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Abstract
In this work, we address the periodic coverage phenomenon on arbitrary unbounded
time scales and initiate a new idea, namely, we introduce the concept of
changing-periodic time scales. We discuss some properties of this new concept and
illustrate several examples. Specially, we establish a basic decomposition theorem of
time scales which provides bridges between periodic time scales and an arbitrary
time scale with a bounded graininess function μ. Based on this result, we introduce
local-almost periodic and local-almost automorphic functions on changing-periodic
time scales and study some related properties. The concept of changing-periodic
time scales introduced in this paper will help in understanding and removing the
serious deficiency which arises in the study of classical functions on time scales.
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1 Introduction
With the development and deepening of the real analysis on time scales, many works re-
lated to time scales have appeared recently (see [–]). This has resulted in the study of
dynamic equations on time scales becoming a leading topic of research. Specially, to study
periodic solutions of dynamic equations on time scales, Kaufmann and Raffoul in 
(see []) introduced the concepts of periodic time scales and periodic functions. This
was followed (see [, ]) by the definitions of almost periodic time scales and almost
periodic functions to investigate almost periodic solutions of dynamic equations on time
scales. We recall that a time scale is an irregular closed subset of R, and thus it creates
several difficulties of keeping the closedness of variables of functions under translation;
for example, for a given function f : T → R, we cannot guarantee that there exists τ such
that f (t + τ ) makes sense because we do not know whether t + τ ∈ T. This is one of the
main reasons mathematicians have introduced some suitable time scales such as periodic
time scales and almost periodic time scales, and so on, before even they give the proper
concepts of functions defined on time scales.
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It is clear that periodic time scales are regular, so we can obtain some of their nice proper-
ties (such as the above closedness property), and introduce and study well-defined func-
tions on them. However, most of time scales are not periodic; thus, it is necessary and
meaningful to find an effective way to build bridges between periodic time scales and an
arbitrary time scale. This will easily allow us to extract results known for periodic time
scales to other types of time scales, and vice versa. Having this in mind, in this paper, we
shall introduce a new concept, which we call ‘changing-periodic time scales’. This concept
deals not only with almost periodic time scales, but also with all the time scales with the
bounded graininess function μ. In conclusion, we shall show that all the time scales with a
bounded graininess function μ can be decomposed into a countable union of periodic time
scales, i.e., we shall formulate a basic decomposition theorem of time scales. This result
paves a way to study functions on an arbitrary time scale with bounded μ as conveniently
as on periodic time scales. Next, based on changing-periodic time scales, we shall intro-
duce ‘local-almost periodic’ and ‘local-almost automorphic’ functions and study some of
their related properties. Finally, we shall apply these results to address local-almost peri-
odicity and local-almost automorphy of solutions of dynamic equations on arbitrary time
scales with bounded graininess function μ.

The present paper is organized as follows. In Section , we begin with necessary known
definitions and results on time scales, and then we introduce some new concepts, which
include changing-periodic time scales. Based on these concepts, we shall establish sev-
eral new results. Our main result here is the decomposition theorem of time scales. In
Section , as applications of changing-periodic time scales, first we shall introduce two
new concepts - local-almost periodic and local-almost automorphic functions, and then
we show that these concepts can be used as a powerful tool to investigate the local-almost
periodicity and local-almost automorphy of solutions of dynamic equations on time scales.

2 Changing-periodic time scales
In the following, we introduce some basic knowledge of time scales and famous Zorn’s
lemma which will be used in our paper. For more details, see [–, ].

A time scale T is a closed subset of R. It follows that the jump operators σ ,� : T → T

defined by σ (t) = inf{s ∈ T : s > t} and �(t) = sup{s ∈ T : s < t} (supplemented by infφ :=
supT and supφ := infT) are well defined. The point t ∈ T is left-dense, left-scattered, right-
dense, right-scattered if �(t) = t, �(t) < t, σ (t) = t, σ (t) > t, respectively. IfT has a left scatter
maximum M, define T

k := T\M; otherwise, set Tk = T. If T has a right scatter minimum
m, define Tk := T\m; otherwise, set Tk = T. The notations [a, b]T, [a, b)T and so on will
denote time scale intervals

[a, b]T = {t ∈ T : a ≤ t ≤ b},

where a, b ∈ T with a < �(b).
The graininess function is defined by ν : T → [,∞): ν(t) := t – �(t) for all t ∈ T.
The function f : T → R is called ld-continuous provided it is continuous at each left-

dense point and has a right-sided limit at each point, we write f ∈ Cld(T) = Cld(T,R). Let
t ∈ Tk , the nabla-derivative of f at t denoted as f ∇ (t) satisfies the inequality

∣
∣f

(

�(t)
)

– f (s) – f ∇ (t)
[

�(t) – s
]∣
∣ ≤ ε

∣
∣�(t) – s

∣
∣
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for any ε >  and all s ∈ U ; here U is a neighborhood of t. Let F be a function, it is called
antiderivative of f : T →R provided

F∇ (t) = f (t) for each t ∈ Tk .

