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Abstract
This paper studies the existence of solutions for anti-periodic boundary value
problem for a coupled system of the fractional p-Laplacian equation. Under certain
nonlinear growth conditions of the nonlinearity, a new existence result is obtained by
using the Schaefer fixed point theorem. As an application, an example to illustrate our
result is given.
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1 Introduction
The subject of fractional calculus has gained considerable popularity and importance due
to its frequent appearance in various fields of science and engineering such as control,
porous media, electrochemistry, viscoelasticity, electromagnetic, etc. (see [–]). Recently,
fractional differential equations have been of great interest due to the intensive develop-
ment of theory of itself and its applications (see [–]). Moreover, the existence of so-
lutions to some coupled systems of fractional differential equations have been studied by
many authors (see [–]). For instance, Ahmad and Nieto (see []) considered a three-
point boundary value problem for a coupled system of nonlinear fractional differential
equations given by

⎧
⎪⎨

⎪⎩

Dαu(t) = f (t, v(t), Dpv(t)), t ∈ (, ),
Dβv(t) = g(t, u(t), Dqu(t)), t ∈ (, ),
u() = , u() = γ u(η), v() = , v() = γ v(η),

where  < α,β < , p, q,γ > ,  < η < , α – q,β – p ≥ , γ ηα–,γ ηβ– < , and Dα is the
standard Riemann-Liouville fractional derivative. Under certain growth conditions on f
and g , an existence result was obtained by using the Schauder fixed point theorem. In ad-
dition, Bai and Fang (see []) discussed the existence of a positive solution to the singular
coupled system of the form

{
Dsu = f (t, v),  < t < ,
Dpv = g(t, u),  < t < ,
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where  < s, p < , Ds is the standard Riemann-Liouville fractional derivative, f , g :
(, ] × [, +∞) → [, +∞) are two given continuous functions, and limt→+ f (t, ·) =
limt→+ g(t, ·) = +∞. A nonlinear alternative of Leray-Schauder type and the Krasnoselskii
fixed point theorem in a cone were applied to establish the existence results on a positive
solution.

The anti-periodic boundary value problems occur in the mathematical modeling of a
variety of physical processes (see [, ]) and recently received considerable attention.
For an example and details of the anti-periodic boundary value problems, see [, ] and
the references therein.

The turbulent flow in a porous medium is a fundamental mechanics problem. For study-
ing this type of problems, Leibenson (see []) introduced the p-Laplacian equation as
follows:

(
φp

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
, (.)

where φp(s) = |s|p–s, p > . Obviously, φp is invertible and its inverse operator is φq, where
q >  is a constant such that /p + /q = . In the past few decades, many important results
as regards (.) with certain boundary value conditions have been obtained. We refer the
readers to [–] and the references cited therein. However, as far as we know, there are
relatively few results on the anti-periodic boundary value problems (ABVPs for short) for
coupled systems of the fractional p-Laplacian equations.

Motivated by the works mentioned previously, in this paper, we investigate the existence
of solutions for ABVP for a coupled system of the fractional p-Laplacian equation of the
form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dβ

+φp(Dα
+ u(t)) = f (t, v(t), Dγ

+ v(t)), t ∈ [, ],
Dδ

+φp(Dγ

+ v(t)) = g(t, u(t), Dα
+ u(t)), t ∈ [, ],

u() = –u(), Dα
+ u() = –Dα

+ u(),
v() = –v(), Dγ

+ v() = –Dγ

+ v(),

(.)

where  < α,β ,γ , δ ≤ , Dα
+ is a Caputo fractional derivative of order α, and f , g : [, ] ×

R
 →R are continuous. Note that the nonlinear operator Dβ

+φp(Dα
+ ) reduces to the linear

operator Dβ

+ Dα
+ when p =  and the additive index law

Dβ

+ Dα
+ u(t) = Dα+β

+ u(t)

holds under some reasonable constraints on the function u (see []).
The rest of this paper is organized as follows. Section  contains some necessary nota-

tions, definitions and lemmas. In Section , based on the Schaefer fixed point theorem, we
establish one theorem on the existence of solutions for ABVP (.) (Theorem .). Finally,
in Section , an explicit example is given to illustrate the main result.

