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version, we utilize stochastic Lyapunov functions to show the stability of the
disease-free equilibrium of system. A detailed analysis is performed on almost surely
exponential stability and pth moment exponential stability of the disease-free
equilibrium. We also go into several numerical simulations to illustrate how exactly
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1 Introduction

Epidemiology models have been widely studied by many mathematicians and biologists
[1-7]. Most of the single-group models were considered in previous studies. Consider-
ing a heterogeneous population whose individuals are distinguishable by age, geography,
and/or stage of disease and so on, it will be more realistic and reasonable to divide the indi-
vidual hosts into groups. Therefore, many mathematicians devote themselves to realistic
multi-group models for the spreading dynamics of infections. For example, Lajmanovich
and Yorke in [4] have established a multi-group model for gonorrhea in a heterogeneous
population where recovery is not immunized. Subsequently, this lead to increased inves-
tigations of the multi-group model; see [3, 5-8]. Considering the effect of nonlinear in-
cidence rates for some disease transmissions, Capasso and Serio in [9] have put forward

BSI

the saturated incidence rate taking the form ;—; when they studied the cholera epidemic

spread in Bariin 1973. The crowding effect of the infective individuals can be well reflected

by 1+1ﬂ - and the infection force of the disease can be measured by B1. Concerning this fac-

tor, Lahrouz et al. also incorporated the saturated incidence rate into deterministic and
stochastic SIRS epidemic models [10]. The deterministic system formulated by them is as
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Table 1 Summary of notation

Notation  Explanation

By Rate of disease transmission between compartments S and J;

di, d/k, df Nature mortality of S, /|, R compartments in the kth group, respectively
Ay Recruitment rate of the population into the kth group

&k Fatality rate in the kth group

Yk Recovery rate of infected individuals in the kth group

Ok Removed rate of recovered individuals in the kth group

ok Positive parameter related to kth group

follows:

§=b—/¢LS BSL + YR,

det 1+al S
% =—(u+c+a) + %, (1.1)
% =—(n+y)R+al.

Correspondingly, the stochastic model is as follows [10]:

dS=[b-pS- L + yRldt -0 L dB,
df = [~(u+c+a) + £L)de+ o 3L dB, (12)

= [-(u+y)R + o] dt.

We put forward the multi-group version of the deterministic equation (1.1).

dSi(t) = [Ai = d3Si(t) = Yo7, s + ScRe(0)] de
A1) = (5 B0 — () + o+ L0 d, (1.3)

dR(2) = [yidi(8) = (dR + 8 )Re(H)]dt,  k=1,2,...,m,

here Si(£), Ix(¢), and Ry (¢) represent the number of susceptible, infective, and recovered in-
dividuals of the kth group at time ¢, respectively. We summarize the parameters of system
(1.3) in Table 1.

It is assumed that all parameters are positive throughout this paper. Ideally, the param-
eters involved in ecological models are constant. With this understanding, one only needs
to consider the deterministic models. However, in reality, some parameters will be subject
to the influence of fluctuating environment inevitably. In other words, some data derived
from the environment are not constant but fluctuate around some average value due to
continuous fluctuations in the environment. With this in mind, some researchers try to
introduce perturbations into epidemic models. There exist two kinds of main perturba-
tion approaches in terms of containing the random effects in models. One is to perturb
the positive endemic equilibria in order for making robust the equilibria of deterministic
models. In this situation, the essence of the investigation using the approach is to check
if the asymptotic stability of the positive equilibria of deterministic models can be pre-
served. For example, Shaikhet in [2] proved the stability of the positive equilibrium for a
predator-prey model with delays and stochastic perturbations. We in [11] discussed the
global stability of the multi-group SEIQR model with random perturbation around the
positive equilibrium in computer network. In addition, we also applied this approach to
other epidemic models [12, 13]. The other important approach is with parameters pertur-
bation. Much literature on this approach can be found, such as [7, 14-16]. In this paper, we
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adopt the second approach to endow the stochastic form of the deterministic model (1.3)
and introduce randomness by replacing the parameters By by B + ak%k, where By(t),
k=1,2,...,n, are mutual independent standard Brownian motions with Bi(0) = 0, and oy,
k=1,2,...,n are the intensities of the white noises. We consider the stochastic version of

(1.3) formulated by the equations:

dSi(t) = [Ax - dESi(e) = Y, B0 4 5 Ri(0)] di - 03 SO0 4By (1),

=1 Ltogl(t 1+ak1k (2)

dre(e) = [y, ZOCHD (d’+yk+ek)1k(t>1dt+ak KOO 4By (1), (1.4)

T Tvoyg(t 1+ak1k

dRi(t) = [yrlk(t) - (df +8)Re(®)]dt, k=1,2,...,n

Our overall aim here is to discuss the extinction not only for a deterministic system
but also for a stochastic system. In the course of using the Lyapunov analysis methods,
the main difficulty for a multi-dimensional stochastic system is how we can effectively
tackle drift and diffusion terms. The remaining sections are arranged as follows. Section 2
has the important result of Theorem 2.3 for deterministic model (1.3). Globally asymp-
totic stability of the disease-free equilibrium for deterministic (1.3) is demonstrated when
Zo <1, which implies the extinction of the disease. The most significant results for the
current study are proposed in Section 3. After choosing a key stochastic Lyapunov func-
tion, we verify the disease-free equilibrium Py of (1.4) is pth moment exponentially stable
at large and the disease-free equilibrium Py is almost surely exponentially stable under a
suitable condition. By means of numerical methods, we give a dynamical analysis of (1.4)
in Section 4. In the following section, a comprehensive conclusion is provided. Taking into

account the biological meaning, in this paper, we always assume that
di < min{dy,dg}.