Definition . ([–]) A function p : T →R is called ν-regressive provided  – ν(t)p(t) �=
 for all t ∈ Tk . The set of all regressive and ld-continuous functions p : T → R will be
denoted by Rν = Rν(T) = Rν(T,R). We also define the set R+

ν = R+
ν (T,R) = {p ∈ Rν :

 – ν(t)p(t) > ,∀t ∈ T}.

The graininess function is defined by μ : T → [,∞): μ(t) := σ (t) – t for all t ∈ T.
The function f : T → R is called rd-continuous provided it is continuous at each right-

dense point and has a left-sided limit at each point, we write f ∈ Crd(T) = Crd(T,R). Let
t ∈ T

k , the delta-derivative of f at t denoted as f �(t) satisfies the inequality

∣
∣f

(

σ (t)
)

– f (s) – f �(t)
[

σ (t) – s
]∣
∣ ≤ ε

∣
∣σ (t) – s

∣
∣

for any ε >  and all s ∈ U ; here U is a neighborhood of t. Let F be a function, it is called
antiderivative of f : T →R provided

F�(t) = f (t) for each t ∈ T
k .

Definition . ([–]) A function p : T →R is called regressive provided  + μ(t)p(t) �= 
for all t ∈ T

k . The set of all regressive and rd-continuous functions p : T → R will be
denoted by R = R(T) = R(T,R). We also define the set R+ = R+(T,R) = {p ∈ R :  +
μ(t)p(t) > ,∀t ∈ T}.

Lemma . ([], Zorn’s lemma) Suppose that (P,	) is a partially ordered set. A subset
T is totally ordered if for any s, t in T we have s 	 t or t 	 s. Such a set T has an upper
bound u in P if t 	 u for all t in T . Suppose that a nonempty partially ordered set P has the
property that every nonempty chain has an upper bound in P. Then the set P contains at
least one maximal element.

In order to introduce the concept of changing-periodic time scales precisely and con-
cisely, we need the following definitions.

Definition . We say a time scale is an infinite time scale if one of the following condi-
tions is satisfied: supT = +∞ and infT = –∞ or supT = +∞ or infT = –∞.

Definition . Let T be a time scale, we say T is a zero-periodic time scale if and only if
there exists no nonzero real number ω such that t + ω ∈ T for all t ∈ T.

Remark . By Definition ., it follows that a finite union of the closed intervals can
be regarded as a zero-periodic time scale. The single point set {a} can also be regarded
as a closed interval since {a} = [a, a] in this paper. For convenience, T denotes the zero-
periodic time scale.
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Definition . A timescale sequence {Ti}i∈Z+ is called well-connected if and only if for
i �= j, we have Ti ∩Tj = {tk

ij}k∈Z, where {tk
ij} is a countable points set or an empty set, and tk

ij

is called the connected point between Ti and Tj for each k ∈ Z, the set {tk
ij} is called the

connected points set of this well-connected sequence.

Remark . Clearly the connected points set of a well-connected sequence can be an
empty set. Hence, it follows that if

⋂∞
i= Ti = ∅, then {Ti}i∈Z+ is well connected.

We now introduce a new concept of time scales called ‘changing-periodic time scales’.

Definition . Let T be an infinite time scale. We say T is a changing-periodic or a
piecewise-periodic time scale if the following conditions are fulfilled:

(a) T = (
⋃∞

i= Ti) ∪Tr and {Ti}i∈Z+ is a well-connected timescale sequence, where
Tr =

⋃k
i=[αi,βi] and k is some finite number, and [αi,βi] are closed intervals for

i = , , . . . , k or Tr = ∅;
(b) Si is a nonempty subset of R with  /∈ Si for each i ∈ Z

+ and � = (
⋃∞

i= Si) ∪ R,
where R = {} or R = ∅;

(c) for all t ∈ Ti and all ω ∈ Si, we have t + ω ∈ Ti, i.e., Ti is an ω-periodic time scale;
(d) for i �= j, for all t ∈ Ti\{tk

ij} and all ω ∈ Sj, we have t + ω /∈ T, where {tk
ij} is the

connected points set of the timescale sequence {Ti}i∈Z+ ;
(e) R = {} if and only if Tr is a zero-periodic time scale and R = ∅ if and only if Tr = ∅;

and the set � is called a changing-periods set of T, Ti is called the periodic sub-timescale
of T and Si is called the periods subset of T or the periods set of Ti, Tr is called the remain
timescale of T and R the remain periods set of T.