2 Preliminaries
For convenience of the readers, we present here some necessary basic knowledge and
definitions as regards the fractional calculus theory, which can be found, for instance, in
[, ].
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Definition . The Riemann-Liouville fractional integral operator of order α >  of a
function u : (, +∞) →R is given by

Iα
+ u(t) =


�(α)

∫ t


(t – s)α–u(s) ds,

provided that the right side integral is pointwise defined on (, +∞).

Definition . The Caputo fractional derivative of order α >  of a continuous function
u : (, +∞) →R is given by

Dα
+ u(t) = In–α

+
dnu(t)

dtn

=


�(n – α)

∫ t


(t – s)n–α–u(n)(s) ds,

where n is the smallest integer greater than or equal to α, provided that the right side
integral is pointwise defined on (, +∞).

Lemma . (see []) Let α > . Assume that u, Dα
+ u ∈ L([, ],R). Then the following

equality holds:

Iα
+ Dα

+ u(t) = u(t) + c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , and n is the smallest integer greater than or equal to α.

Next, we will give the Schaefer fixed point theorem (see for example []), which will be
used in this paper.

Lemma . Let X be a Banach space and T : X → X is a completely continuous operator.
If the set 	 = {u ∈ X|u = λTu,λ ∈ (, )} is bounded, then T has at least one fixed point in X.

In this paper, we take Z = C([, ],R) with the norm ‖z‖ = maxt∈[,] |z(t)|, X =
{u|u, Dα

+ u ∈ Z} with the norm ‖u‖X = max{‖u‖,‖Dα
+ u‖}, and Y = {v|v, Dγ

+ v ∈ Z} with
the norm ‖v‖Y = max{‖v‖,‖Dγ

+ v‖}. For (u, v) ∈ X × Y , let ‖(u, v)‖X×Y = max{‖u‖X ,
‖v‖Y }. Obviously, (X × Y ,‖ · ‖X×Y ) is a Banach space.

3 Existence result
In this section, a theorem on the existence of solutions for ABVP (.) will be given under
the nonlinear growth restrictions of f and g .

As a consequence of Lemma ., we have the following result, which is useful in what
follows.

Lemma . Given (h, h) ∈ Z × Z, the unique solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dβ

+φp(Dα
+ u(t)) = h(t), t ∈ [, ],

Dδ
+φp(Dγ

+ v(t)) = h(t), t ∈ [, ],
u() = –u(), Dα

+ u() = –Dα
+ u(),

v() = –v(), Dγ

+ v() = –Dγ

+ v()

(.)
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is

(
u(t), v(t)

)
=

(
B(h) + Iα

+φq
(
A(h) + Iβ

+ h
)
(t),

B(h) + Iγ

+φq
(
A(h) + Iδ

+ h
)
(t)

)
,

where

A(h) = –



Iβ

+ h()

= –


�(β)

∫ 


( – s)β–h(s) ds,

B(h) = –



Iα
+φq

(
A(h) + Iβ

+ h
)
()

= –


�(α)

∫ 


( – s)α–φq

(

A(h)

+


�(β)

∫ s


(s – τ )β–h(τ ) dτ

)

ds,

A(h) = –



Iδ
+ h()

= –


�(δ)

∫ 


( – s)δ–h(s) ds,

B(h) = –



Iγ

+φq
(
A(h) + Iδ

+ h
)
()

= –


�(γ )

∫ 


( – s)γ –φq

(

A(h)

+


�(δ)

∫ s


(s – τ )δ–h(τ ) dτ

)

ds,

and φq is understood as the operator φq : Z → Z defined by φq(z)(t) = φq(z(t)).

Proof Assume that (u, v) satisfies the equations of ABVP (.), then Lemma . implies
that

φp
(
Dα

+ u(t)
)

= c + Iβ

+ h(t), ∀c ∈R.

From the boundary value condition Dα
+ u() = –Dα

+ u(), one has

c = –



Iβ

+ h() = A(h).

Thus we have

u(t) = c + Iα
+φq

(
A(h) + Iβ

+ h
)
(t), ∀c ∈R.

By the condition u() = –u(), we get

c = –



Iα
+φq

(
A(h) + Iβ

+ h
)
() = B(h).
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A similar proof can show that

v(t) = c + Iγ

+φq
(
c + Iδ

+ h
)
(t),

where

c = –



Iδ
+ h() = A(h),

c = –



Iγ

+φq
(
A(h) + Iδ

+ h
)
() = B(h).

