion is established for the
asymptotical stability at large of the disease-free equilibrium of (.). We briefly mention
an existence result for the endemic equilibrium of (.).

There always exists the unique disease-free equilibrium P for (.),

P =
(
S

 , , , S
 , , , . . . , S

n , , 
)
,

where

S
k =

�k

dS
k

, k = , , . . . , n.

We can check the solution of (.) with initial condition (S(), I(), R(), . . . , Sn(), In(),
Rn()) ∈ Rn

+ remains nonnegative. Thus we only consider system (.) in Rn
+ . Adding the
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several equations of system (.) together for every k and in combination with the inequal-
ity above, we have

d(Sk + Ik + Rk) ≤ (
�k – dS

k (Sk + Ik + Rk)
)

dt.

Hence, sup limt→∞(Sk + Ik + Rk) ≤ �k
dS

k
. Given the bounded region of Rn by


 =
{

(S, I, R, . . . , Sn, In, Rn) ∈ Rn
∣
∣
∣ ≤ Sk ≤ �k

dS
k

,  ≤ Ik ≤ �k

dS
k

,  ≤ Rk ≤ �k

dS
k

,

Sk + Ik + Rk ≤ �k

dS
k

,  ≤ k ≤ n
}

.

Omega limit sets of (.) are contained in 
. 
 is a positive invariant of (.).
Let the interior of 
 be

◦

=

{

(S, I, R, . . . , Sn, In, Rn) ∈ Rn
∣
∣
∣ < Sk , Ik , Rk , Sk + Ik + Rk <

�k

dS
k

,  ≤ k ≤ n
}

.

Set

F =

⎛

⎜
⎜
⎝

βS
 · · · βnS


...

. . .
...

βnS
n · · · βnnS

n

⎞

⎟
⎟
⎠

and

V = diag(dk + γk + εk) =

⎛

⎜
⎜
⎜
⎜
⎝

d + γ + ε  · · · 
 d + γ + ε · · · 
...

...
. . .

...
  · · · dn + γn + εn

⎞

⎟
⎟
⎟
⎟
⎠

.

Then the next generation matrix is

FV – =

⎛

⎜
⎜
⎜
⎝

βS


d+γ+ε
· · · βnS


dn+γn+εn

...
. . .

...
βnS

n
d+γ+ε

· · · βnnS
n

dn+γn+εn

⎞

⎟
⎟
⎟
⎠

.

The reproduction number of (.) is

R = ρ
(
FV –) = max

{|λ|;λ ∈ σ
(
FV –)}, (.)

where σ and ρ denote the set of eigenvalues of a matrix and the spectral radius, respec-
tively. Furthermore, the following proposition will be stated [, ].

Proposition . ([, ]) For system (.), the disease-free equilibrium P is locally asymp-
totically stable if R <  while it is unstable if R > .
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Let

V –F =

⎛

⎜
⎜
⎜
⎝

βS


d+γ+ε
· · · βnS


d+γ+ε

...
. . .

...
βnS

n
dn+γn+εn

· · · βnnS
n

dn+γn+εn

⎞

⎟
⎟
⎟
⎠

.

Following [, , ], the threshold property of spectral radius of V –F is similar to that of
FV –. The following lemma can be stated immediately.

Lemma . ([, , ]) ρ(V –F ) ≤  is equivalent to R ≤ .

Furthermore, we state that the following.

Theorem . Assume B = (βkj) is irreducible. If R ≤ , then the disease-free equilibrium
P of (.) is globally asymptotically stable in 
 and there is no endemic equilibrium P∗ at
all in 
.

Proof Note that ρ(V –F ) ≤  from Lemma .. Following [, ], define a matrix-valued
function

M(S, I) =

⎛

⎜
⎜
⎝

βS
(d+γ+ε)(+αI) · · · βnS

(d+γ+ε)(+αIn)
...

. . .
...

βnSn
(dn+γn+εn)(+αnI) · · · βnSn

(dn+γn+εn)(+αnIn)

⎞

⎟
⎟
⎠

on Rn
+ , where S = (S, . . . , Sn)T , I = (I, . . . , In)T . First, it can be claimed that there is no any

endemic equilibrium P∗ in 
. Because αj > , we have  < M(S, I) < V –F . Since the non-
negative matrix M(S, I) +V –F is irreducible, it follows from the Perron-Frobenius theo-
rem (see []) that ρ(M(S, I)) < ρ(V –F ) ≤ . This implies that the equation M(S, I)I = I
has only the trivial solution I = , where I = (I, . . . , In)T . Hence the claim is true.

Second, one can claim that P is globally asymptotically stable in 
. Note that the non-
negative irreducible matrix V –F has a strictly positive left eigenvector  := (, . . . ,n) ≥
 belonging to the eigenvalue ρ(V –F ) []. Define the operator

L(I) =
n∑

i=

i
Ii

di + γi + εi
(.)

on Rn
+. Furthermore, we have the differential operator

L′(I) =
n∑

i=

i

(Si
∑n

j=
βijIj

(+αiIj)

di + γi + εi
– Ii

)

=  · (M(S, I) – En
)
I

≤  · (V –F – En
)
I

=  · (ρ(V –F
)

– 
)
I, (.)



