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Abstract
In this paper we consider the time-periodic Allen-Cahn equation subject to
homogeneous boundary value condition and time-periodic condition. For the case of
a smooth bounded domain with spatial dimension N ≤ 3, we prove the existence of
classical nontrivial periodic solutions. For the case of a star shaped domain with N ≥ 4,
we prove the nonexistence of nontrivial periodic solutions. For the case of an annulus
domain with N ≥ 3, we prove the existence of nontrivial radial periodic solutions.
Some numerical simulations are also presented to illustrate our results.
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1 Introduction
This paper is concerned with the following time-periodic Allen-Cahn equation:

∂u
∂t

– �u = m(t)
(
u – u

)
, x ∈ �, t ∈R

+, (.)

u(x, t) = , x ∈ ∂�, t ∈ R
+, (.)

u(x, t + ω) = u(x, t) > , x ∈ �, t ∈R
+, (.)

where � ⊂R
N is a domain, ω is a positive constant, m(t) is a positive ω-periodic function.

This problem has its origin in the gradient theory of phase transitions, which describes
the motion of antiphase boundaries in crystalline solids; the process of phase separation
in iron alloys, including order-disorder transitions; see for example [–] and references
therein. It is also well accepted that the Allen-Cahn equations can be used to describe
population dynamics; see for example []. Since the pioneering work of Allen and Cahn
[], a large and still-growing body of work is concerned with the study of the Allen-Cahn
equations in different aspects; see [, , , ] etc. Among them, the study of Allen-Cahn
type equations with spatial periodicity has attracted much attention; see for example [–
] and references therein. However, as far as we know, there are few investigations con-
cerned with the time-periodic solutions of Allen-Cahn type equations. Here, inspired by
the ideas described in [, ], we give a sketch of the formulation of (.) from modeling
the growth and dispersal in the population which is sensitive to time-periodic factors. Let
u(x, t) be the population density. If the population is sensitive to the environment, just as
described in [], it is reasonable to suppose that the energy maintains a spatial heterogene-

© 2015 Huang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-015-0631-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0631-3&domain=pdf
mailto:huanghc@m.scnu.edu.cn


Huang et al. Advances in Difference Equations  (2015) 2015:295 Page 2 of 37

ity depending on the neighboring gradient in the population density, and the total energy
F[u] in the region � occupied by the population is given by

F[u] =
∫

�

(


|∇u| + H(u, t)

)
dx.

The formal variation δF[u] with respect to u that vanishes on ∂� is given by

δF[u] =
∫

�

(
∇u · δ∇u +

∂H(u, t)
∂u

δu
)

dx

=
∫

�

(
–�u +

∂H(u, t)
∂u

)
δu dx.

Then we have the following expression:

δF
δu

= –�u +
∂H(u, t)

∂u

for the variational derivative. Equilibrium is characterized by the vanishing of δF
δu ; the hy-

pothesis underlying the standard derivation is that relaxation toward equilibrium is gov-
erned by the following relation:

∂u
∂t

= –
δF
δu

= �u –
∂H(u, t)

∂u
. (.)

In particular, if the population is sensitive to seasons, then it is reasonable to investigate the
existence of time-periodic solutions of (.). From this motivation, in the present paper,
we are interested in considering the following internal energy density:

H(u, t) = –



m(t)
(
u – 

),

which combined with (.) yields (.).
Since the last century, periodic parabolic equations have been the subject of extensive

study; see for example [–] and the references therein. Among the earliest works of this
aspect, we refer to Esteban [], in which the author considered the following equation:

∂u
∂t

– �u = m(t)uq,

and proved the existence of positive periodic classical solutions for the case of  < q <
(N + )/(N – ) under the assumption

m(t + ω) = m(t), m ∈ W ,∞[,ω], inf
t∈[,ω]

m(t) = m > .

She also proved that, for the case of  < q < (N +)/(N –), under an additional technical
assumption on m(t), the existence of positive periodic classical solutions is also true. Later,
Esteban improved her results in [] and proved the existence of positive periodic classical
solutions for any q >  with N ≤ , and for  < q < N/(N – ) with N >  for any smooth
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positive m(t). Then Quittner [] obtained the existence results with the optimal growth
assumption on q, i.e.  < q < qS , where

qS :=
N + 
N – 

if N > , qS := +∞ if N ≤ .

Moreover, Húska [, ] considered a more general equation

∂u
∂t

– �u = m(t)f (x, u),

and obtained the existence of positive periodic solutions under some structural assump-
tions on m(t) and f (x, u). Recently, Yin and Jin [] considered the p-Laplacian

∂u
∂t

– div
(|∇u|p–∇u

)
= m(x, t)uq, p > , q ≥ , (.)

which may have degeneracy or singularity. They give a rather complete characterization
in terms of the parameter p and the exponent q, of whether or not the positive periodic
solutions exist. Later, Deng [] considered a radial problem for the p-Laplacian (.) in
annulus domain � = BR \ Br , and give the existence of radial periodic solutions provided
that q ≥ Np

N–p –  with N > p.
To the best of our knowledge, there is little literature about nodal periodic solutions

(that is, periodic solutions may change sign) except for some special cases. For example,
when � = BR := {x ∈ R

N : |x| < R}, Bartsch et al. ([], Theorem .) obtained the existence
of radial time-periodic solutions with a prescribed number of spatial sign changes. In the
population dynamics model, the species is restricted to the bounded heterogeneous envi-
ronment � whose boundary is prohibitive to the species. In this paper, we are interested
in the case of constant-sign solutions. Without loss of generality, we consider the positive
periodic solutions throughout the whole paper.

Even though there already exist some well-known results on semilinear parabolic PDEs
with initial boundary value conditions, as far as we know, there are few references related
to the Allen-Cahn type equation with time-periodic condition. To describe the popula-
tion dynamics which is sensitive to time-periodic factors (for instance seasons etc.), in the
present paper, we investigate the time-periodic Allen-Cahn type problem (.)-(.). There
are also some results on periodic parabolic equations with Neumann boundary condi-
tions (see [–] for example). For the Allen-Cahn equation, the homogenous Neumann
boundary conditions imply that no mass loss occurs across the boundary walls (cf. [],
p.). From a biological point of view, the homogenous Neumann boundary conditions
model the trend of the species to survive on the boundary, while the homogenous Dirichlet
boundary conditions are used to describe that the boundary is lethal to the species (see
[, ]). Obviously, the Neumann boundary value conditions will cause some additional
difficulties in establishing the a priori estimates (see for instance [, ]), which will be
the topic of our further work in the future as well as the corresponding problems with
Dirichlet-Neumann boundary conditions.

This paper is organized as follows. In Section , as a preparation, we introduce some no-
tations and state the main results. In Section , we prove deg(I – K, Br , ) = . In Section ,
we first obtain a Pohozaev type identity and the W ,;

ω (Qω) estimates. We then base on in-
terpolation estimates and Morse-type iteration to obtain L∞

ω (Qω) estimates. Eventually, we
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use L∞
ω (Qω) estimates to prove deg(I – K, BR, ) = . In Section , we consider the problem

(.)-(.) in an annulus domain � = BR \ Br . In order to calculate deg(I – Tl, BR̂, ), we
will obtain the L∞

ω ([s, s]× [,ω]) estimates for radial solutions. Thereafter, we devote our
work to proving the main results of this paper in Section . Finally, in Section , numer-
ical simulations are provided to illustrate how the positive periodic solution of problem
(.)-(.) depends on changing m(t).

2 Preliminaries and the main results
In this section we give some preliminaries and present the main results of this paper. The
following notations will be used throughout the paper.

Qω = � × (,ω), inft∈[,ω] m(t) := m > , ‖m‖L∞[,ω] := M;
N : the dimension of space;
C: positive constant independent of u, though C may vary from step to step;
BR: a ball in L∞

ω (Qω) with center zero and radius R;
deg(I – Kλ, BR, ): the Leray-Schauder degree of a compact operator I – Kλ in BR with

respect to ;

L∞
ω (Qω) :=

{
u(x, t) = u(x, t + ω)|u ∈ L∞(Qω)

}
;

C+α,+ α


ω (Qω) :=
{

u(x, t) = u(x, t + ω)|u ∈ C+α,+ α
 (Qω),  < α < 

}
.

The following hypotheses will be used in our proof.

(H) m(t + ω) = m(t), m ∈ W ,∞[,ω], inft∈[,ω] m(t) = m > ,
(H) supt∈[,ω]

(m′(t))–

m(t) < 
R(�) ,

where (m′(t))– = max{, –m′(t)}, R(�) = supx∈� |x|.
The main results of this paper are the following theorems.

Theorem . Suppose the assumption (H) holds, and � is a smooth bounded convex do-
main. If N ≤ , then the problem (.)-(.) admits a nontrivial classical periodic solution
u ∈ C+α,+ α


ω (Qω). If N = , under an additional assumption (H), then the problem (.)-

(.) also admits a nontrivial classical periodic solution u ∈ C+α,+ α


ω (Qω).

Theorem . If N ≥  and � is star shaped, then the problem (.)-(.) does not admit
nontrivial periodic solutions.

Theorem . Suppose the assumption (H) holds. If N ≥  and � = BR \ Br is an an-
nulus domain, then the problem (.)-(.) admits a nontrivial radial periodic solutions
u ∈ C+α,+ α


ω (Qω).

Remark . Our result of Theorem . is different from Deng ([], Theorem .), where
the existence of nontrivial radial periodic solutions for the p-Laplacian (.) relies on the
condition of q ≥ Np

N–p –  with N > p. However, for the case of N =  and p = , we find
that for q =  the problem (.)-(.) also admits nontrivial radial periodic solutions. That
means the source –m(t)u indeed makes some sense in the present problem.