The proof is complete. �

Define the operator T : X × Y → X × Y by

T (u, v)(t) =
(
B(Nv) + Iα

+φq
(
A(Nv) + Iβ

+ Nv
)
(t),

B(Nu) + Iγ

+φq
(
A(Nu) + Iδ

+ Nu
)
(t)

)

:=
(
Tv(t), Tu(t)

)
, ∀t ∈ [, ],

where

Tv(t) = –


�(α)

∫ 


( – s)α–φq

(

–


�(β)

·
∫ 


( – τ )β–f

(
τ , v(τ ), Dγ

+ v(τ )
)

dτ

+


�(β)

∫ s


(s – τ )β–f

(
τ , v(τ ), Dγ

+ v(τ )
)

dτ

)

ds

+


�(α)

∫ t


(t – s)α–φq

(

–


�(β)

·
∫ 


( – τ )β–f

(
τ , v(τ ), Dγ

+ v(τ )
)

dτ

+


�(β)

∫ s


(s – τ )β–f

(
τ , v(τ ), Dγ

+ v(τ )
)

dτ

)

ds, ∀t ∈ [, ],

Tu(t) = –


�(γ )

∫ 


( – s)γ –φq

(

–


�(δ)

·
∫ 


( – τ )δ–g

(
τ , u(τ ), Dα

+ u(τ )
)

dτ

+


�(δ)

∫ s


(s – τ )δ–g

(
τ , u(τ ), Dα

+ u(τ )
)

dτ

)

ds

+


�(γ )

∫ t


(t – s)γ –φq

(

–


�(δ)

·
∫ 


( – τ )δ–g

(
τ , u(τ ), Dα

+ u(τ )
)

dτ

+


�(δ)

∫ s


(s – τ )δ–g

(
τ , u(τ ), Dα

+ u(τ )
)

dτ

)

ds, ∀t ∈ [, ],
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and N : Y → Z, N : X → Z are Nemytskii operators defined by

Nv(t) = f
(
t, v(t), Dγ

+ v(t)
)
, ∀t ∈ [, ],

Nu(t) = g
(
t, u(t), Dα

+ u(t)
)
, ∀t ∈ [, ].

Clearly, the fixed points of T are the solutions of ABVP (.).
Our main result, based on the Schaefer fixed point theorem and Lemma ., is stated as

follows.

Theorem . Let f , g : [, ] ×R
 →R be continuous. Assume that

(H) for ∀(u, v) ∈R
, t ∈ [, ], there exist nonnegative functions a, b, c, a, b, c ∈ Z

such that

∣
∣f (t, u, v)

∣
∣ ≤ a(t) + b(t)|u|p– + c(t)|v|p–,

∣
∣g(t, u, v)

∣
∣ ≤ a(t) + b(t)|u|p– + c(t)|v|p–.

Then ABVP (.) has at least one solution, provided that

L :=
ω

�(β + )
· ω

�(δ + )
< , (.)

where

ω =
p–‖b‖

p–(�(γ + ))p– + ‖c‖,

ω =
p–‖b‖

p–(�(α + ))p– + ‖c‖.

Proof The proof will be given in the following two steps.
Step : T : X × Y → X × Y is completely continuous.
By the definitions of T and T, we obtain

Dα
+ Tv(t) = φq

(
A(Nv) + Iβ

+ Nv
)
(t),

Dγ

+ Tu(t) = φq
(
A(Nu) + Iδ

+ Nu
)
(t).

Obviously, the operators T, Dα
+ T, T, Dγ

+ T are compositions of the continuous oper-
ators. So T, Dα

+ T, T, Dγ

+ T are continuous in Z. Hence, T is a continuous operator in
X × Y .

Let 	 := 	 ×	 ⊂ X ×Y be an open bounded set, then T(	), T(	), and Dα
+ T(	),

Dγ

+ T(	) are bounded. Moreover, for ∀(u, v) ∈ 	, t ∈ [, ], there exist constants
L, L, L >  such that

∣
∣A(Nv) + Iβ

+ Nv(t)
∣
∣ ≤ L,

∣
∣A(Nu) + Iδ

+ Nu(t)
∣
∣ ≤ L,

max
{∣
∣Iβ

+ Nv(t)
∣
∣,

∣
∣Iδ

+ Nu(t)
∣
∣
} ≤ L.
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Thus, in view of the Arzelà-Ascoli theorem, we need only to prove that T (	) ⊂ X × Y is
equicontinuous.