Han and Wang Advances in Difference Equations  (2015) 2015:333 Page 6 of 20

where En and · denote the n × n identity matrix and the inner product of vectors, re-
spectively. If ρ(V –F ) ≤ , then  · (ρ(V –F ) – )I ≤ . If ρ(V –F ) < . Then L′(I) =  is
equivalent to I = . If ρ(V –F ) = , then it follows from (.) that L′(I) =  implies

 ·M(S, I) =  · I. (.)

Because  < M(S, I) < V –F , therefore  · M(S, I) <  · (V –F ) = ρ(V –F ) = . Thus
I =  is the unique solution of (.). In summary, whether ρ(V –F ) <  or ρ(V –F ) = ,
L′(I) =  is equivalent to I = , I =  is the unique fixed point of the differential operator L′.
It’s also worth noting that if I = , then (S, R) = (S, ), where S = ( �

dS


, . . . , �n
dS

n
). Hence

the compact invariant subset of the set where L′(I) =  is only the singleton {P} ⊂ 
. It
readily follows from the La Salle invariance principle [] that the second claim holds.

�

The proof of the following proposition and corollary for (.) is standard [, , ].

Proposition . Assume B = (βkj) is irreducible. If R > , then P is unstable and (.) is
uniformly persistent in

◦

.

Corollary . Assume B = (βkj) is irreducible. If R > , then (.) has at least one endemic
equilibrium.

3 Perturbed multi-group SIRS model with saturated incidence rate
3.1 Existence and uniqueness of nonnegative solutions for stochastic model
Theorem . There exists a unique solution (S(t), I(t), R(t), . . . , Sn(t), In(t), Rn(t)) of (.)
on t ≥  for any initial value (S(), I(), R(), . . . , Sn(), In(), Rn()) ∈ R

n
+ , and the solu-

tion (S(t), I(t), R(t), . . . , Sn(t), In(t), Rn(t)) ∈R
n
+ for t ∈ [,∞) almost surely.

Proof Given arbitrarily initial value (S(), I(), R(), . . . , Sn(), In(), Rn()) ∈ R
n
+ , be-

cause of local Lipschitz continuity of the coefficients of (.), there must be a unique local
solution (S(t), I(t), R(t), . . . , Sn(t), In(t), Rn(t)) on t ∈ [, τe), where τe is the explosion time
(see [, ]). To show the global existence of this solution, it must be claimed that τe = ∞
a.s. Let m ≥  be sufficiently large so that Sk(), Ik(), Rk() (k = , , . . . , n) all lie within
the interval [ 

m
, m]. For each integer m ≥ m, define the stopping time

τm = inf

{

t ∈ [, τe) : min
{

Sk(t), Ik(t), Rk(t), k = , . . . , n
}≤ 

m
or

max
{

Sk(t), Ik(t), Rk(t), k = , . . . , n
}≥ m

}

.

We set inf∅ = ∞ (as usual ∅ denotes the empty set). It is obvious τm is increasing as
m → ∞. Set τ∞ = limm→∞ τm, whence τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then
τe = ∞ and (S(t), I(t), R(t), . . . , Sn(t), In(t), Rn(t)) ∈R

n
+ a.s. for all t ≥ . In other words, to

complete the proof all we need to show is that τ∞ = ∞ a.s.
For t ≤ τm, we can see, for each k,

d(Sk + Ik + Rk) =
(
�k – dS

k Sk – dI
kIk – εkIk – dR

k Rk
)

dt

≤ (
�k – dS

k (Sk + Ik + Rk)
)

dt,
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(
Sk(t) + Ik(t) + Rk(t)

)≤

⎧
⎪⎪⎨

⎪⎪⎩

�k
dS

k
, if Sk() + Ik() + Rk() ≤ �k

dS
k

,

Sk() + Ik() + Rk(),
if Sk() + Ik() + Rk() > �k

dS
k

, k = , , . . . , n,
:= Mk . (.)

Define a C-function V : Rn
+ → R+ by

V (S, I, R, . . . , Sn, In, Rn) =
n∑

k=

(
(Sk –  – ln Sk) + (Ik –  – ln Ik) + (Rk –  – ln Rk)

)
.

Reviewing Ito’s formula, for s ∈ [,∞), t ∈ [, s ∧ τm], it can be derived that

d
(
V (t)

)
=

n∑

k=

[(

 –


Sk

)(

�k – dS
k Sk –

n∑

j=

βkjSkIj

 + αkIj
+ δkRk

)

+
σ 

k I
k

( + αkIk)

]

dt

+
n∑

k=

[(

 –

Ik

)( n∑

j=

βkjSkIj

 + αkIj
–
(
dI

k + γk + εk
)
Ik

)

+
σ 

k S
k

( + αkIk)

]

dt

+
n∑

k=

(

 –


Rk

)
(
γkIk –

(
dR

k + δk
)
Rk
)

dt +
n∑

k=

σk(Ik – Sk)
 + αkIk

dB(t)

=
n∑

k=

(

�k + dS
k + dI

k + γk + εk + dR
k + δk

+
n∑

j=

βkjIj

( + αkIj)
–

n∑

j=

βkjSkIj

( + αkIj)
–

dk

Sk

(
�k

dS
k

– Sk

)

–
δkRk

Sk
–

γkIk

Rk
–
(
dS

k + εk
)
Sk –

(
dI

k + γk + εk
)
Ik

–
(
dR

k + δk
)
Rk +

σ 
k (S

k + I
k )

( + αkIk)

)

dt +
n∑

k=

σk(Ik – Sk)
 + αkIk

dB(t)

≤
n∑

k=

(

�k + dS
k + γ I

k + εk + dR
k + δk +

n∑

j=

βkjMj + σ 
k M

k

)

dt

+
n∑

k=

σk(Ik – Sk)
 + αkIk

dB(t).