In order to employ the topological method to deal with the existence of the nontrivial
periodic solutions of the problem (.)-(.), we introduce the operators Kλ from L∞

ω (Qω)
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to itself,

Kλ : L∞
ω (Qω) × [, ] → L∞

ω (Qω),

(u,λ) �→ v.

We say that Kλu = v, if v is a solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂v
∂t – �v = λm(t)(u – u), λ ∈ [, ], x ∈ �, t ∈ (,ω),

v(x, t) = , x ∈ ∂�, t ∈ (,ω),

v(x, ) = v(x,ω), x ∈ �.

(.)

By classical linear theory, we can easily check that the following lemma is true.

Lemma . The operators Kλ is well defined and completely continuous.

3 deg(I – K1, Br, 0) = 1
Obviously, the periodic solutions for the problem (.) are fixed points of the operator Kλ

from L∞
ω (Qω) to itself. We first investigate the Leray-Schauder degree of I – Kλ in a small

ball Br in L∞
ω (Qω).

We denote by λ the first eigenvalue of –� in H
(�), namely

⎧
⎨

⎩
–�u = λu, x ∈ �,

u = , x ∈ ∂�,

where λ is given by the following formula:

λ = inf
u�=,u∈H

(�)

∫
�

|∇u| dx
∫
�

u dx
. (.)

We then have

λ

∫

�

u dx ≤
∫

�

|∇u| dx. (.)

We denote ϕ(x) the corresponding eigenfunction, namely
⎧
⎨

⎩
–�ϕ(x) = λϕ(x), x ∈ �,

ϕ(x) = , x ∈ ∂�.
(.)

Proposition . deg(I – K, Br , ) = .

Proof We argue by contradiction to prove that Kλ has no fixed points on ∂Br , namely

Kλu �= u, λ ∈ [, ], u ∈ ∂Br . (.)

If λ = , K is null operator, then

K(u) =  �= u, u ∈ ∂Br .
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Thus (.) holds. We need only to consider the remaining case of  < λ ≤ . Suppose that
the operator Kλ admits fixed points when u ∈ ∂Br ⊂ L∞

ω (Qω) for some λ ∈ (, ]. Replacing
v with u in the first equation of (.), we have

∂u
∂t

= �u + λm(t)
(
u – u

)
, λ ∈ (, ]. (.)

We choose r sufficiently small, such that

 < r <
(

λ

M

) 


, r = ‖u‖L∞
ω (Qω), (.)

where λ is defined in (.). Multiplying (.) by u, integrating over Qω , using (.) and
(.), by the time periodicity of u, we obtain

 =
∫∫

Qω

∂u
∂t

u dx dt

= –
∫∫

Qω

|∇u| dx dt + λ

∫∫

Qω

m(t)u dx dt – λ

∫∫

Qω

m(t)u dx dt

≤ –λ

∫∫

Qω

u dx dt +
∥∥m(t)

∥∥
L∞[,ω]

∫∫

Qω

‖u‖
L∞
ω (Qω)u

 dx dt

=
(
Mr – λ

)∫∫

Qω

u dx dt

< ,

which is a contradiction. Therefore Kλ has no fixed points on ∂Br , then (.) holds. On
the other hand, since the operator K = , using the homotopy invariance of the Leray-
Schauder degree, we have

deg(I – K, Br , ) = deg(I – K, Br , ) = deg(I, Br , ) = .

The proof of this proposition is complete. �

4 deg(I – K1, BR, 0) = 0
In this section we investigate the Leray-Schauder degree of I – Kλ in a large ball BR in
L∞

ω (Qω). Let us now introduce a new family of operators TL,

TL : L∞
ω (Qω) × [, L] → L∞

ω (Qω),

(u, L) �→ v,
(.)

where the constant L >  + λ
m

, and λ is defined in (.). We say that TLu = v, if v is a
solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂v
∂t – �v = m(t)(u + u + Lu), L ∈ [, L], x ∈ �, t ∈ (,ω),

v(x, t) = , x ∈ ∂�, t ∈ (,ω),

v(x, ) = v(x,ω), x ∈ �.
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We can easily check that TL is well defined and completely continuous. The fixed point of
TL solves the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – �u = m(t)(u – u + Lu), L ∈ [, L], x ∈ �, t ∈ (,ω),

u(x, t) = , x ∈ ∂�, t ∈ (,ω),

u(x, ) = u(x,ω), x ∈ �.

(.)

Lemma . There exists a positive constant L >  + λ
m

such that

TLu �= u, L ≥ L.

Proof We argue by contradiction. Suppose that the operator TL admits fixed points for
L ≥ L. Multiplying the first equation of (.) by ϕ(x), where ϕ(x) is defined in (.),
integrating over Qω , and using the periodicity of u, we have

∫∫

Qω

∂u
∂t

ϕ(x) dx dt
︸ ︷︷ ︸



–
∫∫

Qω

�uϕ(x) dx dt

=
∫∫

Qω

m(t)
(
u –  + L

)
ϕ(x)u dx dt. (.)

Now we calculate the second term on the left-hand side of (.). By (.), we obtain

–
∫∫

Qω

�uϕ(x) dx dt =
∫∫

Qω

(
–�ϕ(x)

)
u dx dt

=
∫∫

Qω

λϕ(x)u dx dt. (.)

Substituting (.) into (.), we have

∫∫

Qω

λϕ(x)u dx dt =
∫∫

Qω

m(t)
(
u –  + L

)
ϕ(x)u dx dt. (.)

If L ≥ L >  + λ
m

, u > , x ∈ �, using (.), we obtain

∫∫

Qω

m(t)
(
u –  + L

)
ϕ(x)u dx dt

≥ inf
t∈[,ω]

m(t)
∫∫

Qω

(
u –  + L

)
ϕ(x)u dx dt

> m

∫∫

Qω

(
u +

λ

m

)
ϕ(x)u dx dt

>
∫∫

Qω

λϕ(x)u dx dt,

which is contradict with (.). Thus TL has no fixed points for L ≥ L. The proof of this
lemma is complete. �
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Similar to the proof of Lemma  in [] and a detailed proof of Theorem .. in [],
we have the following lemma.

Lemma . Let � ⊂ R
N is a smooth and convex bounded domain. If m(t) satisfies the

assumption (H), then there exist constant C >  and ε >  (C, ε independent of L, L ∈
[, L]), such that if u is a solution of the problem (.), then

sup
�ε×[,ω]

∣∣u(x, t)
∣∣ ≤ C,

sup
�ε×[,ω]

∣
∣∇u(x, t)

∣
∣ ≤ C, (x, t) ∈ �ε × [,ω],

where �ε = {x ∈ �; dist(x, ∂�) < ε}.

Lemma . Suppose the assumption (H) holds. If u is a classical solution of the problem
(.), then

∫∫

Qω

((
 –

N


)
u – u + Lu

)
m(t) dx dt

=
∫∫

Qω

(
m′(t)

(
u


–

u


+

Lu



)
+ (ut)

) |x|


dx dt

+



∫∫

∂�×(,ω)
|∇u|(x · n) ds dt. (.)

Proof Multiplying the first equation of (.) by (x · ∇u), and integrating over Qω , we have

∫∫

Qω

ut(x · ∇u) dx dt –
∫∫

Qω

�u(x · ∇u) dx dt

=
∫∫

Qω

m(t)
(
u – u + Lu

)
(x · ∇u) dx dt. (.)

Multiplying the first equation of (.) by ut
|x|

 , and integrating over Qω , using the period-
icity of u, we obtain

∫∫

Qω

(ut) |x|


dx dt –
∫∫

Qω

�u
(

ut
|x|



)
dx dt

=
∫∫

Qω

m(t)
((

u – u + Lu
)
ut

) |x|


dx dt

=
∫∫

Qω

m(t)
∂( u

 – u

 + Lu

 )
∂t

|x|


dx dt

= –
∫∫

Qω

m′(t)
(

u


–

u


+

Lu



) |x|


dx dt. (.)

Now we calculate the second term on the left side of (.). By (.), we have

ut(x, t) = , x ∈ ∂�. (.)
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Integrating by parts over Qω , using the periodicity of u and (.), we obtain

∫∫

Qω

�u
(

ut
|x|



)
dx dt

=
∫ ω



∫

∂�

(∇u · n)ut
|x|


ds dt

︸ ︷︷ ︸


–
∫∫

Qω

N∑

i=

uxi

(
utxi

|x|


+ utxi

)
dx dt

= –
∫∫

Qω

N∑

i=

d
dt

(u
xi



) |x|


dx dt

︸ ︷︷ ︸


–
∫∫

Qω

ut

N∑

i=

xiuxi dx dt

= –
∫∫

Qω

ut(x · ∇u) dx dt. (.)

Substituting (.) into (.), we have

∫∫

Qω

(ut) |x|


dx dt +
∫∫

Qω

ut(x · ∇u) dx dt

= –
∫∫

Qω

m′(t)
(

u


–

u


+

Lu



) |x|


dx dt. (.)

By (.) and (.), we have

∫∫

Qω

(ut) |x|


dx dt +
∫∫

Qω

�u(x · ∇u) dx dt

= –
∫∫

Qω

m′(t)
(

u


–

u


+

Lu



) |x|


dx dt

–
∫∫

Qω

m(t)
(
u – u + Lu

)
(x · ∇u) dx dt. (.)