2 Deterministic multi-group SIRS model with saturated incidence rate
Extinction is one of the most important concerns in the course of studying infectious-
disease models. The substantive and core work is refined to one involving the asymptotical
stability at large of the disease-free equilibrium. In this section, we devote ourselves to
the deterministic equation (1.3). The objective is to find suitable conditions determining
the extinction of disease for (1.3). In addition, a sufficient criterion is established for the
asymptotical stability at large of the disease-free equilibrium of (1.3). We briefly mention
an existence result for the endemic equilibrium of (1.3).

There always exists the unique disease-free equilibrium P, for (1.3),
Py =(S7,0,0,53,0,0,...,5,0,0),

where

Ag

S =—¢,
d;

k=1,2,...,n.

We can check the solution of (1.3) with initial condition (S;(0), ;(0), R;(0),...,S,(0),1,(0),

R,(0)) € R*" remains nonnegative. Thus we only consider system (1.3) in R%". Adding the
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several equations of system (1.3) together for every k and in combination with the inequal-
ity above, we have

d(Sk + I + Ry) < (Ak - dz(Sk + I + Rk)) de.

Hence, sup lim;_, oo (Sx + Ix + R) < %. Given the bounded region of R by
k

3n Ag Ag k
= (SI»II;erH-,Sn,In,Rn) €ER"|0 SSk = _Sro Slk = _S’O SRk = s
dk dk dk

Ak
Sk+1k+Rk§—S,1§k§I’l .
dk

Omega limit sets of (1.3) are contained in I'". T is a positive invariant of (1.3).
Let the interior of I" be

o A
I'= {(511111R11~~;Sn’]n’Rn) ERBVI 0 <Sk;1k;Rk;Sk +Ik +Rk < d_;(’l =< k =< n}

k
Set
BuS) - BuSy
F = . : :
ﬂn152 o ,Bnnsg
and
di+y+e 0 e 0
0 dz +Yr+€ - 0
YV = diag(dy + vi + €x) =
0 0 o dptYnt €y
Then the next generation matrix is
BuiSY o B1nS)
dy+y)+€1 dpy+yn+en
Fy=
BmS) BunSp
di+y1+e€1 e dp+yn+eén

The reproduction number of (1.3) is
RBo=p(FV ") =max{|r;rea(F7V 7))}, (2.1)

where o and p denote the set of eigenvalues of a matrix and the spectral radius, respec-
tively. Furthermore, the following proposition will be stated [8, 17].

Proposition 2.1 ([8,17]) For system (1.3), the disease-free equilibrium Py is locally asymp-
totically stable if Z < 1 while it is unstable if %, > 1.
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Let
Bu1SY o B1nS)
d1+y1+q d1+]/1+€1
VAT =
ﬂn159, .. ﬂnnsg
dn+yn+en dn+yn+én

Following [3, 5, 8], the threshold property of spectral radius of ¥ ~L.% is similar to that of
F ¥ . The following lemma can be stated immediately.

Lemma 2.2 ([3, 5, 8]) po(¥\.%) <1isequivalent to %o < 1.
Furthermore, we state that the following.

Theorem 2.3 Assume B = (By;) is irreducible. If % < 1, then the disease-free equilibrium
Py of (1.3) is globally asymptotically stable in I and there is no endemic equilibrium P* at
allinT.

Proof Note that p(¥1.%) <1 from Lemma 2.2. Following [3, 5], define a matrix-valued

function
Bus . BinS1
(di+y1+e1)A+arly) (di+y1+e1)(L+anln)
M(S,I) = . :
(dn+yn+en)1+anl) (dn+yn+en)A+anly)

on R, where $ = (Sy,...,S,)7, 1= (L1,...,1,)T. First, it can be claimed that there is no any
endemic equilibrium P* in T. Because o; > 0, we have 0 < M(S,I) < ¥ ~1.Z. Since the non-
negative matrix M(S,I) + ¥ ~L.Z is irreducible, it follows from the Perron-Frobenius theo-
rem (see [18]) that p(M(S,1)) < p(¥~L.%) < 1. This implies that the equation M(S,I)I = I
has only the trivial solution I = 0, where I = (Iy,...,1,)T. Hence the claim is true.