Therefore,

d
(
V (t)

)≤ Nt +
n∑

k=

∫ t



σk(Ik – Sk)
 + αkIk

dt a.s.,

where

N =
n∑

k=

(

�k + dS
k + dI

k + γk + εk + dR
k + δk +

n∑

j=

βkjMj + σ 
k M

k

)

.

If we take the expectation of the inequality above, then we obtain, for s ∈ [,∞],

E[V
(
S(τm ∧ s)

)≤ Ns ∧ τm ≤ Ns a.s. (.)



Han and Wang Advances in Difference Equations  (2015) 2015:333 Page 8 of 20

Set �m = {τm ≤ s} for m ≥ m. Note that for every ω ∈ �m, there is at least one of
Sk(τm,ω), Ik(τm,ω), and Rk(τm,ω), k = , . . . , n that equals either m or 

m , and hence
V (S(τm), I(τm), R(τm), . . . , Sn(τm), In(τm), Rn(τm)) is no less than m –  – ln m or 

m –  –
ln 

m = 
m –  + ln m. Consequently,

V
(
S(τm), I(τm), R(τm), . . . , Sn(τm), In(τm), Rn(τm)

)

≥ (m –  – ln m) ∧
(


m

–  + ln m
)

, (.)

E
[
V (τm ∧ s))

]≥ E
[
V (τm ∧ s))χ(τm≤s)

]
+ E

[
V (τm ∧ s))χ(τm>s)

]

≥ E
[
V (τm ∧ s))χ(τm≤s)

]
. (.)

It follows that

E
[
V (τm ∧ s))

]≥
[

(m –  – ln m) ∧
(


m

–  + ln m
)]

P(τm ≤ s). (.)

Combining (.) with (.) gives for all s ≥ 

P(τm ≤ s) ≤ Ns
(m –  – ln m) ∧ ( 

m –  + ln m)
,

where �m(ω) is the indicator function of �m. Letting m → ∞, we get for s ∈ [,∞],
P(τ∞ ≤ s) = . Thus P(τ∞ = ∞) = . So we must therefore have τ∞ = ∞ a.s. �

Let


∗ =
{

(S, I, R, . . . , Sn, In, Rn) : Sk > , Ik ≥ , Rk ≥ , Sk + Ik + Rk ≤ �k

dS
k

,

k = , , . . . , n, almost surely
}

.

Theorem . 
∗ is a positively invariant set of (.), that is, if for any initial value
(S(), I(), R(), . . . , Sn(), In(), Rn()) ∈ 
∗, the solution (S(t), I(t), R(t), . . . , Sn(t), In(t),
Rn(t)) ∈ 
∗ of (.) for all t ≥  almost surely.

Proof Adding the equations of system (.) together for every k ∈ {, , . . . , n}, we have

d
(
Sk(t) + Ik(t) + Rk(t)

)
=
(
�k – dS

k Sk(t) – dI
kIk(t) – εkIk(t) – dR

k Rk(t)
)

dt.

Then, if (S(s), . . . , Sn(s), I(s), . . . , In(s), R(s), . . . , Rn(s)) ∈ Rn
+ for s ∈ [, t] almost surely, we

obtain

d
(
Sk(t) + Ik(t) + Rk(t)

)≤ (
�k – dS

k
(
Sk(t) – Ik(t) – Rk(t)

))
dt.

By integration we check

Sk(s) + Ik(s) + Rk(s) ≤ �k

dS
k

+ e–dS
k s
(

Sk() + Ik() + Rk() –
�k

dS
k

)

.
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If Sk() + Ik() + Rk() ≤ �k
dS

k
, then Sk(s) + Ik(s) + Rk(s) ≤ �k

dS
k

almost surely, thus

Sk(s), Ik(s), Rk(s) ∈ 
∗ for s ∈ [, t], a.s.

This completes the proof. �

The assumption that (S(), I(), R(), . . . , Sn(), In(), Rn()) ∈ 
∗ will be used for the
remaining parts of this paper.

3.2 pth moment exponential stability at large and almost surely exponential
stability in �∗

Clearly, the disease-free equilibrium of (.) is P = ( �
dS


, , , . . . , �n

dS
n

, , ). We have men-
tioned in Section  that when R ≤ , P of (.) is globally stable. It means the extinction
of disease will be inevitable after a period of time. Therefore, controlling the infectious dis-
ease by investigating the disease-free equilibrium P of (.) is important as well. In this
subsection, it will be verified that P is pth moment exponentially stable at large. Moreover,
by using appropriate stochastic Lyapunov functions, almost surely exponential stability of
P also will be stated in this subsection.