Remark . From Definition ., it follows that if T is a changing-periodic time scale,
then the remain timescale Tr is a finite union of the closed intervals or Tr = ∅, i.e., R = {}
or R = ∅.

Remark . From condition (c) in Definition ., for all connected points tk
ij , i �= j, we have

tk
ij ∈ Ti and tk

ij ∈ Tj, for all ω ∈ Si and ω ∈ Sj, we have tk
ij + ω ∈ Ti ⊂ T and tk

ij + ω ∈ Tj ⊂ T.

Now we introduce the following related concept.

Definition . A changing-periodic time scale is called complete if and only if its re-
main timescale is an empty set, i.e, Tr = ∅; similarly, Tr �= ∅ if and only if T is noncom-
plete.

We now prove the following proposition.

Proposition . All periodic time scales are particular changing-periodic time scales and
complete.

Proof LetT = Tj, S = Sj, j ∈ Z
+. SinceT = T∪∅, by Definition ., we can take

⋃∞
i= Ti = T∪

(
⋃

i�=j ∅) and
⋃∞

i= Si = S ∪ (
⋃

i�=j ∅), where S is the periods set of T, then Tr = ∅ and R = ∅.
Now by Definition . and Definition ., we obtain the desired result. This completes the
proof. �
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Figure 1 T and S come in pair when T is periodic.

Remark . IfT is a constant-periodic time scale, i.e.,T is an ω-periodic time scale, where
ω is a constant, then � = {nω : n ∈ Z} := S. We also note that although � can be written as
� =

⋃∞
n={nω}, we cannot regard Si as {iω} for all i ∈ Z since for any i �= j, t ∈ Ti, we have

t + jω ∈ Ti, which contradicts condition (d) in Definition .. Therefore, Si = S, Tr = ∅ for
some i ∈ Z

+ and for i �= i, Si = ∅. Hence, all constant-periodic time scales are particular
changing-periodic time scales (see Figure ).

From Definition ., the following properties of changing-periodic time scales are im-
mediate.

Theorem . Let T be a changing-periodic time scales, and Ti, Si, R, Tr satisfy Defini-
tion ., the following hold:

() If t ∈ T, then there must exist some i ∈ Z
+ such that t ∈ Ti ∪Tr . Furthermore, if T is

complete, then t ∈ Ti.
() If t ∈ Ti, ω ∈ Si, then t + ω ∈ Ti ⊂ T.
() If i �= j, then (Ti ∩Tj)\{tk

ij} = ∅, Si ∩ Sj = ∅.
() If t ∈ Ti\{tk

ij}, t + ω ∈ T for i ∈ Z
+, then ω ∈ Si.

() If ω ∈ Si, t + ω ∈ T for i ∈ Z
+, then t ∈ Ti.

Proof From Definition ., () and () are obvious, and hence we need to prove (), ()
and ().

To prove (), if there exists some t ∈ (Ti ∩ Tj)\{tk
ij}, i �= j, then t + α ∈ Ti, t ∈ Tj, ∀α ∈ Si

and t +β ∈ Tj, t ∈ Ti, ∀β ∈ Sj, but this contradicts condition (d) in Definition .. Similarly,
if there exists some τ ∈ Si ∩ Sj, i �= j, then t + τ ∈ Ti, τ ∈ Sj, ∀t ∈ Ti and t + τ ∈ Tj, τ ∈ Si,
∀t ∈ Tj, which also contradicts condition (d) in Definition ..

To prove (), we assume that ω /∈ Si: case () ω /∈ R, then there must exist Sj such that ω ∈
Sj, i �= j, but then t +ω ∈ T for t ∈ Ti\{tk

ij}, which contradicts condition (d) in Definition .;
case () ω ∈ R, then from t +ω ∈ T, we have t ∈ Tr , but this contradicts the fact that t ∈ Ti.

To prove (), we assume that t /∈ Ti: case () t /∈ Tr , then there must exist Tj such
that t ∈ Tj, i �= j and t is obviously not a connected point between Ti and Tj, then
t + ω ∈ T for ω ∈ Si, which contradicts condition (d) in Definition .; case () t ∈ Tr ,
from t + ω ∈ T, we have ω ∈ R, but this contradicts the fact that ω ∈ Si. This completes
the proof. �

In view of the characteristics of changing-periodic time scales (Theorem .), we can
introduce an index function τt : T → Z

+ ∪ {} such that for t ∈ T, t ∈ Tτt holds. This
function plays a very important role in introducing well-defined functions on time scales.
Formally, we have the following definition of τt .