Second, one can claim that Py is globally asymptotically stable in I". Note that the non-
negative irreducible matrix V1% hasa strictly positive left eigenvector £ := (¢y,...,¢,) >
0 belonging to the eigenvalue p(#~1.%) [18]. Define the operator

Lm=>" zi# (2.2)

P di+vyi+€

on R”. Furthermore, we have the differential operator

n Bijlj
L’(I)—ZZ < 7 1;12” —h)
=0 (M(S,I)-E,)I
¢ (V1F -E)l
e (p(7 7)) -1)L, (2.3)

IA
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where E, and - denote the n x n identity matrix and the inner product of vectors, re-
spectively. If (¥ 1.#) <1,then £- (p(¥ 1.7)-1)I<0.If p(¥ 1.%)<1. Then L'(1) = 0 is
equivalent to I = 0. If p(¥L.%) =1, then it follows from (2.3) that L’(I) = 0 implies

- MS,D=¢-L (2.4)

Because 0 < M(S,I) < ¥ 1%, therefore £ - M(S,1) < £ - (VLF) = p(¥L.F)L = £. Thus
I = 0 is the unique solution of (2.4). In summary, whether p(¥ 1.%) <1 or p(¥ 1) =1,
L'(I) = 0 is equivalent to I = 0, I = 0 is the unique fixed point of the differential operator L'.
It’s also worth noting that if I = 0, then (S,R) = (S¢,0), where Sy = (%,..., 2—5). Hence
the compact invariant subset of the set where L'(I) = 0 is only the singlleton {Pp} CT. It
readily follows from the La Salle invariance principle [19] that the second claim holds.

O
The proof of the following proposition and corollary for (1.3) is standard [17, 20, 21].

Proposition 2.4 Assume B = (By;) is irreducible. If %, > 1, then Py is unstable and (1.3) is

uniformly persistent in T.

Corollary 2.5 Assume B = (By) is irreducible. If #o > 1, then (1.3) has at least one endemic
equilibrium.

3 Perturbed multi-group SIRS model with saturated incidence rate

3.1 Existence and uniqueness of nonnegative solutions for stochastic model
Theorem 3.1 There exists a unique solution (S1(t), [1(£), Ri(2), ..., S.(t), 1,(¢), R,(¢)) of (1.4)
on t > 0 for any initial value (S1(0),(0), R1(0), ..., S,(0),1,(0), R,(0)) € R, and the solu-
tion (S1(¢), [1(£), Ry(2), ..., Su(2), L,(£), R,(2)) € R® for t € [0, 00) almost surely.

Proof Given arbitrarily initial value ($1(0),%(0),R;(0),...,S,(0),1,(0),R,(0)) € R3", be-

cause of local Lipschitz continuity of the coefficients of (1.4), there must be a unique local

solution (S1(¢), I;(¢), Ry(t), . .., Su(t), L,(¢), R,(£)) on £ € [0, 7.), where T is the explosion time

(see [10, 22]). To show the global existence of this solution, it must be claimed that 7, = co

a.s. Let mg > 0 be sufficiently large so that Sx(0), Ix(0), R¢(0) (k =1,2,...,#n) all lie within
1

the interval [m—o, my]. For each integer m > my, define the stopping time

Ty = inf{t €[0,7.): min{Sk(t),Ik(t),Rk(t),k =1,..., n} < —or

1
m
max{Sk(t),Ik(t),Rk(t),k =1,.. .,I’l} > Wl}

We set infJ = co (as usual ¥ denotes the empty set). It is obvious 7, is increasing as
m — 00. Set T = lim,,,_, o T;n, Whence 7o, < 7. a.s. If we can show that 7o, = 00 a.s., then
7, = 0o and (S1(8), 11 (£), Ry (2), ..., Su(£), L(£), Ry (£)) € R3" a.s. for all £ > 0. In other words, to
complete the proof all we need to show is that 7., = co a.s.

For ¢ < 1,,, we can see, for each k,

d(Sk + I + Ry) = (Ak - d}ESk - dilk — el — dek) dt

< (Ak - d}j(Sk + I + Rk)) dt,
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%, if Si(0) + Ix(0) + Rx(0) < 2—5,
k

(Sk(®) + I(£) + Re(2)) < { Sk(0) + Lk(0) + R (0), =M. (31)

if Sx(0) + I (0) + R (0) > dé(’k 1,2,.

Define a C?>-function V : R%" — R, by
n
V(SLILRy -y S L Ra) = D (S =1=1nSe) + (Ie =1 = In L) + (Re = 1~ In Ry)).
k=1
Reviewing Ito’s formula, for s € [0,00), ¢ € [0,s A T,,], it can be derived that

n 1 e ,Bk‘SkI' 0212
_ 1- & Ar— Sc JEKT F) _ TkTk
TR () PR SETIR B

k=1 j=1

~ BySkli e S
+Z|:<1——)(F21Taklj—(dk+yk+€k)1k + ——=——|dt

2(1 + Olklk)z

+ Z<1 - R%) (veli — (A + 80)R) de + S ol =50 4poy
k=1 ‘

P 1+ Olklk

n

= Z(Ak+d,f+di+yk+ek+df+3k
k=1

n

Biil; BriSil; (Ak ~ )
Z(1+ak1) Z(1+ak1) s\ %
- (a’k + ak)Sk - (di + Yk + ek)lk

2(62 4 2 n I, —
— (df + 8) Ry + %S+ L) “)duZL k=S dB(Y)

2(1 + ot dy)? 1+ agly

n n
< (Ak+d;§+y,f+ek+d,’f+8k+z,3k,-M,+ak2M,%> dt

k=1 j=1

+ Xn: gdB(t)

P 1+ O(ka

Therefore,

V(t) <Nt+2/ Uk(lk Sk) a.s.,

1+ O{/Jk

n
N = Z(Ak+dk+dk+yk+ek+dk +8k+2ﬁk,M +0o M2>
j=1

If we take the expectation of the inequality above, then we obtain, for s € [0, o0],