Check the d-dimensional stochastic equation []

dx(t) = f
(

x(t), t
)

dt + g
(

x(t), t
)

dB(t), t ≥ t. (.)

Provided that (.) satisfies the existence-and-uniqueness theorem, then, given arbitrarily
initial value x(t) = x ∈ R

d , there exists a unique global solution x(t; t, x) for (.). To
study the stability, it will be assumed in this subsection that f (0, t) =  and g(0, t) =  for
all t ≥ t. So (.) admits a solution x(t) ≡ 0, which is called an equilibrium position.

Denote by C,(Rd × [t,∞);R+) the family of all nonnegative functions V (x, t) on
R

d × [t,∞) which are continuously twice differentiable in x and once in t. Define the
differential operator L associated with (.) by

L =
∂

∂t
+

d∑

i=

fi(x, t)
∂

∂xi
+




d∑

i,j=

[
gT (x, t)g(x, t)

]

ij
∂

∂xixj
.

Let L act on a function V ∈ C,(Rd × [t,∞);R+), then

LV (x, t) = Vt(x, t) + Vt(x, t)f (x, t) +



trace
[
gT (x, t)Vxx(x, t)g(x, t)

]
.

Definition . ([, ]) The equilibrium X =  of the system (.) is said to be:
() stable in probability if for all ε > ,

lim
X→

P
(

sup
t≥

∣
∣X(t, X)

∣
∣≥ ε

)
= ;

() asymptotically stable if it is stable in probability and, moreover,

lim
X→

P
(

lim
t→∞ X(t, X) = 

)
= ;
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() globally asymptotically stable if it is stable in probability and, moreover, for all
X ∈ R

d ,

P
(

lim
t→∞ X(t, X) = 

)
= ;

() almost surely exponentially stable if, for all X ∈R
d ,

lim sup
t→∞


t

ln
∣
∣X(t, X)

∣
∣ <  a.s.;

() pth moment exponentially stable if there is a pair of positive constants C and C

such that, for all X ∈R
d ,

E
(∣
∣X(t, X)

∣
∣p
)≤ C|X|pe–Ct on t ≥ .

Next we review the following lemma in which the conditions for the moment exponen-
tial stability of the equilibrium of (.) will be presented (see [, ]).

Lemma . Assume that there exists a function V ∈ C,(Rn × [t,∞);R+) such that the
inequalities

K|x|p ≤ V (x, t) ≤ K|x|p,

LV (x, t) ≤ –K|x|p, Ki > , p > ,

hold. Then the equilibrium of the system (.) is the pth moment exponentially stable. Usu-
ally, if p = , we call it exponentially stable in mean square and the equilibrium X =  is
globally asymptotically stable.

As a special case of Young’s inequality, the following lemma can be stated.

Lemma . Let ε, x, y > , p ≥ , then

xp–y ≤ (p – )ε
p

xp +


pεp– yp,

xp–y ≤ p – 
p

εxp +

p
ε

–p
 yp.

(.)

Theorem . Assume B = (βkj)n×n is irreducible and p ≥ . If R = ρ(M) <  and (dI
k +

γk +εk)–
∑n

j=
βkj�k

dS
k

> p�
kσ

k
(dS

k ) hold, then the disease-free equilibrium P of (.) is pth moment
exponentially stable globally.

Proof Let p ≥  and (S, I, R) ∈ 
∗, in view of Theorem . the solution of the sys-
tem (.) remains in 
∗. We know from the previous assertion that M = V –F is ir-
reducible, it follows that the nonnegative irreducible matrix M has a strictly positive
left eigenvector ω := (ω,ω, . . . ,ωn) >  associated with the eigenvalue ρ(M), such that
(ω,ω, . . . ,ωn)ρ(M) = (ω,ω, . . . ,ωn)M.
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Define a C-function V : Rn
+ → R+ by

V (S, I, R, . . . , Sn, In, Rn) =
n∑

k=

ak

(
�k

dS
k

– Sk

)p

+

p

n∑

k=

ωk

dI
k + γk + εk

Ip
k +

n∑

k=

bkRp
k , (.)

where ak , bk , k = , , . . . , n are positive constants which we can choose in the following.
Set V (x) = V(x) + V(x) + V(x), where

V(x) =
n∑

k=

ak

(
�k

dS
k

– Sk

)p

, V(x) =

p

n∑

k=

ωk

dI
k + γk + εk

Ip
k , V(x) =

n∑

k=

bkRp
k .

Denote L as the generating operator of system (.). We calculate

LV = –
n∑

k=

pdS
k ak

(
�k

dS
k

– Sk

)p

+
n∑

k=

n∑

j=

pβkjak
SkIj

 + αkIj

(
�k

dS
k

– Sk

)p–

–
n∑

k=

n∑

j=

pδkakRk

(
�k

dS
k

– Sk

)p–

+



n∑

k=

p(p – )σ 
k ak

S
kI

K
( + αkIk)

(
�k

dS
k

– Sk

)p–

(.)

and

LV =
n∑

k=

ωk

dI
k + γk + εk

( n∑

j=

βkjSkIp–
k Ij

 + αkIj
–
(
dI

k + γk + εk
)
Ip

k

)

+



n∑

k=

(p – )σ 
k

S
kIp

k
( + αkIk) , (.)