For  ≤ t < t ≤ , (u, v) ∈ 	, we have

∣
∣Tv(t) – Tv(t)

∣
∣

=


�(α)

∣
∣
∣
∣

∫ t


(t – s)α–φq

(
A(Nv) + Iβ

+ Nv(s)
)

ds

–
∫ t


(t – s)α–φq

(
A(Nv) + Iβ

+ Nv(s)
)

ds
∣
∣
∣
∣

≤ Lq–


�(α)

{∫ t



[
(t – s)α– – (t – s)α–]ds +

∫ t

t

(t – s)α– ds
}

=
Lq–


�(α + )

[
tα
 – tα

 + (t – t)α
]
.

Similarly, one has

∣
∣Tu(t) – Tu(t)

∣
∣ ≤ Lq–


�(γ + )

[
tγ
 – tγ

 + (t – t)γ
]
.

Since tα is uniformly continuous in [, ], we see that (T(	), T(	)) ⊂ Z × Z is equicon-
tinuous. A similar proof can show that (Iβ

+ N(	), Iδ
+ N(	)) ⊂ Z × Z is equicontin-

uous. This, together with the uniformly continuity of φq(s) on [–L, L], shows that
(Dα

+ T(	), Dγ

+ T(	)) ⊂ Z × Z is also equicontinuous. Thus, we find that T : X × Y →
X × Y is compact.

Step : A priori bounds.
Set

	 =
{

(u, v) ∈ X × Y |(u, v) = λq–T (u, v),λ ∈ (, )
}

.

Now it remains to show that the set 	 is bounded.
Since  < α ≤ , by Lemma ., we have

Iα
+ Dα

+ u(t) = u(t) + c.

So we get

c = –u() = Iα
+ Dα

+ u() – u().

Hence, from the anti-periodic boundary value condition u() = –u(), one has

c =



Iα
+Dα

+ u().

Thus we obtain

u(t) = –



Iα
+Dα

+ u() + Iα
+Dα

+ u(t),
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which together with

∣
∣Iα

+ Dα
+ u(t)

∣
∣ =


�(α)

∣
∣
∣
∣

∫ t


(t – s)α–Dα

+ u(s) ds
∣
∣
∣
∣

≤ 
�(α)

∥
∥Dα

+ u
∥
∥

 · 
α

tα

≤ 
�(α + )

∥
∥Dα

+ u
∥
∥

, ∀t ∈ [, ],

yields

‖u‖ ≤ 
�(α + )

∥
∥Dα

+ u
∥
∥

. (.)

Similarly, we can get

‖v‖ ≤ 
�(γ + )

∥
∥Dγ

+ v
∥
∥

. (.)

For (u, v) ∈ 	, we have

u(t) = λq–(B(Nv) + Iα
+φq

(
A(Nv) + Iβ

+ Nv
)
(t)

)
,

v(t) = λq–(B(Nu) + Iγ

+φq
(
A(Nu) + Iδ

+ Nu
)
(t)

)
.

Thus we get

Dα
+ u(t) = λq–φq

(
A(Nv) + Iβ

+ Nv(t)
)
,

Dγ

+ v(t) = λq–φq
(
A(Nu) + Iδ

+ Nu(t)
)
,

which together with φq(λ) = λq– (λ ∈ (, )) yields

φp
(
Dα

+ u(t)
)

= λ
(
A(Nv) + Iβ

+ Nv(t)
)
,

φp
(
Dγ

+ v(t)
)

= λ
(
A(Nu) + Iδ

+ Nu(t)
)
.