E[V(Sl(rm A s)) <NsAT,<Ns as. (3.2)
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Set Q,, = {t;y < s} for m > my. Note that for every w € Q,,, there is at least one of

Sk (T, 0), k(T ®), and Ry(t,,, w), k = 1,...,n that equals either m or %, and hence

V(S1(tim), [L(Tim), Ri(Tim),s « « s Su(Tin)s L(Tin), Ry (T1)) is no less than m — 1 — Inm or % -1-
lni = % —1+ Inm. Consequently,

V(Sl(fm)¢ L(Ti), Ri(Tin)s -+ Su(Tin), Ln (T, Rn(Tm))
Z(m—l—lnm)/\(i—l+lnm>, (3.3)
m

E[V(rm N s))] > E[V(rm N s))x<rm§5)] + E[V(rm A s))X(TWS)]

> E[V(Tm A9))yiye9 | (3.4)
It follows that
E[V(rm A s))] > |:(m —1-Inm) A (% -1+ lnm):|P(tm <s). (3.5)

Combining (3.2) with (3.5) gives for all s > 0

Ns

5) < T ,
(m—l—lnm)/\(%—1+lnm)

P(t,, <

where 1g,,() is the indicator function of €,,. Letting m — oo, we get for s € [0, 0],
P(15 < 5) = 0. Thus P(to = 00) = 1. So we must therefore have 7, = 00 a.s. O

Let

A
= {(SI»II,RI»-HxSmImRVI) :Sk > O)Ik = Oka = O,Sk +Ik +Rk = d_;(y
k

k=1,2,...,n, almost surely}.

Theorem 3.2 I'* is a positively invariant set of (1.4), that is, if for any initial value
(81(0), 1(0), R1(0), ..., S4(0),1,(0), R,,(0)) € T'*, the solution (S1(¢), [1(2), Ri(2), ..., Sx(t), L, (2),
R,(2)) € T* of (1.4) for all t > 0 almost surely.

Proof Adding the equations of system (1.4) together for every k € {1,2,...,n}, we have

d(Sk([) + I (t) + Rk(t)) = (Ak - d;fSk(t) - dilk(t) — exdy(t) - dek(t)) de.

Then, if (Si(s),...,Su(8),1(5), ..., L,(5), Ri(s), ..., R,(s)) € R*" for s € [0,¢] almost surely, we
obtain

d(Sk(t) + Ii(t) + Rk(t)) < (Ak - di(Sk(t) — I (t) —Rk(t))) de.

By integration we check

Sik(s) + I(s) + Re(s) < A—; + ek <Sk(0) + I (0) + Ry (0) — A—;()
a; dy
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If Si(0) + I;(0) + Ri(0) < =k, then Si(s) + Ix(s) + Ri(s) < d§ almost surely, thus
%
Si(s),Ii(s),Ri(s) e I'*  forse[0,t], a.s

This completes the proof. O

The assumption that (S;(0),1(0), R;1(0),...,S,(0),1,(0),R,(0)) € I'* will be used for the
remaining parts of this paper.

3.2 pth moment exponential stability at large and almost surely exponential
stability in I'*
Clearly, the disease-free equilibrium of (1.4) is Py = (AS1 ,0,0,. dS ,0,0). We have men-
tioned in Section 2 that when %, <1, P, of (1.3) is globally stable. It means the extinction
of disease will be inevitable after a period of time. Therefore, controlling the infectious dis-
ease by investigating the disease-free equilibrium Py of (1.4) is important as well. In this
subsection, it will be verified that Py is pth moment exponentially stable at large. Moreover,
by using appropriate stochastic Lyapunov functions, almost surely exponential stability of
Py also will be stated in this subsection.
Check the d-dimensional stochastic equation [23]

dx(¢) =f (x(2),¢) dt + g(x(2), ) dB(t), ¢ > to. (3.6)

Provided that (3.6) satisfies the existence-and-uniqueness theorem, then, given arbitrarily
initial value x(ty) = Xo € R%, there exists a unique global solution x(¢; ty,X) for (3.6). To
study the stability, it will be assumed in this subsection that £(0,¢) = 0 and g(0,¢) = 0 for
all £ > ty. So (3.6) admits a solution x(¢) = 0, which is called an equilibrium position.

Denote by C*'(R? x [ty,0); R,) the family of all nonnegative functions V(x,t) on
R4 x [ty,00) which are continuously twice differentiable in x and once in ¢. Define the
differential operator L associated with (3.6) by

d 1¢ @
=+ :f,'(x,t)ax} 5 2 le" gt =
i=1 g ;;1

Let L act on a function V € C*1(R? x [ty, 00); R,), then
1
LV(x,t) = Vy(x,t) + Vi(x, £)f (x, £) + 5 trace[g” (X, £) Vi (X, £)g(x, £)].