LV =
n∑

k=

pbkRp–
k

(
γkIk –

(
dR

k + δk
)
Rk
)

=
n∑

k=

pbk
(
γkIkRp–

k –
(
dR

k + δk
)
Rp

k
)
, (.)

respectively. Because Sk , Ik , Rk ∈ (, �k
dS

k
),

LV = LV + LV + LV

≤ –
n∑

k=

pdS
k ak

(
�k

dS
k

– Sk

)p

+
n∑

k=

n∑

j=

pβkjak
�kIj

dS
k

(
�k

dS
k

– Sk

)p–

+



n∑

k=

p(p – )σ 
k ak

�
kI

k

(dS
k )

(
�k

dS
k

– Sk

)p–

+
n∑

k=

ωk

dI
k + γk + εk

[(∑n
j= βkj�kIp–

k Ij

dS
k

–
(
dI

k + γk + εk
)
Ip

k

)

+



(p – )σ 
k

�
kIp

k

(dS
k )

]

+
n∑

k=

pbk
(
γkIkRp–

k –
(
dR

k + δk
)
Rp

k
)
. (.)
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Applying Lemma .

Ip–
k Ij ≤ p – 

p
Ip

k +

p

Ip
j , (.)

I
k

(
�k

dS
k

– Sk

)p–

≤ p – 
p

ε

(
�k

dS
k

– Sk

)p

+

p
ε

–p
 Ip

k , (.)

Ij

(
�k

dS
k

– Sk

)p–

≤ p – 
p

ε

(
�k

dS
k

– Sk

)p

+

p
ε–pIp

j

≤ p – 
p

ε

(
�k

dS
k

– Sk

)p

+
(�j)p

p(dS
j )p ε–p, (.)

IkRp–
k ≤ p – 

p
εRp

k +

p
ε–pIp

k , (.)

LV ≤ –
n∑

k=

ak

{

pdS
k –

[

(p – )
∑n

j= βkj�k

dS
k

+
(p – )(p – )σ 

k �
k

(dS
k )

]

ε

}(
�k

dS
k

– Sk

)p

–
n∑

k=

ωk

[(

 –
(p – )σ 

k �
k

(dS
k )(dI

k + γk + εk)
–
∑n

j= βkj(p – )�k

p(dI
k + γk + εk)dS

k

)

Ip
k

–
∑n

j= βkj�k

pdS
k (dI

k + γk + εk)
Ip

j

]

+
n∑

k=

[

ak
(p – )σ 

k �
k

(dS
k ) ε

–p
 + bkγkε

–p
]

Ip
k +

n∑

k=

ak

∑n
j= βkj�k(�j)p

dS
k (dS

j )p ε–p

–
n∑

k=

bk
(
p
(
dR

k + δk
)

– (p – )εγk
)
Rp

k . (.)

Because (dI
k + γk + εk) –

∑n
j=

βkj�k
dS

k
> p�

kσ
k

(dS
k ) ,

–
n∑

k=

ωk

(

 –
(p – )σ 

k �
k

(dS
k )(dI

k + γk + εk)
–
∑n

j= βkj(p – )�k

p(dI
k + γk + εk)dS

k

)

Ip
k

= –
n∑

k=

ωk

(

 –
(p – )

p

∑n
j=

βkj�k
dS

k
+ p�

kσ
k

(dS
k )

dI
k + γk + εk

)

< –
n∑

k=

ωk

p

Ip
k ,

hence

LV ≤ –
n∑

k=

ak

{

pdS
k –

[

(p – )
∑n

j= βkj�k

dS
k

+
(p – )(p – )σ 

k �
k

(dS
k )

]

ε

}(
�k

dS
k

– Sk

)p

–

p

n∑

k=

ωk

[

Ip
k –

∑n
j= βkj�k

dS
k (dI

k + γk + εk)
Ip

j

]

+
n∑

k=

[

ak
(p – )σ 

k �
k

(dS
k ) ε

–p
 + bkγkε

–p
]

Ip
k

+
n∑

k=

ak

∑n
j= βkj�k(�j)p

dS
k (dS

j )p ε–p –
n∑

k=

bk
(
p
(
dR

k + δk
)

– (p – )εγk
)
Rp

k . (.)
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Note that

n∑

k=

ωkIp
k –

n∑

k=

ωk

n∑

j=

βkj�k

dS
k (dI

k + γk + εk)
Ip

j

= (ω,ω, . . . ,ωn)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

 – βS


dI
+γ+ε

– βS


dI
+γ+ε

· · · – βnS


dI
+γ+ε

– βS


dI
+γ+ε

 – βS


dI
+γ+ε

· · · – βnS


dI
+γ+ε

...
...

. . .
...

– βnS
n

dI
n+γn+εn

– βnS
n

dI
n+γn+εn

· · ·  – βnnS
n

dI
n+γn+εn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

Ip


Ip

...