Now we calculate the second term on the right-hand side of (.). We recall the diver-
gence theorem,

∫

∂�

w · n ds =
∫

�

div w dx, (.)

where n is the unit outward normal vector at x ∈ ∂�, ds is the surface area element of ∂�.
We choose w = ( u

 – u

 + Lu

 )x. By the second equation of (.), we have

 =
∫∫

∂�×(,ω)
m(t)

(
u


–

u


+

Lu



)
x · n ds dt

=
∫∫

Qω

m(t) div

((
u


–

u


+

Lu



)
x
)

dx dt

= N
∫∫

Qω

m(t)
(

u


–

u


+

Lu



)
dx dt

+
∫∫

Qω

m(t)
(
u – u + Lu

)
(x · ∇u) dx dt. (.)
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In the following, we calculate the second term on the left side of (.). Multiplying the
first equation of (.) by u, integrating over Qω , and using the periodicity of u, we obtain

∫∫

Qω

∂u
∂t

u dx dt
︸ ︷︷ ︸



+
∫∫

Qω

|∇u| dx dt =
∫∫

Qω

m(t)
(
u – u + Lu)dx dt. (.)

We denote Di = ∂u
∂xi

, Dij = ∂
∂xj

( ∂u
∂xi

), choose w = |∇u|x, and use (.) to get

∫∫

∂�×(,ω)

(|∇u|x
) · n ds dt

=
∫∫

Qω

div
(|∇u|x

)
dx dt

= N
∫∫

Qω

|∇u| dx dt +
∫∫

Qω

N∑

i=

xiDi

( N∑

j=

|Dju|
)

dx dt

= N
∫∫

Qω

|∇u| dx dt + 
∫∫

Qω

N∑

j=

Dju

( N∑

i=

xiDiju

)

dx dt

= N
∫∫

Qω

|∇u| dx dt – 
∫∫

Qω

N∑

j=

uDj

( N∑

i=

xiDiju

)

dx dt

= N
∫∫

Qω

|∇u| dx dt – 
∫∫

Qω

u�u dx dt – 
∫∫

Qω

N∑

i=

(uxi)Di(�u) dx dt

= N
∫∫

Qω

|∇u| dx dt – 
∫∫

Qω

u�u dx dt + 
∫∫

Qω

N∑

i=

Di(uxi)(�u) dx dt

= N
∫∫

Qω

|∇u| dx dt – 
∫∫

Qω

u�u dx dt

+ N
∫∫

Qω

u�u dx dt + 
∫∫

Qω

�u(x · ∇u) dx dt

= ( – N)
∫∫

Qω

|∇u| dx dt + 
∫∫

Qω

�u(x · ∇u) dx dt.

Substituting (.) into the above equality, we have
∫∫

Qω

�u(x · ∇u) dx dt

=
(N – )



∫∫

Qω

|∇u| dx dt +



∫∫

∂�×(,ω)
|∇u|(x · n) ds dt

=
(N – )



∫∫

Qω

m(t)
(
u – u + Lu)dx dt

+



∫∫

∂�×(,ω)
|∇u|(x · n) ds dt. (.)

Substituting (.) and (.) into (.), we obtain the so-called Pohozaev-identity (.).
The proof of this lemma is complete. �
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Lemma . For N ≤ , suppose the assumption (H) holds, if u is a solution of the problem
(.), then

‖u‖
W ,;

ω (Qω)
=

∫∫

Qω

|∇u| + u
t dx dt ≤ C,

where the positive constant C is independent of L and u.

Proof Multiplying the first equation of (.) by ϕ(x), integrating over Qω , using (.), we
get

∫∫

Qω

∂u
∂t

ϕ(x) dx dt + λ

∫∫

Qω

uϕ(x) dx dt =
∫∫

Qω

m(t)
(
u – u + Lu

)
ϕ(x) dx dt. (.)

Using the periodicity of u and (.), for L ∈ [, L], we have
∫∫

Qω

m(t)uϕ(x) dx dt =
∫∫

Qω

(
λ + m(t) – Lm(t)

)
uϕ(x) dx dt. (.)

We shall use the fact that if � is of class C, then there exist constants c, c > , such that

c dist(x, ∂�) ≤ ϕ(x) ≤ c dist(x, ∂�), x ∈ �. (.)

This is a consequence of u ∈ C(�) and of Hopf ’s lemma (see Proposition .(iii) in []
for example). Since � is bounded, we have

dist(x, ∂�) ≤ R(�).

By the assumption (H), we have  < m ≤ m(t) ≤ M. Using Hölder’s inequality, (.) and
(.), we have

m

∫∫

Qω

uϕ(x) dx dt

≤
∫∫

Qω

(
λ + m(t)

)
uϕ(x) dx dt

≤ (λ + M)
∫∫

Qω

(
uϕ





)
ϕ




 dx dt

≤ (λ + M)
(∫∫

Qω

uϕ dx dt
) 


(∫∫

Qω

ϕ dx dt
) 



≤ (λ + M)
(∫∫

Qω

uϕ dx dt
) 


(∫∫

Qω

cR(�) dx dt
) 


.

By the above inequality we have
∫∫

Qω

uϕ(x) dx dt ≤ C. (.)

Using (.), we infer there exists a constant Cε > , such that

ϕ(x) ≥ Cε , x ∈ � \ �ε , (.)
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where �ε was defined in Lemma .. Using (.) and (.), we deduce that

Cε

∫ ω



∫

�\�ε

u(x, t) dx dt ≤
∫ ω



∫

�\�ε

uϕ(x) dx dt

≤
∫ ω



∫

�

uϕ(x) dx dt

≤ C. (.)

Using Lemma . and (.), we obtain
∫∫

Qω

u dx dt ≤ C. (.)

Multiplying the first equation of (.) by ut , integrating over Qω , and using the periodicity
of u and (.), we obtain

‖u‖
W ,;

ω (Qω)

=
∫∫

Qω

|∇u| + u
t dx dt

=
∫∫

Qω

m(t)
(
u – u + Lu)dx dt –

∫∫

Qω

m′(t)
(

u


–

u


+

Lu



)
dx dt

=
∫∫

Qω

(
m(t) –

m′(t)


)
u dx dt +

∫∫

Qω

(
m(t) –

m′(t)


)
(L – )u dx dt. (.)

Using (.), we have

‖u‖
W ,;

ω (Qω)
≤ C‖u‖

L(Qω). (.)

By the interpolation inequality, using (.), we have

‖u‖
 ≤ (‖u‖θ

‖u‖–θ


) ≤ C‖u‖(–θ )
 , (.)

where




=
θ


+

 – θ


, θ =




.

Using the Sobolev embedding theorem, we have

‖u‖
L(Qω) ≤ C‖u‖

W ,;
ω (Qω)

, N = , . (.)

Combining (.), (.), and (.), using Young’s inequality with ε, we have

‖u‖
W ,;

ω (Qω)

≤ C‖u‖
L(Qω)

≤ C‖u‖(–θ )


= C
(‖u‖


) (–θ )
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≤ C
(
C‖u‖

W ,;
ω (Qω)

) (–θ )


≤
ε((‖u‖

W ,;
ω (Qω)

)
(–θ )

 )η

η
+

ε


–η (CC
(–θ )

 )
η

η–

η

η–

≤ ε‖u‖
W ,;

ω (Qω)
+ C, (.)

where η := 
(–θ ) > . Choosing a sufficiently small ε, by (.) we obtain

‖u‖
W ,;

ω (Qω)
≤ C, (.)

where the constant C is independent of L and u. The proof of this lemma is complete. �

Lemma . For N = , suppose the assumptions (H) and (H) hold, if u is a solution of
the problem (.), then

‖u‖
W ,;

ω (Qω)
=

∫∫

Qω

|∇u| + u
t dx dt ≤ C,

where the positive constant C is independent of L and u.

Proof We calculate the first term on the right-hand side of (.). Integrating over Qω ,
using the periodicity of u and (.), we have

∫∫

Qω

ut�u dx dt =
∫ ω



∫

∂�

(∇u · n)ut ds dt –
∫∫

Qω

∇u · ∇ut dx dt

= –
∫∫

Qω

d
dt

(∇u · ∇u


)
dx dt

= , (.)

where ds is the surface area element of ∂�. Recalling R(�) = supx∈� |x|, thus |x| ≤ R(�).
Multiplying the first equation of the problem (.) by ut , by (.), we obtain

∫∫

Qω

u
t
|x|


dx dt ≤ R(�)



∫∫

Qω

u
t dx dt

=
R(�)



∫∫

Qω

m(t)
((

u – u + Lu
)
ut

)
dx dt

=
R(�)



∫∫

Qω

m(t)
∂( u

 – u

 + Lu

 )
∂t

dx dt

= –
R(�)



∫∫

Qω

m′(t)
(

u


–

u


+

Lu



)
dx dt. (.)

Substituting (.) into (.), we have

∫∫

Qω

((
 –

N


)
u – u + Lu

)
m(t) dx dt

+
∫∫

Qω

(
R(�) – |x|



(
u


–

u


+

Lu



)
m′(t)

)
dx dt
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=
∫∫

Qω

{(
 –

N


)
m(t) +

R(�) – |x|


m′(t)
}

u dx dt

+
∫∫

Qω

(
m(t) +

R(�) – |x|


m′(t)
)

(L – )u dx dt

≤ 


∫∫

∂�×(,ω)
|∇u|(x · n) ds dt. (.)

Using Lemma . and (.), we have




∫∫

∂�×(,ω)
|∇u|(x · n) ds dt ≤ C



∫ ω



(∫

∂�

(x · n) ds
)

dt

=
C


∫ ω



(∫

�

div x dx
)

dt

=
C


∫ ω


N |�|dt

≤ C. (.)

