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Abstract

This paper investigates the existence of positive solutions for a class of nonlinear
fractional g-difference equations with integral boundary conditions. By applying
monotone iterative method and some inequalities associated with the Green’s
function, the existence results of positive solutions and two iterative schemes
approximating the solutions are established. An explicit example is given to illustrate
the main result.
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1 Introduction
We consider the following nonlinear fractional g-difference equation with integral bound-
ary conditions:

Dyul(t) + h@)f (6,u(t)) =0, £€(0,1),
) 1 (1.1)
l);u(O) =0, 0<j<n-2, u(l) = u/ g(s)u(s) dys,
0

where @ € (n — 1,n] are a real number and # > 3 is an integer, D‘; are the fractional
q-derivative of the Riemann-Liouville type, > 0 and 0 < g < 1 are two constants, g, &
are two given continuous functions, and f : [0,1] x [0,00) — [0, 00)is continuous and
f(t,0) # 0 on [0,1]. To the best of authors’ knowledge, there is still little utilization of
the monotone iterative method to study the existence of positive solutions for boundary
value problems of nonlinear fractional g-difference equations with integral boundary con-
ditions.

The monotone iterative method is an interesting and effective technique for investigat-
ing the existence of solutions/positive solutions for nonlinear boundary value problems.
This method has been paid more and more attention due to the advantage that the first
term of the iterative sequences may be taken to be a constant function or a simple func-
tion; see [1-8] and the references therein. For instance, by means of the monotone it-
erative technique and the method of lower and upper solutions, Xu and Liu [9] studied
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the maximal and minimal solutions for a coupled system of fractional differential-integral
equations with two-point boundary conditions. In [10], by means of monotone iterative
technique, Zhang et al. investigated the existence and uniqueness of the positive solution
for a fractional differential equation with derivatives. By applying the monotone iteration
method, Zhang et al. [11] obtained the positive extremal solutions and iterative schemes
for approximating the solution of fractional differential equations with nonlinear terms
depending on the lower-order derivatives on a half-line.

Since 2010, fractional g-difference equations have gained considerable popularity and
importance due to the fact that they can describe the natural phenomena and the math-
ematical model more accurately. For some recent contributions on the topic, see [12-18]
and the references incited therein. For example, under different conditions, Graef and
Kong [19, 20] investigated the existence of positive solutions for boundary value problems
with fractional g-derivatives in terms of different ranges of A, respectively. By applying the
nonlinear alternative of Leray-Schauder type and Krasnoselskii fixed point theorems, the
author [21] established sufficient conditions for the existence of positive solutions for non-
linear semipositone fractional g-difference system with coupled integral boundary condi-
tions. By applying some standard fixed point theorems, Agarwal et al. [22] and Ahmad et
al. [23] showed some existence results for sequential g-fractional integrodifferential equa-
tions with g-antiperiodic boundary conditions and nonlocal four-point boundary condi-
tions, respectively. In [24], relying on the contraction mapping principle and a fixed point
theorem due to O’'Regan, Ahmad et al. were concerned with new boundary value problems
of nonlinear g-fractional differential equations with nonlocal and sub-strip type boundary
conditions. In [25], Yang et al. obtained the existence and uniqueness of positive solutions
for a class of nonlinear g-fractional boundary value problems and established the iterative
schemes for approximating the solutions.

Motivated by the results mentioned above and the effectiveness and feasibility of mono-
tone iterative method, we consider the existence of positive solutions for fractional
q-difference boundary value problem (1.1). In Section 2, we present some preliminaries
and lemmas that will be used to prove our main results. The main theorems are formu-
lated and proved in Section 3. At last, an explicit example is given to illustrate the main
result in Section 4.

2 Preliminaries
For the convenience of the reader, we present some necessary definitions and lemmas of
fractional g-calculus theory. These details can be found in the recent literature; see [26]

and references therein.

Definition 2.1 ([26]) Let o > 0, 0 < g <1, and f be function defined on [0,1]. The frac-
tional g-integral of the Riemann-Liouville type is (If;f )(x) =f(x) and

1
Fq(a)

(Iof ) () = /0 (x—qt) Vf(t)d,t, a>0,x€]0,1],

where I'y(a) = (1 —9)“V(1-¢)"%,0 < g <1, and satisfies the relation Lyl +1) = [a],Ty(a),
with

—

o 1 n—
(], = q;]_ , (1- q)(O) =1, 1- q)(”) — (1 _ qk“), neN.
k=0
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More generally, if @ € R, then (1 — )@ = [1°2,((1 - ¢"*1)/(1 — g****™)).
For 0 < g < 1, the g-derivative of a real valued function f is here defined by

_ fx) - flgx)
1

(D0 === %70 and (D)) = LDy,

and g-derivatives of higher order by
(Dgf) (%) =f(x) and (D;’f) (%) =Dy, (Dg_lf) (x), meN.