Ip
n

⎞

⎟
⎟
⎟
⎟
⎠

= ω(En – M)Ip

=
(
 – ρ(M)

)
(ω,ω, . . . ,ωn)Ip, (.)

where Ip = (Ip
 , Ip

 , . . . , Ip
n )T . Thus

LV ≤ –
n∑

k=

ak

{

pdS
k –

[

(p – )
∑n

j= βkj�k

dS
k

+
(p – )(p – )σ 

k �
k

(dS
k )

]

ε

}(
�k

dS
k

– Sk

)p

–

p
(
 – ρ(M)

)
(ω,ω, . . . ,ωn)Ip +

n∑

k=

[

ak
(p – )σ 

k �
k

(dS
k ) ε

–p
 + bkγkε

–p
]

Ip
k

+
n∑

k=

ak

∑n
j= βkj�k(�j)p

dS
k (dS

j )p ε–p –
n∑

k=

bk
(
p
(
dR

k + δk
)

– (p – )εγk
)
Rp

k . (.)

An ε can be chosen small enough so that both the coefficients of ( �k
dS

k
– Sk)p and the coef-

ficients of Rp
k are negative, and we can also choose sufficiently small ak and bk such that

–

p
(
 – ρ(M)

)
(ω,ω, . . . ,ωn)Ip +

n∑

k=

[

ak
(p – )σ 

k �
k

(dS
k ) ε

–p
 + bkγkε

–p
]

Ip
k

+
n∑

k=

ak

∑n
j= βkj�k(�j)p

dS
k (dS

j )p ε–p

is negative. Consequently, LV is negative-definite. Therefore, we conclude that under the
condition R ≤ , the equilibrium P of (.) is stochastically asymptotically stable at
large. �

When p = , we have a corollary of Theorems . and ..

Corollary . Assume B = (βkj)n×n is irreducible. If R = ρ(M) ≤  and (dI
k + γk + εk) –

∑n
j=

βkj�k
dS

k
> p�

kσ
k

(dS
k ) hold, then the disease-free equilibrium P of (.) is globally asymptoti-

cally stable.

Theorem . If σ 
k (dS

k –
∑n

j=,j �=k βkj
�k
dS

k
) > β

kk , then the disease-free equilibrium P is al-
most surely exponentially stable in 
∗.
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Proof Let (S, I, R) ∈ 
∗. By Theorem ., the solution of (.) belongs to the set 
∗.
Define

V = ln

[ n∑

k=

(
�k

dS
k

– Sk + Ik + Rk

)]

.

Applying Ito’s formula [], we obtain

LV =
n∑

k=

[
∂V

∂Sk
dSk +

∂V

∂Ik
dIk +

∂V

∂Rk
dRk

]

+
n∑

k=

[
∂V

∂S
k

dSk dSk +
∂V

∂I
k

dIk dIk +
∂V

∂R
k

dRk dRk

]

+
n∑

k=

[
∂V

∂Sk ∂Ik
dSk dIk +

∂V

∂Sk ∂Rk
d Sk dRk +

∂V

∂Ik ∂Rk
dIk dRk

]

=


∑n
k=( �k

dS
k

– Sk + Ik + Rk)

( n∑

k=

(–dSk + dIk + dRk)

)

–


(
∑n

k=( �k
dS

k
– Sk + Ik + Rk))

( n∑

k=

(dSk dSk + dIk dIk + dRk dRk)

)

+


(
∑n

k=( �k
dS

k
– Sk + Ik + Rk))

( n∑

k=

(dSk dIk + dSk dRk – dIk dRk)

)

, (.)

where dB dB = dt and dB dt = dt dB = . Then

dSk dSk = dIk dIk = –dSk dIk = σ 
k

(
SkIk

 + αkIk

)

dt, dSk dRk = dIk dRk = dRk dRk = ,

LV =


∑n
i=( �i

dS
i

– Si + Ii + Ri)

[ n∑

k=

(

–�k + dS
k Sk +

n∑

j=

βkjSkIj

 + αkIj
– δkRk

)]

dt

+


∑n
i=( �j

dS
i

– Si + Ii + Ri)

[ n∑

k=

( n∑

j=

βkjSkIj

 + αkIj
–
(
dI

k + γk
)
Ik

)]

dt

+


∑n
i=( �i

dS
i

– Si + Ii + Ri)

[ n∑

k=

(
γkIk –

(
dR

k + δk
)
Rk
)
]

dt

–
n∑

k=

σ 
k

(
SkIk

( + αkIk)
∑n

i=( �i
dS

i
– Si + Ii + Ri)

)

dt

+
n∑

k=

σkSkIk

( + αkIk)
∑n

i=( �i
dS

i
– Si + Ii + Ri)

dB. (.)
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Let Mk = Sk Ik
(+αk Ik )

∑n
i=( �i

dS
i

–Si+Ii+Ri)
, we have

LV =
n∑

k=

[

–σ 
k M

k + βkkMk –
dS

k ( �k
dS

k
– Sk) + dI

kIk + dR
k Rk

∑n
i=( �i

dS
i

– Si + Ii + Ri)

]

dt

+


∑n
i=( �i

dS
i

– Si + Ii + Ri)

n∑

k=

n∑

j=,j �=k

βkjSkIj

 + αkIj
dt + σkMk dB

≤
n∑

k=

[

–σ 
k M

k + βkkMk –
dS

k ( �k
dS

k
– Sk + Ik + Rk)

