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Abstract
Let f be transcendental and meromorphic in the complex plane. In this article, we
investigate the existences of zeros and fixed points of the linear combination and
quotients of shifts of f (z) when f (z) is of order one. We also prove a result concerning
the linear combination which extends a result of Bergweiler and Langley. Some
results concerning the order of f (z) < 1 are also obtained.
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1 Introduction and main results
In this article, a function is called meromorphic if it is analytic in the whole complex plane
except at possible isolated poles. We assume that readers are familiar with the basic results
and notations of the Nevanlinna value distribution theory of meromorphic functions (see,
e.g., [–]).

Let f be a transcendental meromorphic function in the plane. The forward differences
�n(f ) are defined in the standard way ([], p.) by �f = f (z + ) – f (z), �n+(f ) = �nf (z +
) – �nf (z), n = , , , . . . .

Recently, many excellent results concerning the Nevanlinna theory for difference op-
erators have been obtained (see, e.g., [–]). For example, Halburd and Korhonen [],
respectively Chiang and Feng [] obtained the difference analogue of logarithmic deriva-
tives lemma. Their results became a starting point of investigating Nevanlinna theory on
difference operators and difference equations. Another important result belongs to Berg-
weiler and Langley. In [], Bergweiler and Langley firstly investigate the existence of zeros
of �f and �f

f . The results may be viewed as discrete analogue of the following existence
theorem on the zeros of f ′.

Theorem A ([–]) Let f (z) be transcendental and meromorphic in the plane with

lim
r→+∞

T(r, f )
r

= ,

then f ′ has infinitely many zeros.
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Hurwitz theorem implies that under the hypotheses of Theorem A, f (z + c) – f (z) has a
zero near z for all sufficiently small c ∈ C \ {} if z is a zero of f ′. When f is a transcen-
dental entire function of order less than one, then the first difference �f , and by repetition
of this argument each difference �nf , for n ≥ , is transcendental entire of order less than
one and hence has infinitely many zeros. Bergweiler and Langley considered the divided
difference case and obtained the following theorem.

Theorem B ([]) There exists δ ∈ (, 
 ) with the following property. Let f be a transcen-

dental entire function with order

σ (f ) ≤ σ ≤ 


+ δ < ,

then

G(z) =
�f (z)
f (z)

=
f (z + ) – f (z)

f (z)

has infinitely many zeros.

From the proof of Theorem B, it can be seen that δ is extremely small, so they con-
jectured that the conclusion of Theorem B still holds for δ(f ) < . Chen and Shon partly
answered this question and obtained the following.

Theorem C ([]) Let n ∈ N and f be a transcendental entire function of order σ (f ) < .
Let c ∈ C\{} and a set H = {zj} consist of all different zeros of f (z), satisfying any one of the
following two conditions:

(i) at most finitely many zeros zj, zk satisfy zj – zk = c;
(ii) limj→+∞| zj+

zj
| = l > .

Then

G(z) =
�f (z)
f (z)

=
f (z + c) – f (z)

f (z)

has infinitely many zeros and infinitely many fixed points.

Bergweiler and Langley [] also obtained the following results.

Theorem D Let f be a function transcendental and meromorphic of lower order λ(f ) < λ <
 in the plane. Let c ∈ C \ {} be such that at most finitely many poles zj, zk of f satisfy
zj – zk = c. Then g(z) = f (z + c) – f (z) has infinitely many zeros.

In Theorem D, Bergweiler and Langley considered the existence of zeros of first differ-
ence operator when the transcendental meromorphic function is of lower order less than
one. Chen and Shon [] considered the case when the order of f is equal to one. They
proved the following results.

Theorem E Let c ∈ C\{} and f be a transcendental entire function of order σ (f ) = σ = .
If f (z) have infinitely many zeros with the exponent of convergence of zeros λ(f ) < , then
g(z) = �f (z) = f (z + c) – f (z) has infinitely many zeros and infinitely many fixed points.
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In particular, if a set H = {zj} consists of all different zeros of f (z), satisfying any one of the
following two conditions:

(i) at most finitely many zeros zj, zk satisfy zj – zk = c;
(ii) limj→+∞| zj+

zj
| = l > ,

then

G(z) =
�f (z)
f (z)

=
f (z + c) – f (z)

f (z)

has infinitely many zeros and infinitely many fixed points.