Definition 2.2 ([26]) The fractional g-derivative of the Riemann-Liouville type of order
a > 0 is defined by DJf (x) = f(x) and

(Df;f)(x) = (D;"I,;"_“f)(x), a>0,
where m is the smallest integer greater than or equal to .

Lemma 2.3 ([26]) Let«, B > 0, and f be a function defined on [0,1). Then the next formu-
las hold:

(1) UF1) ) =15 PF (),

(2) (D)) = ).

Lemma 2.4 ([12]) Let o > 0 and p be a positive integer. Then the following equality holds:

) ) p-1 xa—p+k
(IoDaf) (x) = (DBISS) (x) - ; m (D];f)(o)'

For the our analysis, we need the following assumptions:

(H1) g:[0,1] — [0, 00) is continuous and o = /Lfol s“lg(s)dys<1,0=p fol s7g(s) dys.
(H2) h:[0,1] = [0, 00) is continuous and 0 < fol(l —5) @ Vh(s) dys < co.

Now we derive the corresponding Green’s function for boundary value problem (1.1),

and obtain some properties of the Green’s function.
Lemma 2.5 For any x € C[0,1], then the boundary value problem

D‘;u(t) +x(t)=0, te€(0,1),

) 1 (2.1)
Dﬁlu(O) =0, 0<j<n-2, u(l) = pL/O g(s)u(s) dys,
has an unique solution given by
1
u(t) = / G(t, qs)x(s) dys, (2.2)
0

where

"

ta—l 1
G(t,s) = H(t,s) + o /0 H(z,s)g(t)d,T, (2.3)
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1 i1 -g) e _(f—g)eD g<s<i<l,

H(t,s) = - T - 2.4
&) Tyla) | 2711 -s)@D, 0<t<s<l. 24)

Proof In view of Definition 2.2 and Lemma 2.3, we see that
(Dyu)(t) = —x(t) = (L DIy u)(t) = —(I5x)(2). (2.5)

From (2.5) and Lemma 2.4, we can reduce (2.1) to the following equivalent integral equa-

tions:
t(t— (-1)
u(t) = at* 1+ Cztmf2 oy t" - / %x(‘g) dys. (2.6)
0 Fq(a)
From D’;,u(O) =0,0<j<n-2,wehavec,=c, 1 ==cp =0. Thus, (2.6) reduces to
(t—gs)
u(t) = % —/ x(s) ds. (2.7)
' 0 Tg(@) !

Using the integral boundary condition: #(1) = u fol g(s)u(s) dys in (2.7), we obtain

1 1= (a—1)
a =/L/0 g(s)u(s)dqs+/0 %x(s)dqs. (2.8)

Combining (2.7) and (2.8), we have

1 11— g¢)(@-1)
u(t) = % (,u/o g(s)u(s)dqs+/0 Mx(s)d,g)

Fq(a)
t _ (x-1)
_ / %x(s)dqs

1 1
:,ut"“l/o g(s)u(s)dqs+/o H(t,gs)x(s) dys. (2.9)

Multiplying both sides of (2.9) by g(¢) and integrating the resulting identity with respect
to ¢ from O to 1, we obtain

1 1 1 1
‘/Og(t)u(t)dqt:/() g(t)(,ut"“lfo g(s)u(s)a,’qs+/O Gl(t,qs)x(s)dqs> dgt
1 1
= /L/(; t*g(t) dqt/O g(s)u(s) dys

1 1
+/0 g(t)/0 H(t,qs)x(s) dgsdgt.

Solving for fol 2(t)u(t) d,t, we have

1 1 1 1
/0 gOu(eydyt = —— /O () /0 H(t, qs)x(s) dgsd,t. (2.10)
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Combining (2.9) and (2.10), we get

o—1

-0

1 1 1
u(t):/(; H{(t, qs)x(s) dys + ;1u,‘ /o g(t)/0 H(t,qs)x(s) dys dgt
1
= / G(t, qs)x(s) dgs.
0

This completes the proof of the lemma. O

Lemma 2.6 ([21]) The function H(t,s) defined by (2.4) has the following properties:

111 - 1)(1 - gs) V) a—1],(1-gs)* Vs
q (1-1)(1 - gs) s<H(t’qs)§q[ 14(1 - g5)

) < @ (2.11)

Lemma 2.7 The function G(t,s) defined by (2.3) satisfies the following inequalities:

ta—l (l _ qs)(ot—l)

G(t, gs) < T—o)y@

Y(t)e(s) < Glt,gs) < ¢(s), Vts€[0,1], (2.12)

where § = i folg(t) dgt, o, 0 are given in (H1), and
@21 -0) (1 -1¢)
[a-1],1-0+6) ’

(s) = glo —1],(1-0 +8)(1 —gs)@ Vs
’ i (]' - U)Fq(a)

w(t) =1

, tsel0,1].