Recalling (.), we obtain

‖u‖
W ,;

ω (Qω)

=
∫∫

Qω

(
m(t) –

m′(t)


)
u dx dt +

∫∫

Qω

(
m(t) –

m′(t)


)
(L – )u dx dt. (.)

Using (.) and (.), by the assumption (H), we infer there is a constant C̃ >  and a
point x ∈R

N , such that

m(t) –
m′(t)


≤ C̃

{(
 –

N


)
m(t) +

R(�) – |x|


m′(t)
}

, N = . (.)

In fact, if m′(t) ≥ , then we choose the constant C̃ ≥ , thus (.) is valid. If m′(t) < , by
the assumption (H), we have  ≤ |m′(t)| ≤ C,  < (m(t) – m′(t)

 ) ≤ C. In order to let

{(
 –

N


)
m(t) +

R(�) – |x|


m′(t)
}

> ,

namely

sup
t∈[,ω]

(m′(t))–

m(t)
<

( – N)
R(�) – |x| , N = , (.)

where (m′(t))– = max{, –m′(t)}, we choose x as origin, |x| =  in (.), thus (.) is
valid since m(t) satisfies the assumption (H). In addition, since  ≤ L ≤ L, using (.),
(.), (.), and (.), we get

‖u‖
W ,;

ω (Qω)
≤ C̃



∫∫

∂�×(,ω)
|∇u|(x · n) ds dt ≤ C.

The proof of this lemma is complete. �
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Lemma . For N ≤ , L ∈ [, L], if u is a solution of the problem (.), then there exists
a positive constant C, which is independent of L and u, such that

‖u‖L∞
ω (Qω) ≤ C.

Proof We proceed in a similar way to Proposition  in [] (see also Proposition . in
[]). This proof is divided into three steps. In the first step, we prove the boundedness
of u in L∞

ω ([,ω]; L(�)). In the second step, we will also need the following interpolation
estimates (see (.) in []):

W ,([,ω], L(�)
) ∩ Lq([,ω], H(�)

)
↪→ L∞(

[,ω], Lρ(�)
)
, (.)

where q ≥ , ρ ∈ [,ρmax), and

ρmax =

⎧
⎨

⎩
[, N(q+)

q(N–)+N ), N ≥ ,

∞, N = .

We obtain the boundedness of u in L∞
ω ([,ω]; Lρ(�)) for any ρ ∈ [,ρmax). In the third step,

we based on interpolation and Morse-type iteration technique (see Theorem . in [])
to prove u is bounded in L∞

ω (Qω).
First step: u is bounded in L∞

ω ([,ω]; L(�)).
By Lemma . and Lemma ., we are informed that there exists a t ∈ [,ω], such that

‖u(t)‖L(�) ≤ C and ‖uτ‖L(Qω) ≤ C. We notice that

u(t) = u(t) +
∫ t

t

uτ dτ .

Then

(
u(t)

) ≤ 
(
u(t)

) + 
(∫ t

t

uτ dτ

)

≤ 
(
u(t)

) + 
∫ t

t

(uτ ) dτ

∫ t

t

dτ .

From the above equality, we have

‖u‖L∞
ω ([,ω];L(�)) = sup

t∈[,ω]

(∫

�

∣∣u(t)
∣∣ dx

) 


≤ sup
t∈[,ω]

(

∫

�

∣
∣u(t)

∣
∣ dx + ω

∫

�

∫ t

t

|uτ | dτ dx
) 



≤ C. (.)

Second step: u is bounded in L∞
ω ([,ω]; Lρ(�)) for any ρ ∈ [,ρmax).

For t ∈ [,ω], we define the ‘action’ function as follows:

S
(
u(t)

)
=




∫

�

∣
∣∇u(t)

∣
∣ dx –

∫

�

m(t)
(

u


–

u


+

Lu



)
dx, L ∈ [, L]. (.)
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We first prove that S(u(·)) is bounded in L
ω(,ω). From the equality (.), Lemma .,

and Lemma ., we find

∥∥S
(
u(·))∥∥L(,ω)

=
∫ ω



∣∣S
(
u(t)

)∣∣dt

≤ 


∫∫

Qω

∣∣∇u(t)
∣∣ dx dt +

∫∫

Qω

∣
∣∣
∣m(t)

(
u


–

u


+

Lu



)∣
∣∣
∣dx dt

=



∫∫

Qω

m(t)
(
u – u + Lu)dx dt

+
∫∫

Qω

∣∣
∣∣m(t)

(
u


–

u


+

Lu



)∣∣
∣∣dx dt

≤ C
∫∫

Qω

m(t)u dx dt

≤ C. (.)

Therefore, S(u(·)) is bounded in L
ω(,ω). Moreover, for any t, s ∈ [,ω], from (.) we

have

S
(
u(t)

)
– S

(
u(s)

)

=
∫ t

s

∂S(u(τ ))
∂τ

dτ

=



∫ t

s

∂

∂τ

(∫

�

∣∣∇u(τ )
∣∣ dx

)
dτ –

∫ t

s

∫

�

m′(τ )
(

u


–

u


+

Lu



)
dx dτ

–
∫ t

s

∫

�

m(τ )
(
u – u + Lu

)∂u
∂τ

dx dτ . (.)

Using the first equation of the problem (.), we infer

∫ t

s

∫

�

m(τ )
(
u – u + Lu

)∂u
∂τ

dx dτ

=
∫ t

s

∫

�

(
∂u
∂τ

– �u
)

∂u
∂τ

dx dτ

=
∫ t

s

∫

�

∣∣
∣∣
∂u
∂τ

∣∣
∣∣



dx dτ +
∫ t

s

∫

�

∇u · ∇uτ dx dτ

=
∫ t

s

∫

�

∣∣∣
∣
∂u
∂τ

∣∣∣
∣



dx dτ +



∫ t

s

∂

∂τ

(∫

�

∣∣∇u(τ )
∣∣ dx

)
dτ .

The above inequality implies




∫ t

s

∂

∂τ

(∫

�

∣∣∇u(τ )
∣∣ dx

)
dτ –

∫ t

s

∫

�

m(τ )
(
u – u + Lu

)∂u
∂τ

dx dτ

= –
∫ t

s

∫

�

∣
∣∣
∣
∂u
∂τ

∣
∣∣
∣



dx dτ . (.)
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Lemma . and Lemma . imply

∫ t

s

∫

�

∣∣
∣∣m

′(τ )
(

u


–

u


+

Lu



)∣∣
∣∣dx dτ ≤ C,

∫ t

s

∫

�

∣∣∣
∣
∂u
∂τ

∣∣∣
∣



dx dτ ≤ ‖u‖
W ,;(Qω) ≤ C.

(.)

Substituting (.) into (.), we use (.) to get, for s, t ∈ [,ω],

∣∣S
(
u(t)

)
– S

(
u(s)

)∣∣

=
∣
∣∣
∣–

∫ t

s

∫

�

m′(τ )
(

u


–

u


+

Lu



)
dx dτ –

∫ t

s

∫

�

∣
∣∣
∣
∂u
∂τ

∣
∣∣
∣



dx dτ

∣
∣∣
∣

≤
∫ t

s

∫

�

∣
∣∣
∣m

′(τ )
(

u


–

u


+

Lu



)∣
∣∣
∣dx dτ +

∫ t

s

∫

�

∣
∣∣
∣
∂u
∂τ

∣
∣∣
∣



dx dτ

≤ C. (.)

From (.) we infer that there exists a point s ∈ [,ω] such that

S
(
u(s)

)
(ω – ) =

∫ ω



∣∣S
(
u(t)

)∣∣dt ≤ C. (.)

Combining (.) and (.), we get

sup
t∈[,ω]

∣∣S
(
u(t)

)∣∣ ≤ sup
t∈[,ω]

(∣∣S
(
u(t)

)
– S

(
u(s)

)∣∣ +
∣∣S

(
u(s)

)∣∣) ≤ C. (.)

We multiply the first equation of the problem (.) by u and integrate over �, then

∫

�

uut dx +
∫

�

∣
∣∇u(t)

∣
∣ dx =

∫

�

m(t)
(
u – u + Lu)dx. (.)

Substituting (.) into (.), we get

∫

�

|∇u| dx =
∫

�

uut dx + S
(
u(t)

)

–
∫

�

m(t)u dx + L
∫

�

m(t)u dx. (.)

From (.) we have

sup
t∈[,ω]

∫

�

u dx ≤ C. (.)

By (.), (.), and (.), we infer

∫

�

|∇u| dx ≤
∫

�

|uut|dx + C. (.)
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Using (.) and (.), we infer from (.) that

∫ t

s

(∫

�

|∇u| dx
)

dτ ≤
∫ t

s

(∫

�

|uuτ |dx + C
)

dτ

≤ C
∫ t

s

(∫

�

|uuτ |dx
)

dτ + C

≤ C
∫ t

s

(∫

�

u dx
)(∫

�

u
τ dx

)
dτ + C

≤ C
∫ t

s

∫

�

u
τ dx dτ + C

≤ C. (.)

Hence we infer from (.) that

‖u‖L([,ω],H(�)) ≤ C. (.)