In order to continue to investigate the existence of zeros and fixed points of difference
polynomials and their associated difference quotients, we give the linear combination of
difference shifts of a meromorphic function as follows:

g(z) =
n∑

j=

gj(z)f (z + cj), G(z) =

[ n∑

j=

gj(z)f (z + cj)

]
/

f (z).

In fact, �nf (z) is a special case of g(z) since it can be rewritten as the following form:

�nf (z) =
n∑

j=

Cj
n(–)n–jf (z + j).

By letting the polynomial coefficients of g(z) be constants and cj nonnegative integers, i.e.,

gj(z) = Cj–
n (–)n–j+, cj = j – ,

for j = , . . . , n + , we could find that g(z) and G(z) are general coefficient cases of �nf (z)
and �nf (z)

f (z) , respectively.
Hence, a natural question arises from Theorem E: What can be said about the existence

of zeros and fixed points of �f and �f
f , when f (z) is a meromorphic function with order

σ (f ) = ?
In [], Cui and Yang considered and gave answers to this question. Now, since we in-

troduce the general form of �f and �f
f , the above question acquires its new forms:

Do the conclusions of Theorems B-E still hold for g(z) and g(z)/f (z), when f (z) is a mero-
morphic function with order σ (f ) <  or even σ (f ) ≤ ? In the present article, we answer
this question and obtain the following results.

Theorem . Let f be a transcendental meromorphic function in the plane with the order
σ (f ) = σ = . If f has finitely many poles and infinitely many zeros with the exponent of
convergence of zeros λ(f ) = λ �= . If the polynomial coefficients {gj(z)}n

j= of g(z) satisfy

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}
,

then g(z) =
∑j=n

j= gj(z)f (z + cj) has infinitely many zeros and fixed points.

Remark . By Lemma . in the following part, we can easily have the following result
concerning σ (f ) < .
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Theorem . Let f be a transcendental meromorphic function in the plane with the order
σ (f ) = σ < . If f has finitely many poles and the polynomial coefficients {gj(z)}n

j= of g(z)
satisfy

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}
,

then g(z) =
∑j=n

j= gj(z)f (z + cj) has infinitely many zeros and fixed points.

Now we consider the existence of zeros and fixed points of G(z). From the proofs of
Theorem . and Theorem ., we notice that the property of g(z), i.e., whether it is tran-
scendental or not, actually determines our conclusions. Therefore, in the following we still
first consider the property of G(z) and then investigate zeros and fixed points of G(z) when
f is of order equal to or less than one.

Theorem . Let G(z) = g(z)
f (z) and the polynomial coefficients {gj(z)}n

j= of g(z) satisfy

deg
(
gl(z)

)
> max

≤l≤n,j �=l

{
deg

(
gj(z)

)}
, cl �= .

Then G(z) is transcendental provided f satisfies any one of the following two conditions:
(i) f is transcendental entire and the order of growth of f satisfies

limr→+∞
T(r, f )

r
= ;

(ii) f is transcendental meromorphic and the order of growth of f satisfies

limr→+∞
T(r, f )

r 


= .

Remark . In fact, Theorem . is a generalization of the following last part of Theo-
rem F.

Theorem F ([]) Let n ∈ N and let f be a transcendental entire function of order < 
 , and

set

G(z) =
�nf (z)

f (z)
.

If G is transcendental, then G has infinitely many zeros. In particular, if f has order less
than min{ 

n , 
 }, then G is transcendental and has infinitely many zeros.

In the following, we will investigate the existence of zeros and fixed points of G(z) and
obtain some results related to this.

Theorem . Let f be a function transcendental and meromorphic in the plane with the
order σ (f ) = σ = . If f has finitely many poles and infinitely many zeros with the exponent
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of convergence of zeros λ(f ) = λ �= . If the polynomial coefficients {gj(z)}n
j= of g(z) satisfy

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}
, cl �= ,

then G(z) = g(z)
f (z) has infinitely many zeros and fixed points.

The following theorem can be acquired by using Theorem . and using the same
method as in the proof of Theorem ..