Wang and Agarwal Advances in Difference Equations  (2015) 2015:296 Page 6 of 21

Definition . Let T be a changing-periodic time scale, then the function τ

τ : T �→ Z
+ ∪ {},

( ∞
⋃

i=

Ti

)

�→ i, where t ∈ Ti, i ∈ Z
+,

Tr �→ , where t ∈ Tr ,

t �→ τt

is called an index function for T, where the corresponding periods set of Tτt is denoted
as Sτt . In what follows we shall call Sτt the adaption set generated by t, and all the elements
in Sτt will be called the adaption factors for t.

Remark . From Definition ., if τt is an index function for T, then it immediately
follows that

(i) for t ∈ T, we have t ∈ Tτt ;
(ii) for each i ∈ Z

+, t, t ∈ Ti if and only if τt = τt = i. Furthermore, for t, t ∈ Tr �= ∅ if
and only if τt = τt = , i.e., Tr = T (see Figure ).

Obviously, if Tr = ∅, then τ : T → Z
+.

Remark . Let T be a changing-periodic time scale, for all t ∈ T and all ω ∈ Sτt , we have
t + ω ∈ Tτt ⊂ T. It is also obvious that if Si is an adaption set generated by some given
t ∈ Ti, then Sτt

is the adaption set for all t ∈ Ti since τt = τt = i for all t ∈ Ti.

Now we can prove the following proposition.

Proposition . T is an ω-periodic time scale if and only if we can obtain its index function
τt ≡ z for all t ∈ T, where z denotes some positive integer.

Proof If T is an ω-periodic time scale, then we find S = {nω : n ∈ Z}, and for all t ∈ T and
all τ̃ ∈ S, we have t + τ̃ ∈ T. Thus, by Proposition . and Remark ., there exists some

Figure 2 The index function τt : T → Z
+ ∪ {0}

with Tr �= ∅.
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positive integer z such that T = Tz and S = Sz , i.e., we can choose the index function τt ≡ z
for all t ∈ T.

If τt ≡ z for all t ∈ T, then there exists an adaption set Sτt = Sz for all t ∈ T such that
for any ω ∈ Sτt , we have t + ω ∈ Tτt = T. Hence, T is ω-periodic. This completes the
proof. �

Remark . All changing-periodic time scales can be equipped with the corresponding
index functions such that for all t ∈ T and all ω ∈ Sτt , t + ω ∈ Tτt ⊂ T.

We are now in the position to prove the following important theorem which classifies
the time scales with bounded graininess function μ as changing-periodic time scales.

Theorem . If T is an infinite time scale and the graininess function μ : T → R
+ is

bounded, then T is a changing-periodic time scale.

Proof Without loss of generality, we assume that supT = +∞, infT = –∞. We denote the
set

I =
{

T∩Tτ : τ ∈ [–μ̄, μ̄]\{}},

where A denotes the closure of the set A and μ̄ = supt∈T μ(t). Clearly, I forms a semi-
ordered set with respect to the inclusion relation and I is closed. Denote I∗ the any subset
of I and is totally ordered. Hence, we can obtain two cases:

Case ():

I
∗ =

{(

T∩T
τn

) ∈ I : Tτn ⊃ Tτn+ , n ∈N
}

,

then Tτ ∈ I
∗ ⊂ I and Tτ is an upper bound of I∗ in I.

Case ():

I
∗ =

{(

T∩T
τn

) ∈ I : Tτn ⊂ Tτn+ , n ∈N
}

,

then limn→∞(T ∩ T
τn ) =

⋃∞
n=(T ∩ T

τn ) = T ∩ T
τ∞ ⊂ T is an upper bound of I∗. Because

I is closed, then T ∩ T
τ∞ ∈ I. According to Zorn’s lemma (i.e., Lemma .), there exists

some τ ∈ [–μ̄, μ̄]\{} such that T ∩ T
τ is the maximum element in I. Note that since μ

is bounded, T∩T
τ �= ∅ and sup(T∩T

τ ) = +∞, inf(T∩T
τ ) = –∞.

Now we will show that T is a changing-periodic time scale. We divide the proof into the
following steps.

Step I. We can find a time scale T
 such that T

 ⊂ T is the largest periodic sub-timescale
inT. For this, we make a continuous translation ofT to find a number τ such thatT∩T

τ :=
T is the maximum. Next, consider a translation of T again to find a number τ such that
T ∩ T

τ
 := T is the maximum. Continue this process n times to find a number τn such

that Tn– ∩ T
τn
n– := Tn is the maximum. This process leads to a decreasing sequence of

timescale sets:

T ⊃ T ⊃ T ⊃ · · · ⊃ Tn ⊃ · · · .
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Hence, it follows that limn→∞ Tn = T

. This shows that there exists some τ 

 such that T


coincides with itself through the translation of this number. Obviously, this also implies
that T

 is not a finite union of the closed intervals.
Now we claim that T

 �= ∅. In fact, if T
 = ∅, then there exists some sufficiently large n

such that Tn = ∅, i.e., there exists some sub-timescale Tn– ⊂ T such that Tn– has no
intersection with itself through the translation of the number τn and Tn– ∩T

τn
n– is the

maximum element in

In =
{

Tn– ∩T
τ
n– : τ �= 

}

= ∅,

which means that Tn– is a single point set, but this is a contradiction since supTn– =
+∞, infTn– = –∞. Therefore, T

 is a τ 
-periodic sub-timescale.