For N ≥ , if � is star shaped, then there is no nontrivial periodic solution for the prob-
lem (.)-(.) (see Section  for the proof of Theorem .). Thus we consider the case
of N ≤ . For N = , we will obtain the L∞

ω (Qω) estimates, which will also be valid for
N = , . Lemma . implies u ∈ W ,([,ω], L(�)). In fact, using Lemma . and Hölder’s
inequality, we have

‖u‖
W ,([,ω],L(�)) =

∫ ω



∣∣
∣∣
∂

∂t

(∫

�

u dx
) 


∣∣
∣∣



dt

=
∫ ω



∣
∣∣
∣

(∫

�

u dx
) –


∫

�

uut dx
∣
∣∣
∣



dt

≤
∫ ω



∣∣
∣∣

(∫

�

u dx
) –


(∫

�

u dx
) 


(∫

�

|ut| dx
) 


∣∣
∣∣



dt

=
∫ ω



∫

�

|ut| dx dt

≤ ‖u‖
W ,;(Qω)

≤ C. (.)

For the case of N = , q = , using (.), (.), and (.), we have

W ,([,ω], L(�)
) ∩ L([,ω], H(�)

)

↪→ L∞(
[,ω], Lρ(�)

)
, N = ,ρ ∈

[
,




)
.

Thus

sup
t∈[,ω]

∫

�

|u| 
 dx ≤ C.
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We replace q =  with q = 
 , repeating the process of (.)-(.), to obtain

∫ t

s

(∫

�

|∇u| dx
) 


dτ ≤

∫ t

s

(∫

�

|uuτ |dx + C
) 


dτ

≤ C
∫ t

s

(∫

�

|uuτ |dx
) 


dτ + C

≤ C
∫ t

s

(∫

�

|u| 
 dx

)(∫

�

|uτ | 
 dx

) 


dτ + C

≤ C
∫ t

s

(∫

�

|uτ | 
 dx

) 


dτ + C

≤ C
∫ t

s

(∫

�

 dx
) 


(∫

�

|uτ | dx
) 


dτ + C

≤ C. (.)

Hence we infer from (.) that

u is bounded in L([,ω], H(�)
)
. (.)

For the case of N = , q = 
 , using (.), (.) and (.), we have

W ,([,ω], L(�)
) ∩ L([,ω], H(�)

)

↪→ L∞(
[,ω], Lρ(�)

)
, ρ ∈

[
,




)
. (.)

Third step: u is bounded in L∞
ω (Qω).

We based on interpolation and Morse-type iteration technique (see Theorem . in
[]) to prove u is bounded in L∞

ω (Qω). For r ≥ , multiplying (.) by ur– and integrate
over �, we obtain, for any L ∈ [, L],


r

d
dt

∫

�

ur dx +
r – 

r

∫

�

∣∣∇(
ur)∣∣ dx =

∫

�

m(t)
(
u+r – ur + Lur)dx. (.)

In this step, we denote ‖ · ‖p the Lp(�) norms, and

w := ur , α(r) :=
 + r

r
. (.)

By interpolation inequality for Lα(�) norms, we have

‖w‖α
α ≤ (‖w‖β

 ‖w‖–β

∗
)α , (.)

where  ≤ α ≤ ∗ := N
N– , and


α

=
β


+

 – β

∗ , β(r) ∈ (, ).
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For N = , ∗ = , from the above equality, we have

β(r) =
r – 

(r + )
. (.)

Using the identity (.), interpolation inequality (.), the Sobolev embedding theorem,
and Young’s inequality, we obtain


r

d
dt

‖w‖
 +

r – 
r ‖∇w‖

 ≤ ∥∥m(t)
∥∥

L∞[,ω]

(‖w‖α
α + L‖w‖


)

≤ C‖w‖α
α

≤ C
(‖w‖β

 ‖w‖–β

∗
)α

≤ C
(‖w‖β

 ‖∇w‖–β


)α

≤
(


r
‖∇w‖



)α(–β)

C
(
r–β‖w‖β


)α

≤ (( 
r ‖∇w‖

)α(–β))


–γ


–γ

+
(C(r–β‖w‖β

 )α)

γ


γ

≤ 
r
‖∇w‖

 + C

γ r

α(–β)
γ ‖w‖

αβ
γ

 , (.)

where

γ :=  – α( – β) =
r – 

r
. (.)

Since we will choose the parameter r ≥ ,  < γ < . Moving the term 
r ‖∇w‖

 of (.) to
the left side, multiplying (.) with r, we obtain




d
dt

‖w‖
 +

r – 
r

‖∇w‖
 ≤ C


γ r+ α(–β)

γ ‖w‖
αβ
γ

 . (.)

Integrating (.) over [τ , τ + ω], using the periodicity of u, we get

r – 
r

∫ τ+ω

τ

‖∇w‖
 dt ≤

∫ τ+ω

τ

C

γ r+ α(–β)

γ sup
t∈[τ ,τ+ω]

‖w‖
αβ
γ

 dt

= ωC

γ r+ α(–β)

γ sup
t∈[τ ,τ+ω]

‖w‖
αβ
γ

 . (.)

Using the Poincaré inequality, we see that there exists a constant C > , such that

‖w‖
 ≤ C‖∇w‖

. (.)

Consequently, from (.) and (.), we infer

∫ τ+ω

τ

‖u‖r
r dt ≤ ωC


γ r+ α(–β)

γ sup
t∈[τ ,τ+ω]

‖w‖
αβ
γ

 . (.)
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By the integral mean value theorem, using (.), we infer that there exists a point t̂ ∈
(τ , τ + ω), such that

∫

�

∣
∣u(x, t̂)

∣
∣r dx ≤ C


γ r+ α(–β)

γ sup
t∈[τ ,τ+ω]

‖w‖
αβ
γ

 . (.)

Integrating (.) over [t̂, t], we have




∫

�

∣
∣u(x, t)

∣
∣r dx –




∫

�

∣
∣u(x, t̂)

∣
∣r dx +

r – 
r

∫ t

t̂
‖∇w‖

 dt

≤ (t – t̂)C

γ r+ α(–β)

γ sup
t∈[τ ,τ+ω]

‖w‖
αβ
γ

 , t ∈ [t̂, τ + ω].

Combining the above inequality with (.) and (.), we obtain

∫

�

∣
∣u(x, t)

∣
∣r dx ≤ C


γ r+ α(–β)

γ sup
t∈[τ ,τ+ω]

‖w‖
αβ
γ

 , t ∈ [t̂, τ + ω].

Taking the rth root of both sides of the above inequality, we have

‖u‖r =
(∫

�

ur dx
) 

r ≤ C


rγ r(+ α(–β)
γ ) 

r sup
t∈[τ ,τ+ω]

‖w‖
αβ
rγ
 , t ∈ [t̂, τ + ω]. (.)

Using (.) and (.), recalling the definition of γ in (.), we define two functions
δ(r), ρ(r) as follows:

δ(r) :=


rγ
=


r – 

,

(
 +

α( – β)
γ

)


r
=


r – 

= δ(r), (.)

ρ(r) :=
αβ

rγ
=

r – 
r(r – )

.

Noticing the periodicity of u, choosing t = τ +ω in (.), combining with (.), we obtain

∥∥u(x, τ )
∥∥

r =
∥∥u(x, τ + ω)

∥∥
r ≤ C


rγ r(+ α(–β)

γ ) 
r sup

t∈[τ ,τ+ω]
‖w‖

αβ
rγ


= Cδ(r)rδ(r) sup
t∈[τ ,τ+ω]

‖u‖ρ(r)
r . (.)

Integrating (.) over [τ , t], we have




∫

�

∣
∣u(x, t)

∣
∣r dx –




∫

�

∣
∣u(x, τ )

∣
∣r dx +

r – 
r

∫ τ

t
‖∇w‖

 dt

≤
∫ t

τ

C

γ r+ α(–β)

γ sup
t∈[τ ,τ+ω]

‖w‖
αβ
γ

 dt

≤ (t – τ )C

γ rrδ(r)

(
sup

t∈[τ ,τ+ω]
‖u‖r

)rρ(r)
, t ∈ [τ , t̂]. (.)
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From (.), (.), and (.), we have

‖u‖r =
(∫

�

ur dx
) 

r ≤ Cδ(r)rδ(r) sup
t∈[τ ,τ+ω]

‖u‖ρ(r)
r , t ∈ [τ , t̂]. (.)

Using (.) and (.), for any t ∈ [τ , τ + ω], we have

sup
t∈[τ ,τ+ω]

‖u‖r = sup
t∈[τ ,τ+ω]

(∫

�

ur dx
) 

r ≤ Cδ(r)rδ(r) sup
t∈[τ ,τ+ω]

‖u‖ρ(r)
r . (.)

We define a constant Ur as follows:

Ur := sup
t∈[τ ,τ+ω]

‖u‖r = sup
t∈[τ ,τ+ω]

(∫

�

ur dx
) 

r
, r ≥ . (.)

From (.), we have

Ur ≤ Cδ(r)rδ(r)Uρ(r)
r . (.)

By a bootstrap argument, using (.) and replacing r with kr, k := , , , . . . , repeating
the process of (.)-(.), we obtain

Uk+r ≤ Cδ(k r)(kr
)δ(k r)(Uk r)ρ(k r). (.)

In the following, we will fix the parameter r = . Using (.), by iteration, we have

U×k+ ≤ Cδ(×k )( × k)δ(×k )(U×k )ρ(×k )

≤ Cδ(×k )( × k)δ(×k )

× (
Cδ(×k–)( × k–)δ(×k–)(U×k– )ρ(×k–))ρ(×k )

≤ Cδ(×k )( × k)δ(×k )(Cδ(×k–)( × k–)δ(×k–)

× {
Cδ(×k–)( × k–)δ(×k–)(U×k– )ρ(×k–)}ρ(×k–))ρ(×k )

≤ · · ·
≤ (C)k k (U)k , (.)

where

k = k(k)

= δ
(
 × k) + δ

(
 × k–)ρ

(
 × k)

+ δ
(
 × k–)ρ

(
 × k–)ρ

(
 × k)

+ · · · +
(
δ
(
 × )ρ

(
 × )ρ

(
 × ) · · ·ρ(

 × k)),

k = k(k) (.)
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= kδ
(
 × k) + (k – )δ

(
 × k–)ρ

(
 × k)

+ (k – )δ
(
 × (k–))ρ

(
 × (k–))ρ

(
 × k)

+ · · · +
(
δ

(
 × )ρ

(
 × )ρ

(
 × ) · · ·ρ(

 × k)),

k = k(k) = ρ
(
 × k)ρ

(
 × k–) · · ·ρ(

 × )ρ
(
 × )ρ

(
 × ).