Proof 1Tt is evident by (2.4) that

ta—l (1 _ qs)(a—l)

H(t,gqs) < )

, Lsel0,1]. (2.13)

Thus, by (2.3), (2.4), and (2.13), we have

toz—l 1
G(t,qS)=H(t,qS)+lf . / H(t,qs)g(t)d,t
-0 Jo
a-1 1-— (a-1) a-1 1 _a-1 1— (—1)
! (1L-gs)*  pt / %7 (1 - gs) o(0)dyt
Ig(or) 1-0 Jo Iy(o)
7 (1 - gs)
1-0)Tge)

For any ¢,s € [0,1], by (2.3), (2.4), and the right inequality of (2.11), we get

Mtrx—l 1
Glt.g9) = Hit,g9) + - Q/HmWMﬂ%r
_ _ (ax-1) -1 1 _ _ (a-1)
_ale-10,-g9 Vs pt / gl =11 - g9 Vs
- Iy(«) 1-0 J Iy(x) 1

gla —1],(1- g5)@ Vs gla - 1,601 - 4s)@ Vs )
=< T,() + -0)T,@) = @(s).
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On the other hand, by (2.3), (2.4), and the left inequality of (2.11), we have

Mta—l 1
G(t,gs) = H(t,gs) + o / H(t,gs)g(t)d,T
-0 Jo
qa—lta—l(l _ t)(l _ qs)(ot—l)s Mta_l 1 qa_l‘l,'a_l(l _ T)(l _ qs)(a—l)s
> g(r)dyt
Iy(e) 1-0 Jy I'g(er)
¢ (1)1 -g5) Vs g (o - 0)A - g9) Vs
= +
) (1—0)Ty(c)
a-1p0-1(1 _ £)(] — gs)@D -0
> U OUZaIT (1, 729 gt 2 0.
() l1-0
Then the proof is completed. d

3 Main results
Consider the Banach space & = C[0,1] with norm |l#| = maxo<:<i |#(¢)| and define the
cone JZ C & by

H ={ue& ut)=0,ult) > y(©®ul,t € 0,11},

where ¥ (¢) is defined as Lemma 2.7. We also define the operator .7 : # — & by

1
(Tu)(t) = /0 G(t, qs)h(s)f(s, u(s)) dgs, tel0,1].

It is easy to prove that problem (1.1) is equivalent to the fixed point equation T u = u,

uesE.

Lemma 3.1 Assume that (H1) and (H2) hold. 7 is a completely continuous operator and
T(H)yCx.

Proof In view of (2.12) we conclude that .7 (") C ¥ . Applying the Arzela-Ascoli theo-
rem and standard arguments, we conclude that .7 is a completely continuous operator.
The proof is completed. O

For convenience, we denote

1 ' (a-1) -
A= (m /0 (1-gs) h(s)dqs) ) 3.1)

By the condition (H2) we deduce that A > 0 is well defined.

Theorem 3.2 Assume that (H1) and (H2) hold. In addition, we assume that there exists
a > 0 such that

ft,x) <f(t,y) <Aa, forO<x<y<a,tel0,1], (3.2)

where A is given by (3.1). Then problem (1.1) has two positive solutions v* and w* satisfying
0 < |V*|| < IWw*|l < a. In addition, the iterative sequences Vi, = T Vi, Wiyl = T Wy, k =



Li and Yang Advances in Difference Equations (2015) 2015:294 Page 7 of 10

0,1,2,..., converge to positive solutions v* and w*, respectively, where vy(t) = 0, wo(t) =
at®™1, t € [0,1]. Moreover,

vo(t) wi(t) < -+ =we®) < - vi()) =w™(¢)

ScoSwr(t) <= wit) we(t),  tel0,1].