Step II. For the time scale T
∗
 := T\T

, where A denotes the closure of the set A, by
replacing T with T

∗
 and repeating Step I, we can obtain the periodic sub-timescale T


.

For the time scale T
∗
 := T\(T

 ∪T

), by replacing T with T

∗
 and repeating Step I, we can

obtain the periodic sub-timescale T

. Similarly, we can obtain T


, . . . ,Tn

 . . . . Obviously,
the timescale sequence {Ti

}i∈Z+ is well connected and (Ti
 ∩T

j
)\{tk

ij} = ∅ for i �= j, where
{tk

ij} is the connected points set between T
i
 and T

j
. If for some sufficiently large n, still

T
∗
n = T\⋃n

i= T
i
 is an infinite time scale, then we repeat Step I again until the remaining

timescale T\⋃∞
i= T

i
 = ∅, or a finite union of the closed intervals.

Step III. Letting the set � of T be as

� =

( ∞
⋃

i=

Si

)

∪ R =

( ∞
⋃

i=

{

nτ i
, n ∈ Z

}

)

∪ R,

where R = {} or ∅, from Steps I and II, it follows that Si ∩ Sj = ∅ if i �= j.
From Steps I, II, III, we find (

⋃∞
i= T

i
) ∪ (

⋃k
i=[αi,βi]) = T, where k is some finite num-

ber and [αi,βi] are closed intervals for i = , , . . . , k, or (
⋃∞

i= T
i
) = T. Therefore, T is a

changing-periodic time scale. This completes the proof. �

From the proof of Theorem ., we have the following proposition.

Proposition . If T =
⋃∞

i= Ti, where Ti is ωi-periodic for each i ∈ Z
+, then there exists a

well-connected timescale sequence {Ti
}i∈Z+ such that T =

⋃∞
i= T

i
, where Ti

 is ωi
-periodic.

Furthermore, T is a complete changing-periodic time scale.

Proof Since Ti is periodic for each i ∈ Z
+, the graininess function μi : Ti →R

+ is bounded
for each i ∈ Z

+. Thus, the graininess function μ of T is also bounded. Therefore, in view
of Theorem ., T is a changing-periodic time scale. Further, from the proof of Theo-
rem ., T can be decomposed into the union of all elements in the well-connected peri-
odic timescale sequence {Ti

}i∈Z+ and Tr = ∅. Now, by Definition . and Definition ., T
is a complete changing-periodic time scale. This completes the proof. �

Now we shall demonstrate some complete changing-periodic time scales.

Example . Let k ∈ Z, consider the following time scale:

T =
{

⋃

k∈(–∞,+∞)\{}

[



k,



k +




]}

∪
{

⋃

k∈(–∞,+∞)\{}

[



k,



k +




]}

.
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We denote

T =
⋃

k∈(–∞,+∞)\{}

[



k,



k +




]

and T =
⋃

k∈(–∞,+∞)\{}

[



k,



k +




]

.

Then, by a direct calculation, the set � is

� =
{




n, n ∈ Z

}

∪
{




n, n ∈ Z

}

:= S ∪ S.

This time scale is a changing-periodic time scale according to Definition ..

Example . Let k ∈ Z, consider the following time scale:

T =
{

⋃

k∈(–∞,+∞)\{}

[



k,



k +




]}

∪
{

⋃

k∈(–∞,+∞)\{}

[



k,



k +




]}

∪
{

⋃

k∈(–∞,+∞)\{}

[



k,



k +




]}

.

We denote

T =
⋃

k∈(–∞,+∞)\{}

[



k,



k +




]

, T =
⋃

k∈(–∞,+∞)\{}

[



k,



k +




]

,

T =
⋃

k∈(–∞,+∞)\{}

[



k,



k +




]

.

Then, by a direct calculation, the set � is

� =
{




n, n ∈ Z

}

∪
{




n, n ∈ Z

}

∪
{




n, n ∈ Z

}

:= S ∪ S ∪ S.

This time scale is a changing-periodic time scale according to Definition ..

Example . Let k ∈ Z, consider the following time scale:

T =
{

⋃

k∈(–∞,+∞)\{}

[



k,



k +




]}

∪
{

⋃

k∈(–∞,+∞)\{}

[

√




k,

√




k +
√




]}

.