Recalling the definition of ρ(r) in (.), we obtain

 < ρ
(
 × k) ≤ 


, k = , , , . . . ,

 < k(k) < , (.)

lim
k→+∞

k(k) = .

Obviously,  × ( × i) –  > i, i = , , , . . . . Recalling the definition of δ(r) in (.),
using (.) and (.), we have

k(k) < δ
(
 × k) + δ

(
 × k–) + δ

(
 × k–) + · · · + δ

(
 × )

=
k∑

i=


 × ( × i) – 

<
k∑

i=


i = 

(
 –

(



)k+)
, (.)

lim
k→+∞

k(k) = .

We also have

k(k) < kδ
(
 × k) + (k – )δ

(
 × k–)

+ (k – )δ
(
 × k–) + · · · + δ

(
 × )

=
k∑

i=

i
 × ( × i) – 

<
k∑

i=

i
i = 

(
 –

(



)k)
–

k
k ,

lim
k→+∞

k(k) = .

(.)

Using (.), we have

U = sup
t∈[τ ,τ+ω]

‖u‖ ≤ C. (.)

From (.), (.), (.), (.), and (.), we obtain

‖u‖L∞
ω (Qω) = lim

k→+∞
U×k+ ≤ lim

k→+∞
(C)k k (U)k ≤ C,

where the positive constant C is independent of k, u, L. Thus, all solutions of the problem
(.) are bounded in L∞

ω (Qω). �

Proposition . deg(I – K, BR, ) = .
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Proof In fact, if u is a solution of the problem (.), then Lemma . implies that u is
bounded in L∞

ω (Qω), thus there exists a constant R > min{r, C(L)}, where r is defined as
(.), R is independent of L, u, such that

‖u‖L∞
ω (Qω) ≤ C(L) < R, L ∈ [, L], (.)

where L is defined as (.). From (.) we infer TL has no fixed point for u ∈ ∂BR, namely

TLu �= u, L ∈ [, L], ‖u‖L∞
ω (Qω) = R.

For L = L, Proposition . implies the problem (.) has no solutions, thus

deg(I – TL , BR, ) = . (.)

Using the homotopy invariance of the degree, from (.) we infer

deg(I – T, BR, ) = deg(I – TL , BR, ) = .

We notice that operator K = T, then

deg(I – K, BR, ) = deg(I – T, BR, ) = .

The proof of this proposition is complete. �

5 Annulus domains
In this section, we consider the problem (.)-(.) in annulus domain � = BR \ Br . In
order to calculate deg(I – Tl, BR̂, ), we will obtain the L∞

ω ([s, s] × [,ω]) estimates for
radial solutions.

Let r = |x| = x
 + x

 + · · · + x
N , where N ≥ . Let u(r, t) = u(|x|, t) = u(x, t) and v(s, t) =

u(r, t) with s = r–β , β = N – . We have

∂u
∂r

=
∂v
∂s

∂s
∂r

= –βr–β– ∂v
∂s

,

�u =
∂u
∂r +

N – 
r

∂u
∂r

= βr–β– ∂v
∂s + β(β + )r–β– ∂v

∂s
+

N – 
r

(
–βr–β– ∂v

∂s

)

︸ ︷︷ ︸


= βs
(N–)

N–
∂v
∂s .

Then the problem (.)-(.) becomes

⎧
⎪⎪⎨

⎪⎪⎩


β s– (N–)

N– ∂v
∂t – vss = m(t)

β s– (N–)
N– (v – v), (s, t) ∈ (s, s) ×R

+,

v(s, t) = , v(s, t) = ,

v(s, t) = v(s, t + ω) = ,

(.)

where s = R–β
 , s = r–β

 ,  < s < s < s.
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In order to employ the topological degree method to deal with the existence of the
nontrivial periodic solutions of the problem (.), we introduce the operators Kσ from
L∞

ω ([s, s] × [,ω]) to itself,

Kσ : L∞
ω

(
[s, s] × [,ω]

) × [, ] → L∞
ω

(
[s, s] × [,ω]

)
,

(u,σ ) �→ v.

We say that Kσ u = v, if v is a solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩


β s– (N–)

N– ∂v
∂t – vss = σ

m(t)
β s– (N–)

N– (u – u), σ ∈ [, ], (s, t) ∈ (s, s) ×R
+,

v(s, t) = , v(s, t) = ,

v(s, t) = v(s, t + ω) = .

(.)

It is easy to check that the operator Kσ is well defined and completely continuous.
We denote by λ the first eigenvalue of –� in H

(s, s), and denote ϕ(s) the correspond-
ing eigenfunction, namely

⎧
⎨

⎩
–(ϕ)ss = λϕ, s ∈ (s, s),

ϕ(s) = ϕ(s) = ,
(.)

where ϕ(s) > .
In the following, we are going to establish the existence of nontrivial time periodic so-

lutions of the problem (.) by calculating the topological degree. For this purpose, we
denote the ball in L∞

ω ([s, s] × [,ω]) with center zero and radius R̂ by BR̂. We first calcu-
late deg(I – K, Br̂ , ) for r̂ appropriately small.

Proposition . deg(I – K, Br̂ , ) = .

Proof We argue by contradiction to prove that Kσ has no fixed points on ∂Br̂ , namely

Kσ v �= v, σ ∈ [, ], v ∈ ∂Br̂ . (.)

If σ = , then K is the null operator. Thus

K(v) =  �= v, v ∈ ∂Br̂ ,

so (.) holds. If  < σ ≤ , suppose that operator Kσ admits fixed points on ∂Br̂ for some
σ ∈ (, ]. Replacing u by v for the first equation of (.), we obtain


β s– (N–)

N–
∂v
∂t

= vss + σ
m(t)
β s– (N–)

N–
(
v – v

)
. (.)

We choose a constant r̂ appropriately small, such that

 < r̂ <
(

λβ
s

(N–)
N–


M

) 


, (.)



Huang et al. Advances in Difference Equations  (2015) 2015:295 Page 26 of 37

where λ is defined in (.). Multiplying (.) by v, integrating over [s, s] × [,ω] and
using (.), by the time periodicity of v, we have

 =
∫ ω



∫ s

s


β s– (N–)

N–
∂v
∂t

v ds dt

= –
∫ ω



∫ s

s

|vs| ds dt + σ

∫ ω



∫ s

s

m(t)
β s– (N–)

N– v ds dt

– σ

∫ ω



∫ s

s

m(t)
β s– (N–)

N– v ds dt

≤
(

Mr̂s– (N–)
N–


β – λ

)∫ ω



∫ s

s

v ds dt

< ,

which is a contradiction. Therefore, Kσ has no fixed points on ∂Br̂ , so (.) holds.
On the other hand, since K = , using the homotopy invariance of the Leray-Schauder

degree, we have

deg(I – K, Br̂ , ) = deg(I – K, Br̂ , ) = deg(I, Br̂ , ) = .

The proof of this proposition is complete. �

Next we investigate the Leray-Schauder degree of I – Tl in a large ball BR̂ in L∞
ω ([s, s] ×

[,ω]). Let us now introduce a new family of operators Tl ,

Tl : L∞
ω

(
[s, s] × [,ω]

) × [, ] → L∞
ω

(
[s, s] × [,ω]

)
,

(u, l) �→ v.

We say that Tlu = v, if v is a solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩


β s– (N–)

N– ∂v
∂t – vss = m(t)

β s– (N–)
N– (u – u) + ( – l)( m(t)

β s– (N–)
N– u + λu),

v(s, t) = , v(s, t) = ,

v(s, t) = v(s, t + ω) = , (s, t) ∈ (s, s) ×R
+,

where λ is defined in (.). Obviously, we can deduce that Tl is well defined and com-
pletely continuous.

For l ∈ [, ], a fixed point v of the operator Tl is the solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩


β s– (N–)

N– ∂v
∂t – vss = m(t)

β s– (N–)
N– (v – v) + ( – l)( m(t)

β s– (N–)
N– v + λv),

v(s, t) = , v(s, t) = ,

v(s, t) = v(s, t + ω) = , (s, t) ∈ (s, s) ×R
+.

(.)

Proposition . If l = , then the problem (.) does not admit nontrivial periodic solu-
tions.
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Proof Multiplying the first equation of the problem (.) by ϕ(s), where ϕ(s) is defined
in (.), integrating over [s, s] × [,ω], by the periodicity of v, we obtain

 =
∫ ω



∫ s

s

vssϕ(s) ds dt +
∫ ω



∫ s

s

m(t)
β s– (N–)

N– vϕ(s) + λvϕ(s) ds dt

=
∫ ω



∫ s

s

v(ϕ)ss + λvϕ(s) ds dt
︸ ︷︷ ︸



+
∫ ω



∫ s

s

m(t)
β s– (N–)

N– vϕ(s) ds dt

> ,

which is a contradiction. The proof of this proposition is complete. �

Next we consider the existence of the solutions for the problem (.) when l ∈ (, ].