Definition 3.3 ([10, 23]) The equilibrium X = 0 of the system (3.6) is said to be:
(1) stable in probability if for all € > 0,

lim P(sup|X(t,X0)| > e) —0;
Xo—0 >0
(2) asymptotically stable if it is stable in probability and, moreover,

lim P( lim X(6,X,) = 0) -1

Xo—0 t— 00
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(3) globally asymptotically stable if it is stable in probability and, moreover, for all
X() € ]Rd,

P(tlim X(t,Xo) = o) -1
(4) almost surely exponentially stable if, for all X, € RY,

1
limsup - ln|X(t,XO)| <0 as;

t>oo L

(5) pth moment exponentially stable if there is a pair of positive constants C; and C,
such that, for all X, € R?,

E(|X(t,X0)[") < C1|1XoPe™" ont>0.

Next we review the following lemma in which the conditions for the moment exponen-
tial stability of the equilibrium of (3.6) will be presented (see [10, 23]).

Lemma 3.4 Assume that there exists a function V € C*'(R3" x [ty,00); R,) such that the

inequalities

KilxP < V(x,t) < Klxl?,

LV(x,t) < -K3|xl’, K;>0,p>0,
hold. Then the equilibrium of the system (3.6) is the pth moment exponentially stable. Usu-
ally, if p = 2, we call it exponentially stable in mean square and the equilibrium X = 0 is
globally asymptotically stable.

As a special case of Young’s inequality, the following lemma can be stated.

Lemma 3.5 Let&,x,y>0,p > 2, then

-1 1
xp_lyf w )gxp+

)’p;
er-1
P , 12” (3.7)
— 2-
Wyt < P2y LTy,
V4 p

Theorem 3.6 Assume B = (Bij)uxn is irreducible and p > 2. If o = p(My) < 1 and (di +

. 2.2
Vi +€x)— Z}*?:l ﬂk;gk N ’;‘(\d’gg hold, then the disease-free equilibrium Py of (1.4) is pth moment

exponentially stable globally.

Proof Let p > 2 and (So,1p,Ro) € I'*, in view of Theorem 3.2 the solution of the sys-
tem (1.4) remains in I'*. We know from the previous assertion that My = ¥ L% is ir-
reducible, it follows that the nonnegative irreducible matrix My has a strictly positive
left eigenvector w := (w1, wy, ..., w,) > 0 associated with the eigenvalue p(M,), such that
(w1, w9, ...,w,) p(My) = (w1, w,...,w,) M.
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Define a C2-function V : R%" — R, by

n

Ak 1 o
V(Sb]l)Rl;---;SanmRn)=Z <$_Sk> +_271p+zbk i (3 8)

1
= pkld + Yk + €k

where ag, by, k =1,2,...,n are positive constants which we can choose in the following.
Set V(x) = Vi(x) + V5(x) + V3(x), where

n n

vl(x)=Zak(2s Sk>, Vz(x)=}jZLIf, Va(x) = ) iR,

1
= = dy + Vi + €k

k=1
Denote L as the generating operator of system (1.4). We calculate
i SkI/ Ay p-1
L, = Zpdkak Z Zpﬂkl (e ¢
=t k=1 j=1 +oly \ dy
-1
_ Z ZP(SkakRk< dS Sk)
k=1 j=1
S,% 12< Ak p-2
i Zp(p Dofax e oo ( . sk) (3.9)
and
- @k " Bii Skl _11
LV, = GOk i d1+)/(+e ”
) kgld£+yk+6k(jzzl 1+ ol ( X k)k
1 " SZ[P
2 N T 3.10
+ 2 ;(p ) (A + axly)? (3.10)
LV3 = ZPkap (vl = (A5 + Sk)Re) = Zpbk(yklkal (@ 4 5)R), -
k=1 —

respectively. Because S, I, R € (0, %),
k

LV =LVi +LV, +LV3

n n

n -1
A p AkI A p
<- E pd}fﬂk(d_ik - Sk) + PBrak—5- (—k Sk)
k=1

k=1 j=1

1< o A2 (A 2
+5;p(’”—”"k“k(d5>2( -5

n

nog A Plp 20
Wk Z‘=1 Bii il I 1 AL
+ E |:< / a8 —(di+)//<+6k)1f +—(p—1)op Lk

= &+ yic + €x 2 k (@)

+ Zpbk(VkaRiJ — (df + (Sk)Ri). (3.12)

k=1
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Applying Lemma 3.5
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-1 1
[ L (3.13)
p
A P2 p_2 (A P2 o
I£<—Sk —Sk) <2 s(—sk Sk) + —eszIf, (3.14)
dy p da; p
p-1 P
1,-<A—Sk—5k) glilg(A—Sk 5k> " l81-191}’
d; p d; p
-1 (A PN
< p—s(—;( —Sk> + ( ’S) g, (3.15)
p day P(d/ »
_ -1
IkRi '< pp R + sl_plf, (3.16)
- hy ﬂk,Ak p-1)(p-2)02A2 Ax 4
e Fa oo e 5
; 2(d,f)2 di
_ iw;{(l - w- l)ak _ lel ﬂk/(p - I)Ak)lp
= 2+ e ve)  pldh+ v e)dy )
X Py [y}
Pl + v+ )’
(p 1) Uk M » - Z/ 1/3k1Ak(A i)
+Z|: (dS T+ brye” 7L +Z A ——c & dS)P
- Z bic(p(df + 8¢) — (p = Deye) RY. (3.17)
n BriA pA2<72
Because (df + vk + €x) — ZH k‘]ii d 2(;;(9)]; ,
) z”:wk (1 (DoAY Bulp- 1)Ak>1p
P 2d)Xd} + yi+e)  pldi+yi+eddy )
n Bk PA ffk
" -1 Dot
Do (1- D) S
= dy + Vi + €k
hence
- S Z} lﬂk]Ak (p 1 (p 2)0']( Ak p
LV ==Y aipdi - |(p-1) + — et =5 —Sk
k=1 (dk) dk
1< B ‘ 1)o2A2
- = Zwk[lf SZ; 1P p:| Z|: w- ?ggk k822p + byiet p][f
= dp(dy + v+ €0) = (dy)?
Bii Ar(A))?
+ Z L A, Zbk(p df + 8) - (p-Den) R (3.18)