We denote

T =
⋃

k∈(–∞,+∞)\{}

[



k,



k +




]

and T =
⋃

k∈(–∞,+∞)\{}

[

√




k,

√




k +
√




]

.

Then, by a direct calculation, the set � is

� =
{




n, n ∈ Z

}

∪
{


√




n, n ∈ Z

}

:= S ∪ S.

This time scale is a changing-periodic time scale according to Definition ..
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The above examples lead to the following immediate propositions.

Proposition . Let Ti be constant-periodic time scales for all i ∈ I , then
⋃

i∈I Ti may not
be a constant-periodic time scale, where I is an index number set.

Proposition . Let Ti be constant-periodic time scales with ωi-period for all i ∈ I , and ωi

is a natural number for each i ∈ I . If all the numbers in the set {ωi}i∈I have a lowest common
multiple ω, then

⋃

i∈I Ti is an ω-periodic time scale.

Example . Let k ∈ Z, consider the following time scale:

T =
{

⋃

k∈(–∞,+∞)\{}

[

k, k +




]}

∪
{

⋃

k∈(–∞,+∞)\{}

[

k, k +




]}

∪
{

⋃

k∈(–∞,+∞)\{}

[

k, k +




]}

,

then it is easily seen that � = {n, n ∈ Z}∪{n, n ∈ Z}∪{n, n ∈ Z}, and T has the constant
period .

Now we construct some changing-periodic time scales with μ bounded.

Example . Let a > , t > a, t ∈ T, and consider the following time scale:

Pa,e–t =
∞
⋃

m=

[pm, a + pm],

where

pm = (m – )a +
m–
∑

k=

exp
{

–
[

ka + exp(–a) + exp
(

–
(

a + exp(–a)
))

+ · · ·

+ exp
(

–
(

(k – )a + exp(–a)
))]

︸ ︷︷ ︸

k terms

}

.

Then we have

σ (t) =

⎧

⎨

⎩

t, if t ∈ ⋃∞
m=[pm, a + pm),

t + e–t , if t ∈ ⋃∞
m={a + pm}

and

μ(t) =

⎧

⎨

⎩

, if t ∈ ⋃∞
m=[pm, a + pm),

e–t , if t ∈ ⋃∞
m={a + pm}.

Similarly, we also have

ρ(t) =

⎧

⎨

⎩

t, if t ∈ ⋃∞
m=(pm, a + pm],

t – e–t , if t ∈ ⋃∞
m={pm}
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and

ν(t) =

⎧

⎨

⎩

, if t ∈ ⋃∞
m=(pm, a + pm],

e–t , if t ∈ ⋃∞
m={pm}.

Example . Let a >  and consider the following almost periodic time scale:

Pa,| sin
√

t+sin
√

t| =
∞
⋃

m=

[pm, a + pm],

where

pm = (m – )a +
m–
∑

k=

∣
∣sin

√

(

ka + | sin
√

a + sin
√

a|

+
∣
∣sin

√

(

a + | sin
√

a + sin
√

a|)

+ sin
√


(

a + | sin
√

a + sin
√

a|)∣∣
+ · · · +

∣
∣sin

√

(

(k – )a + | sin
√

a + sin
√

a|)

+ sin
√


(

(k – )a + | sin
√

a + sin
√

a|)∣∣
︸ ︷︷ ︸

k terms

)

+ sin
√


(

ka + | sin
√

a + sin
√

a|
+

∣
∣sin

√

(

a + | sin
√

a + sin
√

a|)

+ sin
√


(

a + | sin
√

a + sin
√

a|)∣∣
+ · · · +

∣
∣sin

√

(

(k – )a + | sin
√

a + sin
√

a|)

+ sin
√


(

(k – )a + | sin
√

a + sin
√

a|)∣∣
︸ ︷︷ ︸

k terms

)∣
∣.

Then we have

σ (t) =

⎧

⎨

⎩

t, if t ∈ ⋃∞
m=[pm, a + pm),

t + | sin
√

t + sin
√

t|, if t ∈ ⋃∞
m={a + pm}

and

μ(t) =

⎧

⎨

⎩

, if t ∈ ∪∞
m=[pm, a + pm),

| sin
√

t + sin
√

t|, if t ∈ ∪∞
m={a + pm}.

Remark . In [] it has been shown that time scales considered in Examples . and
. are almost periodic time scales. In fact, in our next corollary we shall show that all
concepts of almost periodic time scales discussed in [, ] are actually changing-periodic
time scales.

Corollary . Almost periodic time scales (cf. [, ]) are particular changing-periodic
time scales.
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Figure 3 The containing relationship of four classes of time scales.