Proof We will divide our proof into four steps.
Step 1. Let £, = {u € Z : ||u|| < a}, then T (%) C J%,. In fact, if u € J7,, then we have
0 < u(s) < ||lu|| <a, for s € [0,1]. Thus by (2.12) and (3.2), we get

1
(Tu)(t) = /0 G(t, gs)h(s)f (s, u(s)) dys

1 ta—l(l _qS)(ot—l)
= /0 mh@)f(&ﬂ) dqs

A 1
<2 / 1-g5)*Vh(s)dys=a, tel0,1],
q(a) 0

~“(1-0o)rC
which implies that ||u| < a, thus 7 (J%;) C %,.
Step 2. The iterative sequence {v} is increasing, and there exists v* € %, such that
limg_, o ||vk — v*|| = 0, and v* is a positive solution of problem (1.1).
Obviously, vy € . Since T : %, — %, we have vy € T (#,;) C #,, k=1,2,.... Since
 is completely continuous, we assert that {v;}2; is a sequentially compact set. Since
vi=Tvg =70 € #,, we obtain

az=vi(t)=(Tvo)(&) = (T0)(£) =0 =w(?), £€[0,1].
It follows from (3.2) that .7 is nondecreasing, and then
va(8) = (Tv)(6) = (Tvo)(®) =wni(9),  te[0,1].
Thus, by the induction, we have
Vi (t) > wi(t), te€[0,1,k=0,1,2,....

Hence, there exists v* € 7, such that limi_, « ||vk — v*|| = 0. By the continuity of .7 and
equation v, = T vk, we get vF = Jv*. Moreover, since the zero function is not a solution
of problem (1.1), ||v*|| > 0. It follows from the definition of the cone % that we have v*(¢) >
v@) v >0, t € (0,1), i.e. v¥(£) is a positive solution of problem (1.1).

Step 3. The iterative sequence {wy} is decreasing, and there exists w* € %, such that
limy_, o ||wx — w*|| = 0, and w* is a positive solution of problem (1.1).

Obviously, wy € . Since I : ¥, — J,, wehave wy € T (#,) C K, k=1,2,....Since
7 is completely continuous, we assert that {wy}?°; is a sequentially compact set. Since
wy = T wy € JH,, by (2.12) and (3.2), we obtain

1
(Two)(t) = /0 G(t, qs)h(s)f(st, wo(s)) dgs

1 jo— _ (@-1)
5/ Mk(s)f(s,a)dqs
0

(1- U)rq(a)
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Aat*!

' (a=1)
< (1—0)Fq(o¢)[0 (1-gs) h(s)dys

=at® P =wy(t), tel0,1].
Thus we obtain wy () < wy(2), ¢ € [0,1], which together with (3.2) implies that
1
walt) = (Tw)(0) = / Glt, gs)h(S)f (5, w1(5)) diys
0
1
< / G(t, gs)h(s)f (s, wo(s)) dys
0
=(Two)(t) =wi(t), tel0,1].
Thus, by the induction, we have
Wk+1(t) = Wk(t)) te [011];1(:0)1;2,“-«

Hence, there exists w* € %, such that limy_, « ||wx — w*|| = 0. Applying the continuity of
Z and the definition of %, we can concluded that w*(¢) is a positive solution of problem
(1.1).

Step 4. From wy(t) < wy(2), t € [0,1], we get

1
n(B) = (Two)) = fo Glt, g5 H(s)f (5, wo(s)) dlys

s /01 G(t,g9)h(s)f (s, wo(s)) dys
=(Two)t) =wi(2), te]0,1].
By the induction, we have
vie(t) <wi(t), te[0,1,k=0,1,2,....
The proof is complete. N

Corollary 3.3 Assume that (H1) and (H2) hold. Suppose further that f (¢, u) is nondecreas-
ing in u for each t € [0,1] and

AGLY <A.

lim max
u—+00 0<t<1 u

The conclusion of Theorem 3.2 is valid.

Remark 3.4 The iterative schemes in Theorem 3.2 start off with the zero function and a
known simple function which is helpful for computational purpose, respectively.

Remark 3.5 Of course, w* = v* may happen and then problem (1.1) has only one solu-
tion in .%,. For example, in the case the Lipschitz condition is satisfied by the functions
involved, the solutions v* and w* coincide, and then problem (1.1) will have a unique so-
lution in 7.
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4 An example
Example 4.1 Consider the fractional g-difference equation with integral boundary con-
ditions

DIPu(t) + t(3u” + 6t +2) =0, £€(0,1),

, 1 (4.1)
Dfiu(O) =0, 0<j<2, u(l) = / su(s) dys.
0

Here,q=1/2,a =7/2, u=1,g(¢) = h(t) = t, and f(¢t, u) = 3u? +6t+2. Itis easy to see that
(H1) and (H2) hold. If we let a = 2, by simple computation, we have

_ 1 ' @-1) N
A= ((1 T /0 (1-gs) h(s) dqs>

(32~ V2)T12(7/2)Ty2(11/2)
- 16 -+/2

and

Ft,u) <f(5,2) <f(1,2) =20 <22.4819 ~ Aa, (t,%) € [0,1] x [0,4].

Then (3.2) is satisfied. Consequently, Theorem 3.2 guarantees that problem (4.1) has at
least two positive solutions v* and w*, satisfying 0 < ||[v*|| < ||w*|| < a.
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