∑n
i=( �i

dS
i

– Si + Ii + Ri)

]

dt

+


∑n
i=( �i

dS
i

– Si + Ii + Ri)

n∑

k=

n∑

j=,j �=k

βkjSkIj

 + αkIj
dt +

n∑

k=

σkMk dB, (.)

n∑

k=

dS
k

(
�k

dS
k

– Sk + Ik + Rk

)

≤
n∑

k=

dS
k

n∑

k=

(
�k

dS
k

– Sk + Ik + Rk

)


∑n
i=( �i

dS
i

– Si + Ii + Ri)

n∑

k=

n∑

j=,j �=k

βkjSkIj

 + αkIj

≤
n∑

k=

n∑

j=,j �=k

βkj
�k

dS
k

, (.)

LV ≤
n∑

k=

(

–σ 
k M

k + βkkMk – dS
k +

n∑

j=,j �=k

βkj
�k

dS
k

)

dt +
n∑

k=

σkMk dB

=
n∑

k=

(

–σ 
k

(

Mk –
βkk

σ 
k

)

+
β

kk – dS
kσ


k + σ 

k
∑n

j=,j �=k βkj
�k
dS

k

σ 
k

)

dt

+
n∑

k=

σkMk dB, (.)

we deduce that

dV ≤
n∑

k=

β
kk – dS

kσ

k + σ 

k
∑n

j=,j �=k βkj
�k
dS

k

σ 
k

dt +
n∑

k=

σkMk dB, (.)

and by integration we get

ln

[ n∑

k=

(
�k

dS
k

– Sk + Ik + Rk

)]

≤ ln

[ n∑

k=

(
�k

dS
k

– S
k + I

k + R
k

)]

+
n∑

k=

β
kk – dS

kσ

k + σ 

k
∑n

j=,j �=k βkj
�k
dS

k

σ 
k

t

+
∫ t



n∑

k=

σkMk(s) dB(s). (.)
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From Theorem ., we obtain
∫ t


∑n

k= Mk(s) dB(s) =
∫ t


∑n

k= M
k (s) dB(s) ≤ Ct. According

to the strong law of large number [], we deduce

lim
t→∞


t

∫ t



n∑

k=

Mk(s) dB(s) =  a.s.

Therefore, from (.) and (.) we conclude that

lim sup
t→∞

ln

[ n∑

k=

(
�k

dS
k

– Sk + Ik + Rk

)]

≤
n∑

k=

(

β
kk – dS

kσ

k + σ 

k

n∑

j=,j �=k

βkj
�k

dS
k

)

< .
�

4 Numerical simulations
Using the Matlab software, we calculate the equilibrium of (.) when n = . In this case,
we have

M =

⎡

⎣

βS


dI
+ε+γ

βS


dI
+ε+γ

βS


dI
+ε+γ

βS


dI
+ε+γ

⎤

⎦ :=

[
βK βK

βK βK

]

and

R = ρ(M) =
βK + βK +

√
(βK – βK) + ββKK


,

where K = S


dI
+ε+γ

, K = S


dI
+ε+γ

.
If the system parameters are given by

� = ., β = ., β = ., αS
 = ., dS

 = ., dI
 = .,

dR
 = ., ε = ., δ = ., γ = .,

� = ., β = ., β = ., αS
 = ., dS

 = ., dI
 = .,

dR
 = ., ε = ., δ = ., γ = .,

then it is easy to compute that R = . > . The computation shows that P∗ =
(S∗

 , I∗
 , R∗

 , S∗
, I∗

 , R∗
) = (., ., ., ., ., .). The computing re-

sult is in good agreement with the statement of Corollary ..
Next, we simulate the solutions of (.). Discretizing the system (.) for t = ,�t, �t,

. . . , n�t, and k = , , we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sk,i+ = Sk,i + (�k – βkSk,iI,i
+αk I,i

– βkSk,iI,i
+αk I,i

– dS
k Sk,i + δkRk,i)�t

– σk
βkk Sk,iIk,i
+αk Ik,i

√�tεk,i,
Ik,i+ = Ik,i + ( βkSk,iI,i

+αk I,i
+ βkSk,iI,i

+αk I,i
– (dI

k + γk + εk)Ik,i)�t + σk
βkk Sk,iIk,i
+αk Ik,i

√�tεk,i,
Rk,i+ = Rk,i + (γkIk,i + (dR

k + δk)Rk,i)�t,

(.)

where the time increment �t > , and εk,i are N(, )-distributed independent random
variables, which can be generated numerically by pseudo-random number generators.
Moreover, we choose S() = ., I() = ., R() = ., S() = ., I() = ., R() =



Han and Wang Advances in Difference Equations  (2015) 2015:333 Page 17 of 20

Figure 1 Stochastic trajectories of (1.4) for σ1 = 0.3, σ2 = 0.05, R0 = 0.6465 < 1, �t = 10–3,

(dI
1 + γ1 + ε1) –

∑n
j=1

β1j�1
dS

1
= 1.0125 > 0.879 =

�2
1σ2

1
(dS

1)2
, (dI

2 + γ2 + ε2) –
∑n

j=1
β2j�2

dS
2

= 0.08 >

0.0625 =
�2

2σ2
2

(dS
2)2

.