a3 (dy
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Note that

n

Zwkl _Zwkzds Bii Mk Ip
k=1

di+yi+€)’
1— BuiSY _ BuiSY o _ B1nS) »
d{+y1+q d{+y1+q d{+y1+el 11
__BuS 1 _pusy o __PuS I
_ (wl,wz,“.,wn) d§+y2+ez d§+y2+ez dé+y2+52 2
__ BmS) __ BmSY 1 _bmS I
Al vy rey ALy, +ey ALy, +ey
= w(E, — My)I?
= (1= pMo)) (@1, @2, .., 0)IP, (319)

where I = (I, I5,...,I)T. Thus

Lvs—iak{pdf‘[(ﬂ I)Z’lﬁk] s H(ﬁ_sky

S S
P 2(dR)? dy
1 1 1 _
- = (1= pMo)) (@1, @3, ..., 00)IP + Z|: % S bryee! 1":|If
p = (dy)?
- Z, 1 ﬁk]Ak(A )
2 akdlf(—d]‘s)l’ Zbk dk + (Sk (p — I)SVk)Ri. (320)

An ¢ can be chosen small enough so that both the coefficients of (% — 8¢)P and the coef-
&

ficients of R are negative, and we can also choose sufficiently small a; and by such that

_}9 (1= pMo)) (@1, 02, ..., 00)I7 + Z[“k%g

2+ bk)/k{;“l pi|1p
k=1

" Z, 1 B Ax(A )”

N
k%: d3(d5y

is negative. Consequently, LV is negative-definite. Therefore, we conclude that under the
condition %, < 1, the equilibrium Py of (1.4) is stochastically asymptotically stable at
large. g

When p =2, we have a corollary of Theorems 3.4 and 3.6.

Corollary 3.7 Assume B = (Bij)nxn is irreducible. If #o = p(Mo) <1 and (dI + Vi + €k) —

n Bk PAkUk
2 a3 2(d5
cally stable.

hold, then the disease-free equilibrium Py of (1.4) is globally asymptoti-

Theorem 3.8 If 20,(2(61]5; - Z;':Lj Ik ﬂkj%) > B then the disease-free equilibrium Py is al-
k

most surely exponentially stable in T'*.
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Proof Let (So,1o,Ry) € I'*. By Theorem 3.2, the solution of (1.4) belongs to the set I'*.
Define

(A
V4:1n|:Z(d—§ — Sk +1k+Rk>:|~

k=1 k

Applying Ito’s formula [24], we obtain

Vi Vs AV,
LVy= 30| GordSir 5t dlev 5ot dR
N Z[ 25, 9% a1, Yt GRe k]

92V, 3%V,
dSi dS, dl dI + —5
+Z|: 852 k Aok + ——— 81k kAl + R

1 n
= P (—dSk + d[k + de)
Zk:l([;_ik_sk + Iic + Ri)) <Z )

1
Z _s I R )) (Z(dsk dSk + d]k d]k + de de))
k= 1 k Ak + Kk

n

1
+ E (dSk d]k + dSk de - d]k de) , (3.21)
(ZZ=1(2—§ = Sk + I + Ry))? ( )

where dBdB = dt and dBd¢ = dtdB = 0. Then

Sele \?
dSy dSi = dI dIi = —dS dIj = o <1 fa i&) dt, dSpdRy = dl; dR; = AR dRy =0,

n

1 Z "\ BiiSil;
n ] _Ak + d}fSk + _— = (SkRk dt
Zil(;\_?_si+1i+Ri)|:k=l< ;1+ak1j

1 (N BiiSk
|:Z (Z 1,3-/: ak ; _ (di + yk)lk)j| dt
k=1 \ j=1 Kl

+ Py
Zizl(d_é - Si + Ii + Rl')

1 [Xn:(yklk - (d+ 5k)Rk)i| dt

Zl 1(——S +I;+R)

Lv, =

n 2
Skl
_Zzgkz< Sl ) dt
p (1 +axly) Zi:l(d_lsl =Si+1i+Ry)