Proof Obviously, if T is an almost periodic time scale, then μ : T → R
+ is bounded, and

thus, by Theorem ., T is a changing-periodic time scale. This completes the proof. �

Remark . Time scales considered in Examples ., . and . are not almost pe-
riodic time scales but changing-periodic time scales. Therefore, changing-periodic time
scales strictly include almost periodic time scales (see Figure ).

Now we state and prove the following theorem, which plays an important role in estab-
lishing classical functions on changing-periodic time scales.

Theorem . (Decomposition theorem of time scales) Let T be an infinite time scale
and the graininess function μ : T → R

+ be bounded, then T is a changing-periodic time
scale, i.e., there exists a countable periodic decomposition such that T = (

⋃∞
i= Ti) ∪Tr and

Ti is an ω-periodic sub-timescale, ω ∈ Si, i ∈ Z
+, where Ti, Si, Tr satisfy the conditions in

Definition ..

Proof From Theorem ., we know that T is a changing-periodic time scale, so one can
obtain the decomposition of the time scale T directly from Definition .. The proof is
complete. �

Remark . From the definition of the index function (i.e., Definition .), we see that
a decomposition of a time scale can be determined by its index function τ . In fact, as a
consequence of Theorem ., we have the following result.

Theorem . (Periodic coverage theorem of time scales) Let T be an infinite time scale
and the graininess function μ : T → R

+ be bounded, then T can be covered by countable
periodic time scales.

Proof From Theorem . and Definition ., it follows that

T =

( ∞
⋃

i=

Ti

)

∪Tr ,

where Ti is periodic for each i ∈ Z
+ and Tr = ∅ or Tr is a zero-periodic time scale. This

completes the proof. �

It is interesting to note that in view of Theorem ., Proposition . and Definition .,
it is possible to introduce another concept of changing-periodic time scales.
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Figure 4 Ti and Si come in pair and one-to-one for i ∈ Z
+ when T is changing-periodic.

Definition . We say that T is a changing-periodic time scale if and only if T is a count-
able union of periodic time scales.

Remark . According to Remark ., a finite union of closed intervals
⋃k

i=[αi,βi] := Tr

is a zero-periodic time scale. Thus, T = (
⋃∞

i= Ti) ∪ Tr can be regarded as a union of pe-
riodic time scales. Therefore, by Proposition ., Definition . is equivalent to Defini-
tion ..

Remark . From the above Definitions . and ., we note that Ti and Si appear in
pairs for i ∈ Z

+, likewise, Tr and R also crop up in pair (see Figure ).

Remark . For simplicity, since the remain timescale Tr can be regarded as the zero-
periodic time scale, a changing-periodic time scale can be denoted as T =

⋃∞
i= Ti which

contains Tr .

3 Almost periodicity and almost automorphy of functions on
changing-periodic time scales

By virtue of Section , we now propose a completely new concept of almost periodic func-
tions on changing-periodic time scales, which includes not only the concept of almost
periodic functions on periodic time scales, but also the concept of almost periodic func-
tions on almost periodic time scales, and it is more general and comprehensive. For this,
we need the following notations: Let ατ = {ατ

n} ⊂ Sτt and βτ = {βτ
n } ⊂ Sτt be two adaption

factors sequences for t under the index function τ . Then βτ ⊂ ατ means that βτ is a sub-
sequence of ατ ; ατ + βτ = {ατ

n + βτ
n }; –ατ = {–ατ

n}; En denotes Rn or Cn, D denotes an open
set in E

n or D = E
n, and S denotes an arbitrary compact subset of D. We will also need the

translation operator Tατ , Tατ f (t, x) = g(t, x), which means that g(t, x) = limn→+∞ f (t +ατ
n , x)

provided the limit exists.
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Definition . Let T be a changing-periodic time scale, i.e., T satisfies Definition ..
A function f ∈ C(T × D,En) is called a local-almost periodic function in t ∈ T uniformly
for x ∈ D if the ε-translation numbers set of f ,

E{ε, f , S} =
{

τ̃ ∈ Sτt :
∣
∣f (t + τ̃ , x) – f (t, x)

∣
∣ < ε for all (t, x) ∈ T× S

}

is a relatively dense set for all ε >  and for each compact subset S of D; that is, for any
given ε >  and each compact subset S of D, there exists a constant l(ε, S) >  such that
each interval of length l(ε, S) contains τ̃ (ε, S) ∈ E{ε, f , S} such that

∣
∣f (t + τ̃ , x) – f (t, x)

∣
∣ < ε for all (t, x) ∈ T× S;

here, τ̃ is called the ε-local translation number of f and l(ε, S) is called the local inclusion
length of E{ε, f , S}.