Figure 2 Stochastic trajectories of (1.4) for σ1 = 0.85, σ2 = 1.02, and R0 = 0.6465 < 1, �t = 10–3.

. as the initial values. We state that the initial values in every example are identical with
the values mentioned above. The simulation on the asymptotic stability of the equilibrium
P of (.) is shown in Figure  for σ = ., σ = .. The system parameters are given by

� = ., β = ., β = ., αS
 = ., dS

 = ., dI
 = .,

dR
 = ., ε = ., δ = ., γ = .,

� = ., β = ., β = ., αS
 = ., dS

 = ., dI
 = .,

dR
 = ., ε = ., δ = ., γ = .,

then we obtain R = . < . By a simple computation, P = (S
 , I

 , R
 , S

 , I
 , R

) =
(., , , , , ). It must be notified that we adopt the same coefficient parameters as
shown above in the examples of Figures -, and this means that the calculated reproduc-
tion numbers are the same.

If we adapt the first group of parameters for system (.), that is, the parameters are
taken as follows:

� = ., β = ., β = ., αS
 = ., dS

 = ., dI
 = .,
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Figure 3 Stochastic trajectories of (1.4) for σ1 = 3.75, σ2 = 2.72, and R0 = 0.6465 < 1, �t = 10–3.

Figure 4 Stochastic trajectories S1(t), I1(t), R1(t) when specifying the intensities of the Brownian
motions as σ1 = 0.85, σ2 = 1.02 (left) and σ1 = 3.75, σ2 = 2.72 (right), respectively, and t ∈ [0, 500].

Figure 5 Stochastic trajectories S2(t), I2(t), R2(t) when specifying the intensities of the Brownian
motions as σ1 = 0.85, σ2 = 1.02 (left) and σ1 = 3.75, σ2 = 2.72 (right), respectively, and t ∈ [0, 500].

dR
 = ., ε = ., δ = ., γ = .,

� = ., β = ., β = ., αS
 = ., dS

 = .,

dI
 = ., dR

 = ., ε = ., δ = ., γ = .,

then the calculated reproduction number is still R = . > , but if we change the noise
intensity to σ = ., σ = ., the corresponding simulations are shown in Figure .
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Figure 6 Stochastic trajectories of (1.4) for σ1 = 2.2, σ2 = 1.9, R0 = 1.5331 > 1, 2σ 2
1 (dS

1 – β12
�1
dS

1
) =

2.783 > β2
11 = 0.25, 2σ 2

2 (dS
2 – β21

�2
dS

2
) = 0.722 > β2

22 = 0.2025.

Figure  corresponds to σ = ., σ = ., and a simple check shows that the intensity
and system parameters satisfy the condition of Corollary .. We can therefore conclude,
by Corollary ., that the equilibrium P of (.) is asymptotically stable. There exists good
agreement between the mathematical results and computer simulations in Figure . Fig-
ure  corresponds to σ = ., σ = ., and the comparison of Figures  (left) and 
(left) suggests that the fluctuations of the curves increase as the noise level increases. The
trajectories of Figures  (right) and  (right) follow the same regularity. So does the com-
parison of Figures  and . Note that the condition of Corollary . is sufficient but not
necessary. In other words, if the condition of Corollary . is not satisfied, the system (.)
could be stable. For example, both σ = ., σ = . and σ = ., σ = . do not obey
the condition of Corollary ., but we can see from Figures  and  that the equilibrium
P remains asymptotically stable. In order to observe the influences of the noise intensity
of the stochastic system (.) much clearer, we re-draw the solution curves of system (.)
in Figure  and Figure  when the intensities of the Brownian motions are specified as
σ = ., σ = . or σ = ., σ = ., respectively, and t ∈ [, ]. Analyzing the
curves in Figures  and , they indicate that the higher the values of the intensities of the
Brownian motions are, the more violent the fluctuations of solution curves are, and the
shorter time solution curves attain to the equilibrium P. Our numerical simulations are in
good agreement with the theoretical results derived from complicated analysis methods.

5 Conclusion
In this paper, we propose deterministic and stochastic multi-group SIRS models with a
saturated incidence rate. Making use of the Perron-Frobenius theorem, the La Salle in-
variance principle, and the Lyapunov function analysis method, we obtain the theoretical
results describing the dynamical behavior of these epidemic models. These theories are
the further developments of the study by Lahrouz et al. [] for single-group SIRS mod-
els with a saturated incidence rate. As discussed in Section , there exists an important
threshold R determining the persistence and the extinction of disease for the determin-
istic model. As for the stochastic model, some sufficient criterions for stochastic asymp-
totical stability of the equilibrium P are established via stochastic analysis techniques. It
is further found that the pth moment exponential stability of P depends on the threshold
R, the magnitude of the intensity of noise, and the parameters of (.) except the param-
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eter αk , which measures the saturation effect. However, it must be noted that the almost
surely exponential stability depends on the intensity of noise and the parameters of (.)
only, while the threshold R has no effect at all, even when R > , (.) remains almost
surely exponentially stable.
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