- 204 Skl
+ Z n kAk L dB. (3.22)
k=1 (1 + o) Zi:l(d_é -S;+I;+R)
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S
Let My = - , we have
(1+0¢k1k) Zi:l(ﬁ_si+1i+Ri)

i

n dS(Ak Sk) + dLl + dRRy
LV, = [—20,31\/[2 +2BuMy — ] dt
; Zi:l(d_$_si+1i+Ri)
+ = Z Z lBk] k] dt + 204 My dB
ZH( = SiH L+ R) 4 S L+ o

n

ds( — Sk +Ir + Ry)
< 20‘kMk + 2,3kkMk k - :|
1|: Zi:1(d—§—5i+1i+Ri)

k=
" 1 Xn: 2”: PS4y, 220 M, dB, (3.23)
i Mi .
211(2_[3[ =Si+Li+R) % Ty 1+ ad;
n
Ay
Zd}z(—s —Sk +Ik +Rk>
k dy
K
n n
BriSil;
<> di ( < = Sc+ Ik +Rk>
k=1 k=1 k Zl 1(d5 -Si+1; +R)k21:1121;’k1+ak1j
n n
Ak
= Py s (3.24)
k=1 j=1j#k

LV, < ( 202 M2 + 2B My — di + Z B — ) dt + ZZakMkdB
Jj=Lj7#k k=1

2 S 2 2 A
" ) B \* Biae — 2o + 20 Z;lzl,j#k B d_gk
= —20’k Mk — F + 202 dt
k=1 k k

n

+ 20'kMk dB, (325)
k=1

we deduce that

n_ By —2dio} + 207 Z, 1k ﬂk/ & "
dva <y’ £dt+) " 200MdB, (3.26)
k=1 26k k=1

and by integration we get

" (A
11’1|:Z(d—; —Sk +Ik +Rk>:|

k=1

A
n Ak . . . n lBkk - ZdSO'k + ZO‘k Z;lzl,j;/k ’Bkjd_g
<In Z(E_Sk'ﬂk +R/<> + t
k k

P 20k

=1

/0 ZzakMk(s) dB(s) (327)
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From Theorem 3.2, we obtain fot > i Mi(s) dB(s) = fot > i Mi(s)dB(s) < Ct. According
to the strong law of large number [25], we deduce

1 [t
t]im 2/ E M (s)dB(s) =0 a.s.
—00 0 oy

Therefore, from (3.26) and (3.27) we conclude that
lim supIn 2": ﬁ—51<+11(+Rk <2": B — 2dio} + 207 2": ,Bk,'ﬁ <0.
100 as - =] O
k=1 N7k k=1 j=Lyjk k

4 Numerical simulations
Using the Matlab software, we calculate the equilibrium of (1.3) when # = 2. In this case,

we have
ﬂnS? ,5125?
Mo = d{+51+y1 d{+q+y1 o ﬁlll(l IBI2KI
0= B89 B2259 - K K
Pan o _Pn%h By Bnks
dy+eg+yy  dy+ex+yr
and
B = p(My) = BuKi + BoaKs + v/ (BuKi — B22K2)* + 4P12 P K1 K>
0= 0) = ’

2

here K S %
where (1 = m, (2 = W.
If the system parameters are given by

A1=25 Bu=050, =010, & =02, d>=060, d =085,
ak =0.86, € =04, 81 =0.5, v = 0.45,
Ay=35  Bn=012,  f=045  &; =03, d5=070, d}=0.78,
dX=083, €=05 = 8=01 =05
then it is easy to compute that %y = 1.5331 > 1. The computation shows that P* =
(S, I, Ry, S5, I3, RS) = (0.5162,0.1708,2.8465,0.8733,0.4695, 4.2584). The computing re-
sult is in good agreement with the statement of Corollary 2.5.

Next, we simulate the solutions of (1.4). Discretizing the system (1.4) for ¢ = 0, At,2At,
...,nAt,and k = 1,2, we have

BiaSkili  BraSkil2,i
Skis1 = Sk + (Ag — SEKILL DSR2 g8 Gy s 4 83 Ry ;) At

L+oyly; T+ogly,;
BikSkilki  fAFo
Ok vyl Atk (4.1)
_ BiiSkilli | BraSkil,i 1 ) Bk Sk ilk,i :
1k,l+1 = Ik,l + ( Tragly; + Trogly,; - (dk + Vit Gk)Ik,l)At + Ok Troly v At‘{;k,lr

Riis1 = Rii + (Vicdii + (df + 81)Re i) AL,

where the time increment Af > 0, and &;; are N(0,1)-distributed independent random
variables, which can be generated numerically by pseudo-random number generators.
Moreover, we choose S;(0) = 2.5, ;(0) = 1.3, R;(0) = 0.75, S,(0) = 5.3, I(0) = 1.5, R,(0) =
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Figure 1 Stochastic trajectories of (1.4) for o7 = 0.3, 63 = 0.05, %o = 0.6465 < 1, At =103,
iA A2q2 BojA
" n BijAr _ _ A9 n BajAs
(dy+y +€1)- Z]-=1 5= 1.0125>0.879 = 2 (dy +y2+€)- Zj=1 dg =0.08 >
1 1
A242
0.0625=—22,
@3)
35
R "
. JE o
- - - -8, 6.,
251 Waad " '
N R 5| L
2 1{ v v “ s,
N
ar =
| B 1 >
" %,Iw 1 d
nt] i
Y o
051 A 1
““ ] i 1i
ol N ] i ‘A
0,‘!‘,(.w~w)-¢“l_\-‘,.‘.l“ ’*‘-“.._ R ————
_0'50 1600 2600 3600 ; 4600 5600 6600 7000 0 560 1600 1500 2600 25;00 3600 35;00 4(;00 45b0 5000
Figure 2 Stochastic trajectories of (1.4) for o4 = 0.85, 62 = 1.02, and % = 0.6465 < 1, At = 1073.