Lemma . For N ≥ , if v is a positive solution of the problem (.), then there exists a
positive constant C, which is independent of l, v, such that

‖v‖
L([s,s]×[,ω]) =

∫ ω



∫ s

s

v dx dt ≤ C.

Proof From the first equation of (.), for l ∈ (, ], we obtain

s
–(N–)

N–

β
∂v
∂t

– vss =
m(t)s

–(N–)
N–

β v –
(

m(t)s
–(N–)

N–

β + λ

)
lv + λv. (.)

Multiplying (.) by ϕ(s), using the periodicity of v, we have

∫ ω



∫ s

s

s
–(N–)

N–

β
∂v
∂t

ϕ(s) ds dt
︸ ︷︷ ︸



–
∫ ω



∫ s

s

vssϕ(s) ds dt

=
∫ ω



∫ s

s

(
m(t)s– (N–)

N–

β vϕ(s)

–
(

m(t)s
–(N–)

N–

β + λ

)
lvϕ(s) + λvϕ(s)

)
ds dt. (.)

Using (.), we obtain

–
∫ ω



∫ s

s

vssϕ(s) ds dt = –
∫ ω



∫ s

s

v
(
ϕ(s)

)
ss ds dt =

∫ ω



∫ s

s

λvϕ(s) ds dt. (.)

Substituting (.) into (.), we have

∫ ω



∫ s

s

m(t)s– (N–)
N–

β vϕ(s) ds dt

= l
∫ ω



∫ s

s

(
m(t)s

–(N–)
N–

β + λ

)
vϕ(s) ds dt, l ∈ (, ]. (.)
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We shall use the fact that if � is of class C, then there exist constants c, c > , such that

c dist(x, ∂�) ≤ ϕ(x) ≤ c dist(x, ∂�), x ∈ �. (.)

This is a consequence of u ∈ C(�) and of Hopf ’s lemma, cf. Proposition .(iii) in [].
Since the annulus domain � = BR \ Br , s = R–β

 , s = r–β
 ,  < s < s < s, using (.), we

have

max
{

c dist(s, s), c dist(s, s)
} ≤ c(s – s). (.)

By the assumption (H),  < m ≤ m(t) ≤ M. Using Hölder’s inequality, (.), and (.),
we infer

ms– (N–)
N–


β

∫ ω



∫ s

s

vϕ(s) ds dt

≤
∫ ω



∫ s

s

m(t)s– (N–)
N–

β vϕ(s) ds dt

= l
∫ ω



∫ s

s

(
m(t)s

–(N–)
N–

β + λ

)
vϕ(s) ds dt

≤
(

Ms
–(N–)

N–

β + λ

)∫ ω



∫ s

s

(
vϕ





)
ϕ




 ds dt

≤
(

Ms
–(N–)

N–

β + λ

)(∫ ω



∫ s

s

vϕ ds dt
) 


(∫ ω



∫ s

s

ϕ ds dt
) 



≤
(

Ms
–(N–)

N–

β + λ

)(∫ ω



∫ s

s

vϕ ds dt
) 


(∫ ω



∫ s

s

c(s – s) ds dt
) 


.

From the above inequality, we have

∫ ω



∫ s

s

vϕ(s) ds dt ≤ C. (.)

We fix a sufficiently small positive constant ε, from (.), we infer there exists a constant
Cε > , such that

ϕ(s) ≥ Cε , s ∈ (s + ε, s – ε). (.)

We deduce from (.) and (.) that

Cε

∫ ω



∫ s–ε

s+ε

v ds dt ≤
∫ ω



∫ s–ε

s+ε

vϕ(s) ds dt

≤
∫ ω



∫ s

s

vϕ(s) ds dt

≤ C. (.)
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Using Lemma . and (.), we obtain

‖v‖
L([s,s]×[,ω]) =

∫ ω



∫ s

s

v ds dt ≤ C. (.)
�

In order to calculate deg(I – Tl, BR̂, ) for appropriately large R̂, we need the following
maximum norm estimates. Due to Proposition ., we consider l ∈ (, ] now.

Lemma . For N ≥ , l ∈ (, ], if v is a solution of the problem (.), then there exists a
positive constant Ĉ, which is independent of l, v, such that

‖v‖L∞
ω ([s,s]×[,ω]) ≤ Ĉ.

Proof We will prove the boundedness of v in W ,;
ω ([s, s] × [,ω]). Then we use the

Sobolev embedding theorem and the bootstrap argument to obtain L∞
ω ([s, s] × [,ω])

estimates. Multiplying (.) by v, integrating over [s, s] × [,ω], and using the periodic-
ity of v, we obtain

∫ ω



∫ s

s

|vs| ds dt

=
∫ ω



∫ s

s

s
–(N–)

N–

β
∂v
∂t

v ds dt
︸ ︷︷ ︸



–
∫ ω



∫ s

s

vvss ds dt

=
∫ ω



∫ s

s

m(t)s– (N–)
N–

β v –
(

m(t)s
–(N–)

N–

β + λ

)
lv + λv ds dt. (.)

By the assumption (H), we have  < m ≤ |m(t)| ≤ M. Using (.) and Young’s inequality,
we have

∫ ω



∫ s

s

|vs| ds dt

≤
∫ ω



∫ s

s

m(t)s– (N–)
N–

β v + λv ds dt

≤ Ms– (N–)
N–


β

∫ ω



∫ s

s

v ds dt +
∫ ω



∫ s

s

(λ)


+

(v)


ds dt

≤ C‖v‖
L([s,s]×[,ω]). (.)

From the first equation of (.), we obtain

s
–(N–)

N–

β
∂v
∂t

– vss =
s

–(N–)
N–

β m(t)
(
v – lv

)
+ ( – l)λv. (.)

Since v(s, t) = v(s, t) = , we have

vt(s, t) = vt(s, t) = . (.)
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Using the periodicity of v and (.), we obtain

∫ ω



∫ s

s

vssvt ds dt

=
∫ ω



(
(∇v · n)vt

)∣∣s=s
s=s

︸ ︷︷ ︸
dt



–
∫ ω



∫ s

s

vsvst ds dt

= –



∫ ω



∫ s

s

∂

∂t
v

s ds dt

= . (.)

Multiplying (.) by vt , using (.), we have

∫ ω



∫ s

s

s
–(N–)

N–

β |vt| ds dt –
∫ ω



∫ s

s

vssvt ds dt
︸ ︷︷ ︸



=
∫ ω



∫ s

s

s
–(N–)

N–

β m(t)
((

v – lv
)
vt

)
+ ( – l)(λvvt) ds dt

=
∫ ω



∫ s

s

s
–(N–)

N–

β m(t)
∂( v

 – lv

 )
∂t

ds dt +
∫ ω



∫ s

s

( – l)
∂( λv

 )
∂t

ds dt
︸ ︷︷ ︸



= –
∫ ω



∫ s

s

s
–(N–)

N–

β m′(t)
(

v


–

lv



)
ds dt. (.)

By the assumption (H), we have  ≤ |m′(t)| ≤ C. Using (.) and Young’s inequality, we
obtain

s
–(N–)

N–

β

∫ ω



∫ s

s

|vt| ds dt

≤
∫ ω



∫ s

s

s
–(N–)

N–

β |vt| ds dt

≤ s
–(N–)

N–

β

∫ ω



∫ s

s

|vt| ds dt

≤ s
–(N–)

N–

β

∫ ω



∫ s

s

s
–(N–)

N–

β

∣∣
∣∣–m′(t)

(
v


–

lv



)∣∣
∣∣ds dt

≤ C‖v‖
L([s,s]×[,ω]).

Combining the above inequality with (.), we have

‖v‖
W ,;

ω ([s,s]×[,ω])
=

∫ ω



∫ s

s

|vs| ds dt +
∫ ω



∫ s

s

|vt| ds dt

≤ C‖v‖
L([s,s]×[,ω]). (.)
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By the interpolation inequality for L([s, s] × [,ω]) norms, using Lemma ., we have

‖v‖
 ≤ (‖v‖θ

‖v‖–θ
q̂

) ≤ C‖v‖(–θ )
q̂ , θ ∈ (, ), (.)

where q̂ > , and




=
θ


+

 – θ

q̂
, θ =

(q̂ – )
(q̂ – )

.

Using the Sobolev embedding theorem, we obtain

‖v‖q̂
Lq̂([s,s]×[,ω])

≤ C‖v‖
W ,;

ω ([s,s]×[,ω])
, q̂ > . (.)

Combining (.), (.), and (.), using Young’s inequality, we have

‖v‖
W ,;

ω ([s,s]×[,ω])

≤ C‖v‖
L([s,s]×[,ω])

≤ C‖v‖(–θ )
q̂

= C
(‖v‖q̂

q̂
) (–θ )

q̂

≤ C
(
C‖v‖

W ,;
ω ([s,s]×[,ω])

) (–θ )
q̂

≤
ε((‖v‖

W ,;
ω ([s,s]×[,ω])

)
(–θ )

q̂ )η

η
+

ε


–η (CC
(–θ )

q̂ )
η

η–

η

η–

≤ ε‖v‖
W ,;

ω ([s,s]×[,ω])
+ C, (.)

where η := q̂
(–θ ) , q̂ > ,  < θ < , thus η > . We choose  < ε < , ε sufficiently small. From

(.), we obtain

‖v‖
W ,;

ω ([s,s]×[,ω])
≤ C, (.)

where the constant C is independent of l, v. Using the Sobolev embedding theorem and
(.), we infer v is bounded in L∞

ω ([s, s] × [,ω]). �

Proposition . deg(I – K, BR̂, ) = .