From the hypothesis (H), for ∀t ∈ [, ], we get

∣
∣Iβ

+ Nv(t)
∣
∣ ≤ 

�(β)

∫ t


(t – s)β–∣∣f

(
s, v(s), Dγ

+ v(s)
)∣
∣ds

≤ 
�(β)

(‖a‖ + ‖b‖‖v‖p–
 + ‖c‖

∥
∥Dγ

+ v
∥
∥p–



) · 
β

tβ

≤ 
�(β + )

(‖a‖ + ‖b‖‖v‖p–
 + ‖c‖

∥
∥Dγ

+ v
∥
∥p–



)
,

which together with |φp(Dα
+ u(t))| = |Dα

+ u(t)|p– yields

∥
∥Dα

+ u
∥
∥p–

 ≤ 
�(β + )

(‖a‖ + ‖b‖‖v‖p–
 + ‖c‖

∥
∥Dγ

+ v
∥
∥p–



)
. (.)
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Repeating arguments similar to the above we can arrive at

∥
∥Dγ

+ v
∥
∥p–

 ≤ 
�(δ + )

(‖a‖ + ‖b‖‖u‖p–
 + ‖c‖

∥
∥Dα

+ u
∥
∥p–



)
. (.)

From (.)-(.), we obtain

∥
∥Dα

+ u
∥
∥p–

 ≤ 
�(β + )

[

‖a‖ +
(

‖c‖

+
p–‖b‖

p–(�(γ + ))p–

)
∥
∥Dγ

+ v
∥
∥p–



]

=


�(β + )
(‖a‖ + ω

∥
∥Dγ

+ v
∥
∥p–



)
,

∥
∥Dγ

+ v
∥
∥p–

 ≤ 
�(δ + )

[

‖a‖ +
(

‖c‖

+
p–‖b‖

p–(�(α + ))p–

)
∥
∥Dα

+ u
∥
∥p–



]

=


�(δ + )
(‖a‖ + ω

∥
∥Dα

+ u
∥
∥p–



)
.

So we have

∥
∥Dα

+ u
∥
∥p–

 ≤ 
�(β + )

(

‖a‖ +
ω

�(δ + )
(‖a‖ + ω

∥
∥Dα

+ u
∥
∥p–



)
)

,

∥
∥Dγ

+ v
∥
∥p–

 ≤ 
�(δ + )

(

‖a‖ +
ω

�(β + )
(‖a‖ + ω

∥
∥Dγ

+ v
∥
∥p–



)
)

.

Hence, in view of (.), we can get

∥
∥Dα

+ u
∥
∥

 ≤
(

M

 – L

)q–

:= L, (.)

∥
∥Dγ

+ v
∥
∥

 ≤
(

M

 – L

)q–

:= L, (.)

where

M =


�(β + )

(

‖a‖ +
ω

�(δ + )
‖a‖

)

,

M =


�(δ + )

(

‖a‖ +
ω

�(β + )
‖a‖

)

.

Thus, from (.) and (.), one has

‖u‖ ≤ L

�(α + )
:= L, (.)

‖v‖ ≤ L

�(γ + )
:= L. (.)
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Therefore, combining (.) and (.) with (.) and (.), we have

∥
∥(u, v)

∥
∥

X×Y = max
{‖u‖,

∥
∥Dα

+ u
∥
∥

,‖v‖,
∥
∥Dγ

+ v
∥
∥



}

≤ max{L, L, L, L}.

As a consequence of the Schaefer fixed point theorem, we deduce that T has at least one
fixed point which is the solution of ABVP (.). The proof is complete. �

4 An example
In this section, we will give an example to illustrate our main result.

Example . Consider the following ABVP for the coupled system of the fractional
p-Laplacian equation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D


+φ(D



+ u(t)) = – 

 + 
 v(t) + te–|D



+ v(t)|, t ∈ [, ],

D


+φ(D



+ v(t)) = cos t + 

 u(t) + t cos (D


+ u(t)), t ∈ [, ],

u() = –u(), D


+ u() = –D



+ u(),

v() = –v(), D


+ v() = –D



+ v().

(.)

Corresponding to ABVP (.), we get p = , α = /, β = /, γ = /, δ = /, and

f (t, u, v) = –



+



u + te–|v|,

g(t, u, v) = cos t +



u + t cos v.

Choose a(t) = , b(t) = /, c(t) = , a(t) = , b(t) = /, c(t) = . By a simple calcu-
lation, we obtain ‖b‖ = /, ‖c‖ = , ‖b‖ = /, ‖c‖ = , and

ω =


(�( 
 + ))

× 


+  ≤ .,

ω =


(�( 
 + ))

× 


+  ≤ .,

L =



ω

�( 
 + )




ω

�( 
 + )

< .

Obviously, ABVP (.) satisfies all assumptions of Theorem .. Hence, ABVP (.) has at
least one solution.
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