0.5 as the initial values. We state that the initial values in every example are identical with
the values mentioned above. The simulation on the asymptotic stability of the equilibrium
Py of (1.4) is shown in Figure 1 for o7 = 0.3, 03 = 0.05. The system parameters are given by

A =25 Bu=010, =012, & =02,  d°=080, dl =085
ak=086, =04, 6 =05 =045,
Ay=35  Bn=021, =013, o$=03, d5=070, d=0.78,
d¥=083, =05 8=01 =05
then we obtain %, = 0.6465 < 1. By a simple computation, Py = (S?,1°,R?,83,19,R)) =
(3.125,0,0,5,0,0). It must be notified that we adopt the same coefficient parameters as
shown above in the examples of Figures 2-5, and this means that the calculated reproduc-
tion numbers are the same.

If we adapt the first group of parameters for system (1.4), that is, the parameters are
taken as follows:

A=25 Bu=050, =010, & =02, d5=060, d =085,
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Figure 3 Stochastic trajectories of (1.4) for o7 = 3.75, 03 = 2.72, and %, = 0.6465 < 1, At = 1073,
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Figure 4 Stochastic trajectories S1(t), I1(t), R1(t) when specifying the intensities of the Brownian
motions as 01 = 0.85, 0, = 1.02 (left) and 61 = 3.75, 0, = 2.72 (right), respectively, and t € [0, 5001.
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Figure 5 Stochastic trajectories S,(t), I2(t), R2(t) when specifying the intensities of the Brownian
motions as 01 = 0.85, 0, = 1.02 (left) and 071 = 3.75, 0, = 2.72 (right), respectively, and t € [0, 5001.

dR = 0.86, € =04, 81 =0.5, y = 0.45,
Ay =35, Bo1 = 0.12, Bao = 0.45, ay =0.3, ds =0.70,

=078, d¥=083, =05 8=01  »=05

then the calculated reproduction number is still %, = 1.5331 > 1, but if we change the noise

intensity to 01 = 2.2, 03 = 1.9, the corresponding simulations are shown in Figure 6.
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Figure 6 Stochastic trajectories of (1.4) for 01 =2.2, 02 = 1.9, %o = 1.5331 > 1, 26 2(d5 - B1> %) =
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2783 > B, = 0.25, 2035 - Bin F) = 0722 > B3, = 0.2025.

Figure 1 corresponds to 07 = 0.3, 02 = 0.05, and a simple check shows that the intensity
and system parameters satisfy the condition of Corollary 3.7. We can therefore conclude,
by Corollary 3.7, that the equilibrium P, of (1.4) is asymptotically stable. There exists good
agreement between the mathematical results and computer simulations in Figure 1. Fig-
ure 2 corresponds to o1 = 0.85, 0y = 1.02, and the comparison of Figures 1 (left) and 2
(left) suggests that the fluctuations of the curves increase as the noise level increases. The
trajectories of Figures 1 (right) and 2 (right) follow the same regularity. So does the com-
parison of Figures 2 and 3. Note that the condition of Corollary 3.7 is sufficient but not
necessary. In other words, if the condition of Corollary 3.7 is not satisfied, the system (1.4)
could be stable. For example, both o7 = 0.85, 0, =1.02 and o3 = 3.75, 03 = 2.72 do not obey
the condition of Corollary 3.7, but we can see from Figures 2 and 3 that the equilibrium
Py remains asymptotically stable. In order to observe the influences of the noise intensity
of the stochastic system (1.4) much clearer, we re-draw the solution curves of system (1.4)
in Figure 4 and Figure 5 when the intensities of the Brownian motions are specified as
o1 = 0.85, 09 =1.02 or o1 = 3.75, 0y = 2.72, respectively, and ¢ € [0,500]. Analyzing the
curves in Figures 4 and 5, they indicate that the higher the values of the intensities of the
Brownian motions are, the more violent the fluctuations of solution curves are, and the
shorter time solution curves attain to the equilibrium Py. Our numerical simulations are in

good agreement with the theoretical results derived from complicated analysis methods.

5 Conclusion

In this paper, we propose deterministic and stochastic multi-group SIRS models with a
saturated incidence rate. Making use of the Perron-Frobenius theorem, the La Salle in-
variance principle, and the Lyapunov function analysis method, we obtain the theoretical
results describing the dynamical behavior of these epidemic models. These theories are
the further developments of the study by Lahrouz et al. [10] for single-group SIRS mod-
els with a saturated incidence rate. As discussed in Section 3, there exists an important
threshold %, determining the persistence and the extinction of disease for the determin-
istic model. As for the stochastic model, some sufficient criterions for stochastic asymp-
totical stability of the equilibrium P, are established via stochastic analysis techniques. It
is further found that the pth moment exponential stability of Py depends on the threshold
Ko, the magnitude of the intensity of noise, and the parameters of (1.4) except the param-
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eter oy, which measures the saturation effect. However, it must be noted that the almost
surely exponential stability depends on the intensity of noise and the parameters of (1.4)
only, while the threshold %, has no effect at all, even when %, > 1, (1.4) remains almost

surely exponentially stable.
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