Theorem . Let f be a function transcendental and meromorphic in the plane with the
order σ (f ) = σ < 

 . If f (z) has only finitely many poles and if the polynomial coefficients
{gj(z)}n

j= of g(z) satisfy

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}
, cl �= ,

then G(z) = g(z)
f (z) has infinitely many zeros and fixed points.

In particular, if f is transcendental entire with σ (f ) < , and the polynomial coefficients
{gj(z)}n

j= of g(z) satisfy

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}
, cl �= ,

then G(z) = g(z)
f (z) has infinitely many zeros and fixed points.

2 Some lemmas
Lemma . ([]) Let g be a function transcendental and meromorphic in the plane of
order less than one. Let h > . Then there exists an ε-set E such that

g ′(z + c)
g(z + c)

→ ,
g(z + c)

g(z)
→ ,

as z → ∞ in C\E, uniformly in c for |c| ≤ h. Further, E may be chosen so that for large z
not in E, the function g has no zeros or poles in |ζ – z| ≤ h.

Remark . ([]) Following Hayman ([], pp.-), define an ε-set E to be a countable
union of discs

E =
∞⋃

j=

B(bj, rj)

such that

lim
j→∞|bj| = ∞,

∞∑

j=

rj

|bj| < ∞.

Here and henceforth, B(a, r) denotes the open disc of center a and radius r, and S(a, r)
will denote the corresponding boundary circle. Note that if E is an ε-set, then the set of
r ≥ , for which the circle S(, r) meets E, has finite logarithmic measure and hence zero
logarithmic density.
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Lemma . ([]) Let fj(z) (j = , . . . , n) be meromorphic functions, gj(z) (j = , . . . , n) be entire
functions and satisfy:

(i)
∑n

j= fj(z)egj(z) ≡ ;
(ii) when  ≤ j < k ≤ n, gj(z) – gk(z) is not a constant;

(iii) when  ≤ j ≤ n,  ≤ h < k ≤ n,

T(r, fj) = o
(
T

(
r, egh–gk

))
(r → ∞, r /∈ E),

where E ⊂ (,∞) is of finite linear measure or finite logarithmic measure.
Then fj(z) ≡  (j = , . . . , n).

Lemma . ([]) Let f be a transcendental meromorphic function in the plane of order less
than one. Let h > . Then there exists an ε-set E such that

f (z + c) – f (z) = cf ′(z)
(
 + o()

)

as z → ∞ in C \ E, uniformly in c for |c| ≤ h.

Lemma . ([]) If f is transcendental and meromorphic of order less than one in the
plane. Let n ∈ N . Then there exists an ε-set En such that

�nf (z) ∼ f (n)(z)

as z → ∞ in C \ En.

Lemma . ([]) Let f be a transcendental meromorphic function with finite order σ (f ) =
σ , H = {(k, j), (k, j), . . . , (kq, jq)} be a finite set of distinct pairs of integers that satisfy ki >
ji ≥  for i = , . . . , q, and let ε >  be a given constant. Then there exists a set E ⊂ (,∞) with
finite logarithmic measure such that for all z satisfying |z| /∈ E ∪ [, ] and for all (k, j) ∈ H ,
we have

∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣ ≤ |z|(k–j)(σ–+ε).

Lemma . ([]) Let η, η be two arbitrary complex numbers and let f (z) be a meromor-
phic function of finite order σ . Let ε >  be given, then there exists a subset E ⊂ R with finite
logarithmic measure such that for all r /∈ E ∪ [, ], we have

exp
(
–rσ–+ε

) ≤
∣∣∣∣

f (z + η)
f (z + η)

∣∣∣∣ ≤ exp
(
rσ–+ε

)
.

The following Lemma . can be easily obtained from Chiang and Feng (Theorem .
[]), here we omit its proof.

Lemma . Let g(z), . . . , gn(z) be polynomials such that there exists an integer k,  ≤ k ≤ n,
so that

deg
(
gk(z)

)
> max

≤j≤n,j �=k

{
deg

(
gj(z)

)}
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holds. Suppose that f (z) is a meromorphic solution to

gn(z)y(z + cn) + · · · + g(z)y(z + c) = ,

where cj, j = , . . . , n, are complex numbers of which at least two are distinct. Then σ (f ) ≥ .