Proof In fact, if v is a solution of the problem (.), then Lemma . implies that v is
bounded in L∞

ω ([s, s] × [,ω]). Thus there exists a constant R̂ > min{r̂, Ĉ}, where r̂ is de-
fined in (.), R̂ is independent of l, v, such that

‖v‖L∞
ω ([s,s]×[,ω]) ≤ Ĉ < R̂. (.)

From (.) we infer Tl has no fixed point for v ∈ ∂BR̂, namely

Tlv �= v, l ∈ [, ], ‖v‖L∞
ω ([s,s]×[,ω]) = R̂.
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For l = , Proposition . implies the problem (.) does not admit nontrivial periodic
solutions, thus

deg(I – T, BR̂, ) = . (.)

Using the homotopy invariance of degree, from (.) we infer

deg(I – T, BR̂, ) = deg(I – T, BR̂, ) = .

We notice that the operator K = T, then

deg(I – K, BR̂, ) = deg(I – T, BR̂, ) = .

The proof of this proposition is complete. �

6 Proof of the main results
In this section, we give the proof of the main results of this paper. The following well-
known lemma will be used in our proof.

Lemma . (Kronecker’s existence theorem) Let X be a real normed linear space, � be
a bounded open subset of X, and F = I – K be a completely continuous field defined on �,
y ∈ X \ F(∂�). If y /∈ F(�), then deg(F ,�, y) = . Thus, if deg(F ,�, y) �= , then the equation
F(x) = y admits at least one solution in �.

Proof of Theorem . Combining Proposition . and Proposition ., we have

deg(I – K, BR – Br , ) = deg(I – K, BR, ) – deg(I – K, Br , ) = –.

By Lemma ., we know that the problem (.)-(.) admits a nontrivial periodic solution
u ∈ L∞

ω (Qω). Using a standard bootstrap procedure, we can improve the regularity of the
solution, and we conclude that the problem (.)-(.) admits a nontrivial classical periodic
solution u ∈ C+α,+ α


ω (Qω) for some α ∈ (, ). The proof of this theorem is complete. �

Proof of Theorem . We argue by contradiction. Assume that the problem (.)-(.) ad-
mits a positive periodic solution u. For any fixed ξ ∈ [τ , τ + ω], multiplying equation (.)
by x · ∇u(x, ξ ) on both sides, and integrating over �, we obtain

∫

�

ut
(
x · ∇u(x, ξ )

)
dx –

∫

�

�u(x, t)
(
x · ∇u(x, ξ )

)
dx

=
∫

�

m(t)
(
u(x, t) – u(x, t)

)(
x · ∇u(x, ξ )

)
dx. (.)

For simplicity, we denote the first term of the left side of (.) by J(t). By the periodicity
of u, we get

∫ τ+ω

τ

∫

�

ut
(
x · ∇u(x, ξ )

)
dx dt =

∫ τ+ω

τ

J(t) dt = . (.)



Huang et al. Advances in Difference Equations  (2015) 2015:295 Page 33 of 37

By the integral mean value theorem and (.), there exists a t ∈ [τ , τ +ω], such that J(t) = .
Similar to the proof of [], p., we denote tξ = min{t ∈ [τ , τ + ω]; J(t) = }. Define an
operator

F : [τ , τ + ω] → [τ , τ + ω], F(ξ ) �→ tξ .

By F(τ ) = tτ ≥ τ , we have F(τ ) – τ ≥ . By F(τ + ω) = tτ+ω ≤ τ + ω, we have F(τ + ω) – (τ +
ω) ≤ . Thus there exists a t∗ ∈ [τ , τ + ω] such that F(t∗) = t∗. By (.), we have

J
(
t∗)

︸ ︷︷ ︸


–
∫

�

�u
(
x, t∗)(x · ∇u

(
x, t∗))dx

=
∫

�

m
(
t∗)(u(x, t∗) – u

(
x, t∗))(x · ∇u

(
x, t∗))dx. (.)

We proceed in a similar way to (.)-(.). Similar to (.) with L = , we obtain

 = N
∫

�

m
(
t∗)

(
u(x, t∗)


–

u(x, t∗)


)
dx

+
∫

�

m
(
t∗)(u(x, t∗) – u

(
x, t∗))(x · ∇u

(
x, t∗))dx. (.)

For the fixed t∗, we have ut(x, t∗) = . Multiplying the following equation:

ut
(
x, t∗)

︸ ︷︷ ︸


–�u
(
x, t∗) = m

(
t∗)(u(x, t∗) – u

(
x, t∗))

by u(x, t∗) on both sides, and integrating over �, we proceed in a similar way to (.)-
(.). Similar to (.) with L = , we obtain

∫

�

�u
(
x, t∗)(x · ∇u

(
x, t∗))dx

=
(N – )



∫

�

m
(
t∗)(u(x, t∗) – u(x, t∗))dx +




∫

∂�

∣
∣∇u

(
x, t∗)∣∣(x · n) ds. (.)

Substituting (.) and (.) into (.), we have

∫

�

((
 –

N


)
u(x, t∗)

)
m

(
t∗)dx

=
∫

�

u(x, t∗)m
(
t∗)dx +




∫

∂�

∣∣∇u
(
x, t∗)∣∣(x · n) ds. (.)

The nontrivial periodic solution of problem (.)-(.) implies that there exists a point
x∗ ∈ � such that u(x∗, t∗) �= . Since � is star shaped, we have

(x · n) ≥ , x ∈ ∂�,

where n denotes the unit outward normal vector at x ∈ ∂�. Due to m(t) being a positive ω-
periodic function, for N ≥ , the left side of equality (.) is less than zero or equal to zero.
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But the right-hand side of equality (.) is strictly greater than zero. This contradiction
implies that there is no nontrivial periodic solution for the problem (.)-(.). The proof
of this theorem is complete. �

Proof of Theorem . Combining Proposition . and Proposition ., we obtain

deg(I – K, BR̂ – Br̂ , ) = deg(I – K, BR̂, ) – deg(I – K, Br̂ , ) = –.

By Lemma ., we know that the problem (.) admits nontrivial periodic solutions v ∈
L∞

ω ([s, s] × [,ω]). It means that the problem (.)-(.) admits a nontrivial radial solu-
tion. Using a standard bootstrap procedure, we can improve the regularity of the solu-
tion and conclude that the problem (.)-(.) admits a classical radial periodic solution
u ∈ C+α,+ α


ω (Qω) for some α ∈ (, ). The proof of this theorem is complete. �

7 Numerical simulations
In this section, we give some numerical simulations to illustrate our results. Especially, we
will show how the positive periodic solutions of the problem (.)-(.) depend on chang-
ing m(t). For simplicity, we take (x, t) ∈ (, ) × (, π ) throughout this section.

We first give a simple corresponding ODE model as follows:

– vxx = m
(
v – v

)
, x ∈ (, ),

v() = , v() = , v(x) > , x ∈ (, ).
(.)

In order to use the shooting method, we consider the following auxiliary problem:

– vxx = m
(
v – v

)
, x ∈ (, ),

v() = , v′() = a, v(x) > , x ∈ (, ),
(.)

where the positive constant a will be chosen such that v() = . If we take m = ., numer-
ical simulation shows that v() = . × – by choosing a = ., which can be
viewed as an approximate solution of (.).

Similar to the above process, we choose m = , , , , respectively, and set the allow-
able error  × –. Then the corresponding approximate solutions of (.) are shown in
Figure  and the values of a and v() are listed as follows:

(i) m = , a = ., v() = . × –,
(ii) m = , a = ., v() = . × –,

Figure 1 By the shooting method, the numerical
solutions for problem (7.1) with m = 0.5, 1, 2, 3,
10, respectively.
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(iii) m = , a = ., v() = . × –,
(iv) m = , a = ., v() = . × –.
Now we take time t into account. Obviously, if m(t) ≡ m, by (.), we can easily con-

struct trivial time-periodic solutions of the problem (.)-(.). In fact, we can consider
the following auxiliary initial boundary value problem:

ut – uxx = m
(
u – u

)
, x ∈ (, ), t ∈ (, π ),

u() = , u() = , (.)

u(x, ) = v(x),

where v(x) is the solution of the problem (.), m is the same positive constant as the
problem (.). Then any solution of (.) is also a periodic solution of the problem (.)-
(.) with m(t) ≡ m.

Now we will numerically show that, for the case of m(t) �≡ m, the story will be totally
different. In (.), we set u(x, ) = sin(πx) + x(x – ), and choose two different m(t) =  +
 cos(t), m(t) =  +  sin(t), respectively. Then the numerical solutions of the problem
(.)-(.) decay to  (see Figures , ).

If we choose u(x, ) = . sin(πx) + .x(x – ), u(x, ) = . sin(πx) + .x(x – ), respec-
tively, then the numerical solutions of the problem (.)-(.) blow up in finite time (see
Figures , ).

Summarizing the numerical simulations, we see that if m(t) ≡ m, then a smaller m will
give a larger positive periodic solution for the problem (.)-(.) (see Figure ). While
m(t) �≡ m, the numerical simulations suggest that the periodic solutions for the problem
(.)-(.) are unstable (see Figures , , , ).

Figure 2 m(t) = 11 + 10 cos(t),
u(x, 0) = sin(πx) + x(x – 1).

Figure 3 m(t) = 11 + 10 sin(t),
u(x, 0) = sin(πx) + x(x – 1).
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Figure 4 m(t) = 11 + 10 cos(t),
u(x, 0) = 1.07 sin(πx) + 1.07x(x – 1).

Figure 5 m(t) = 11 + 10 sin(t),
u(x, 0) = 1.3 sin(πx) + 1.3x(x – 1).
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