Lemma . Let f (z) be a transcendental meromorphic function satisfying σ (f ) = σ < ,
and {gj(z)} be polynomials. If there exists an integer l,  ≤ l ≤ n, such that

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}

holds, then g(z) is transcendental and meromorphic.

Proof Suppose that g(z) is not transcendental. Then we divide our proof into two cases.
Case . If g(z) ≡ , that is,

gn(z)f (z + cn) + · · · + g(z)f (z + c) ≡ .

Since

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}
(.)

holds, and by using Lemma ., we can get that

σ (f ) ≥ .

Clearly, this contradicts with σ (f ) < . Hence g(z) �≡ .
Case . If g(z) is rational, without loss of generality, we may suppose that g(z) is a nonzero

polynomial.
By Lemma . and σ (f ) < , we know that there exists an ε-set E such that

f (z + cj) = f (z)
(
 + o()

)
(.)

as z → ∞ in C\E. Therefore,

g(z) = f (z)
[
g(z)

(
 + o()

)
+ · · · + gn(z)

(
 + o()

)]
. (.)

Since (.) holds, we know that

g(z) + · · · + gn(z) �≡ . (.)

So, by (.) and (.), we obtain that

f (z) =
g(z)

g(z)( + o()) + · · · + gn(z)( + o())
(.)

as z → ∞ in C\E. The following proof is standard, but a proof will be given for complete-
ness.
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Set H = {r : |z| > , z ∈ C\E}. Thus by Remark ., we see that H ⊂ (, +∞) is of finite
logarithmic measure. Since g(z), gj(z), j = , . . . , n, are polynomials, by (.) we get that

T(r, f ) ≤ T(r, g) + T
(
r, g(z)

(
 + o()

)
+ · · · + gn(z)

(
 + o()

))
+ O()

≤ T(r, g) +
n∑

j=

T(r, gj) + O(), r /∈ H .

Thus, for all sufficient large r,

T(r, f ) = O(log r),

which contradicts with the fact that f is transcendental.
Hence, g(z) is transcendental. �

Lemma . ([, ]) If f is transcendental entire satisfying limr→+∞
T(r,f )

r = , or transcen-
dental meromorphic with limr→+∞

T(r,f )

r



= , then f ′
f has infinitely many zeros.

3 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem . According to the condition, suppose that {bv}, v = , . . . , n, are poles
of f (z) with multiplicity τv, and we let

p(z) =
n∏

v=

(z – bv)τv .

Then p(z)f (z) is entire and transcendental.
Set F(z) = p(z)f (z). Then, by the Hadamard factorization theorem and λ(f ) < σ (f ), we

have F(z) = h(z)eaz+b, where a �=  and b are constants, h(z) is an entire function satisfying
σ (h) = λ(h) = λ(f ) < σ (f ) = .

Since g(z) =
∑n

j= gj(z)f (z + cj) and F(z) = p(z)f (z) = h(z)eaz+b, we know that

g(z) =
n∑

j=

gj(z)
h(z + cj)
p(z + cj)

eaz+b+acj

=

( n∑

j=

gj(z)
h(z + cj)
p(z + cj)

eacj

)
eaz+b.

Note that σ (h) < , by Lemma ., there exists an ε-set E such that

h(z + ) ∼ h(z)

as z → ∞ in C\E. Thus

g(z) ∼
( n∑

j=

gj(z)


p(z + cj)
eacj

)
h(z)eaz+b.
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Since

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}

holds, we know that

n∑

j=

gj(z)


p(z + cj)
eacj �≡ .

If g(z) has only finitely many zeros, then there exists a nonzero rational function R(z)
such that

n∑

j=

gj(z)
h(z + cj)
p(z + cj)

eacj = R(z). (.)

By Lemma . and σ (h) < , we know that (.) is impossible. Hence g(z) has infinitely
many zeros.

Now we prove that g(z) =
∑n

j= gj(z)f (z + cj) has infinitely many fixed points. Set

g∗(z) = g(z) – z.

Thus we only need to prove that g∗(z) has infinitely many zeros.
If g∗(z) has only finitely many zeros, then we have

g∗(z) = R∗(z)edz+α ,

where R∗(z) is a rational function, d �=  and α are constants. Without loss of generality,
we may suppose that α = b. In fact, if α �= b, then R∗(z)edz+α = eα–bR∗(z)edz+b, and eα–bR∗(z)
is also a rational function.

So,

R∗(z)edz+b = h(z)eaz+b – z,

where h(z) =
∑n

j= gj(z) h(z+cj)
p(z+cj)

eacj . Since

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}

and σ (h) < , by Lemma ., we know that h(z) is transcendental, and σ (h) < .
We affirm that a = d.
If a �= d, then

R∗(z)edz+b – h(z)eaz+b + ze = .

This satisfies conditions of Lemma .. Thus, by Lemma ., we have that R∗(z) ≡ h(z) ≡
z ≡ , this is a contradiction. Hence a = d.
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So,

[
R∗(z) – h(z)

]
eaz+b = z,

again by Lemma ., we get

R∗(z) – h(z) ≡ , z ≡ .

This also is a contradiction.
Hence, g(z) has infinitely many fixed points. �

Proof of Theorem . According to Lemma ., we know that g(z) is transcendental under
conditions of Theorem . and the order σ (g) < , which means g(z) has either infinitely
many zeros or infinitely many poles. Since f (z) has only finitely many poles, i.e., g(z) has
finitely many poles. Hence g(z) must have infinitely many zeros.

The same discussion also holds when we consider the fixed points of g(z). Hence, g(z)
has infinitely many fixed points. �

We complete our proofs of Theorem . and Theorem ..

4 Proofs of Theorem 1.3 and Theorem 1.4

Proof of Theorem . First we prove that G(z) is transcendental. Suppose that G is rational.
Then we obtain that

n∑

j=

gj(z)
[

f (z + cj) – f (z)
f (z)

]
= R(z) –

n∑

j=

gj(z),

where R(z) is rational.
According to Lemma ., we know that

f (z + cj) – f (z) = cjf ′(z)
(
 + o()

)

as z → ∞ in C \ E. So we get

n∑

j=

cjgj(z)
f ′(z)
f (z)

(
 + o()

)
= R(z) –

n∑

j=

gj(z). (.)

Since cl �=  and

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}
,

we know that

n∑

j=

cjgj(z) �≡ .
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So,

f ′(z)
f (z)

=
R(z) –

∑n
j= gj(z)

∑n
j= cjgj(z)( + o())

. (.)

Since gj(z) are polynomials. Hence the right-hand side of (.) is rational. We can easily get
a contradiction from the two sides of (.) since condition (i) or (ii) separately guarantees
that the left-hand side f ′(z)

f (z) has infinitely many zeros by Lemma .. Therefore, G(z) is
transcendental. We complete the proof of Theorem .. �

Proof of Theorem . Now we prove that G(z) has infinitely many zeros. We continue to
use symbols in the proofs of Theorem . and Theorem ..

Since

G(z) =
g(z)
f (z)

=
(
∑n

j= gj(z) h(z+cj)
p(z+cj)

eacj )eaz+b

h(z)
p(z) eaz+b

=
n∑

j=

gj(z)
p(z)eacj

p(z + cj)

[
h(z + cj)

h(z)

]

=
n∑

j=

gj(z)
p(z)eacj

p(z + cj)
�jh(z)

h(z)
+

n∑

j=

gj(z)
p(z)eacj

p(z + cj)

= G(z) + g(z),

where

g(z) =
n∑

j=

gj(z)
p(z)eacj

p(z + cj)

is rational, �jh(z) = h(z + cj) – h(z) and

G(z) =
n∑

j=

gj(z)
p(z)eacj

p(z + cj)
�jh(z)

h(z)
.

From Theorem ., since h(z) is transcendental and entire with σ (h) < , we know that
G(z) is transcendental and σ (G) ≤ σ (h) < , and by Lemma . and Lemma ., we also
know that there exists an ε-set E such that

G(z) ∼
n∑

j=

gj(z)
p(z)eacj

p(z + cj)
cjh′(z)
h(z)

∼ g(z)
clh′(z)
h(z)

as z → ∞ in C\E, where E contains all zeros and poles of G(z). Hence, there exists a
subset F ⊂ (,∞) of finite logarithmic measure such that for large |z| = r not in F, z /∈ E
and

G(z) ∼ g(z)
clh′(z)
h(z)

+ g(z). (.)



Cui et al. Advances in Difference Equations  (2015) 2015:281 Page 12 of 14

We could find a meromorphic function q(z) such that cl
h′
h = q′

q . In fact, by integrating both
sides of cl

h′
h = q′

q , we obtain that q(z) = Ah(z)cl , where A is a nonzero constant. Since σ (h) <
, we know that q(z) is of finite order <  and transcendental. Hence, by Lemma ., there
exists a set F ⊂ (,∞) of finite logarithmic measure for any given ε ( < ε <  – σ (q)),
such that for large |z| = r not in F,

∣∣∣∣g(z)
clh′(z)
h(z)

∣∣∣∣ =
∣∣∣∣g(z)

q′(z)
q(z)

∣∣∣∣ ≤ ∣∣g(z)
∣∣ · |z|σ (q)–+ε . (.)

Define an ε-set E∗ which consists of all zeros and poles of G(z), then there exists a set
F ⊂ (,∞) of finite logarithmic measure such that if z ∈ E∗, then |z| = r ∈ F.

Thus, by (.) and (.), we see that for large |z| = r /∈ [, ] ∪ F ∪ F ∪ F, G(z) has no
zeros and poles on |z| = r and

∣∣G(z) – g(z)
∣∣ =

∣∣G(z)
∣∣

=
∣∣∣∣g(z)

clh′(z)
h(z)

(
 + o()

)∣∣∣∣ ≤ ∣∣g(z)
∣∣ · |z|–ε <

∣∣G(z)
∣∣ +

∣∣–g(z)
∣∣ (.)

holds on |z| = r.
According to the Rouché theorem, we obtain that

n
(

r,


G(z)

)
– n

(
r, G(z)

)
= n

(
r,


g(z)

)
– n

(
r, g(z)

)
= deg(gl) ≥ . (.)

Since G(z) is transcendental and σ (G(z)) < , we know that at least one of n(r, 
G(z) ) → ∞

and n(r, G(z)) → ∞ (as r → ∞) holds. By (.), G(z) has either finitely many zeros and
poles or infinitely many zeros and poles. Thus, we obtain that

n
(
r, G(z)

) → ∞

and

n
(

r,


G(z)

)
→ ∞.

That is to say, G(z) must have infinitely many zeros.
Let G∗(z) = G(z) – z, we need to consider zeros of G∗(z) in order to estimate the fixed

points of G(z). Since G(z) = G(z) + g(z), we obtain the following inequality by using the
above methods and notations:

G∗(z) – g(z) = G(z) – z ∼ g(z)
clh′(z)
h(z)

– z = g(z)
q′(z)
q(z)

– z.

We could let g(z) q′(z)
q(z) – z = g(z) m′(z)

m(z) since by integrating we obtain that m(z) = q
B exp

∫ z
g

dz ,
where B is a nonzero constant. m(z) is of finite order because q(z) is of finite order. And we
let r(z) =

∫ z
g

dz, then r′(z) = z
g

, which means exp
∫ z

g
dz is also of finite order. Therefore,

we can obtain that

G∗(z) – g(z) ∼ g(z)
m′(z)
m(z)

.



Cui et al. Advances in Difference Equations  (2015) 2015:281 Page 13 of 14

The following proof is similar to the above. We can get a similar equation to that of (.)
by applying the Rouché theorem. At last, we get our conclusion that G(z) has infinitely
many fixed points.

Theorem . follows. �

5 Proof of Theorem 1.5
When f (z) is meromorphic with σ (f ) < 

 , since

deg
(
gl(z)

)
> max

≤j≤n,j �=l

{
deg

(
gj(z)

)}
, cl �= 

by Theorem . we could immediately find that G(z) is transcendental and the order of
G(z) is less than 

 , which means G(z) has either infinitely many zeros or infinitely many
poles. In what follows, we could obtain

n
(

r,


m(z)

)
– n

(
r, m(z)

)
= n

(
r,


g(z)

)
– n

(
r, g(z)

)
= deg(gl) ≥ 

by using the same method as in the proof of Theorem ., where m(z) represents G(z) or
G(z) – z. Therefore, G(z) must have infinitely many zeros and fixed points.

When f (z) is transcendental and entire with σ (f ) < , we can also obtain the same con-
clusion by the same discussion as above. Theorem . follows.
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