Remark . Since the changing-periodic time scales include periodic and almost periodic
time scales, if T is a τ̃ -periodic time scale, then Tr = ∅, R = ∅ and Sτt = {nτ̃ : n ∈ Z}, so
Definition . is equivalent to Definition . in []; if T is an almost periodic time scale,
then μ is bounded, so T is a changing-periodic time scale, then Definition . includes
Definition  in [] since Definition . covers the almost periodicity on the part T\(T∩
T

–τ ) of Definition  in [].

Remark . In Definition ., we require E{ε, f , S} to be a relatively dense set. Thus, by
the definition and the property of Sτt , we can obtain the local almost periodicity on the
periodic sub-timescale Tτt from Definition . (see Figure ).

Figure 5 The local-almost periodicity of the function f occurs on the periodic sub-timescale T2
through ε-local translation number τ0, but the function f is without almost periodicity on the
periodic sub-timescale T1.
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Now we give another definition which in view of Theorem . is equivalent to Defini-
tion ..

Definition . Assume that T is a changing-periodic time scale. Let f (t, x) ∈ C(T×D,En)
if for any given adaption factors sequence (ατ )′ ⊂ Sτt , there exists a subsequence ατ ⊂ (ατ )′

such that Tατ f (t, x) exists uniformly on T× S, then f (t, x) is called a local-almost periodic
function in t uniformly for x ∈ D.

Example . Consider the changing-periodic time scale given in Example ., with a = ,
and define

f (t) =

⎧

⎨

⎩

sin
√

t + 
 sin t + cos

√
t, if t ∈ ⋃∞

m=[pm, a + pm),

e–t cos t + e t
 sin

√
t, if t ∈ ⋃∞

m={a + pm},

then f (t) is a local-almost periodic function on T. It is worth noting that f (t) is almost
periodic only on a local part of this time scale. In fact, if t ∈ ⋃∞

m={a+pm}, then the function
f (t) is not almost periodic on these points since f (t) becomes unbounded as t increases.
Hence, f (t) is only a local-almost periodic function on the subset of

⋃∞
m=[pm, a + pm).

From Figure , and in view of Theorem ., it is clear that f (t) is local-almost periodic on
the periodic sub-timescale of the set

⋃∞
m=[pm, a + pm), except at the right-scattered points

⋃∞
m={a + pm}, and thus by the definition of f (t), it will not be almost periodic.

From Definition ., we have the following proposition.

Proposition . Let T be a changing-periodic time scale. If f ∈ C(T × D,En) is a local-
almost periodic in t uniformly for x ∈ D, then f ∈ C(T × D,En) is local-almost periodic in
t uniformly for x ∈ D, where T is a changing-periodic time scale and T ⊂ T.

Figure 6 f (t) is a local-almost periodic function on the periodic sub-timescale of the set
⋃∞

m=1[pm, a + pm), except at the right-scattered points
⋃∞

m=1{a + pm}, f (t) will lose its almost
periodicity.
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Proof Let f ∈ C(T×D,En) be uniformly local-almost periodic, then, by Definition ., for
any adaption factors sequence (ατ )′ ⊂ Sτt ⊂ �, there exists a subsequence ατ ⊂ (ατ )′ such
that Tατ f (t, x) exists uniformly on T× S, where S is any compact set in D. Consequently,
Tατ f (t, x) exists uniformly on T × S. This completes the proof. �

Next, we have the following definition.

Definition . Let f , g ∈ C(T × D,En) be uniformly local-almost periodic and T be a
changing-periodic time scale. We say f and g are synchronously local-almost periodic if
f , g are almost periodic on the same periodic sub-timescales of T.

From Theorem ., we can deduce the following result for synchronously local-almost
periodic functions.

Theorem . If f , g ∈ C(T × D,En) are two synchronously local-almost periodic func-
tions, then, for any ε > , the intersection of ε-local translation numbers sets of f and g
is a nonempty relatively dense set, i.e., E{ε, f , S} ∩ E{ε, g, S} is a nonempty relatively dense
set.

Proof If f , g ∈ C(T× D,En) are two synchronously local-almost periodic functions, then,
by Definition ., f , g are almost periodic on the same periodic sub-timescales of T. Now,
from Theorem . in [], the desired conclusion follows immediately. This completes
the proof. �

Finally, in this paper we consider the following linear dynamic equation on a changing-
periodic time scale T:

x�(t) = A(t)x(t) + f (t) ()

and its associated homogeneous equation

x�(t) = A(t)x(t), ()

where A(t) is a local-almost periodic matrix function, and f (t) is a local-almost periodic
vector function. Further, we assume that f (t) and A(t) are synchronously local-almost pe-
riodic functions.

In the following result we shall use the decomposition theorem of time scales (i.e., The-
orem .) to establish the existence and uniqueness of local-almost periodic solutions for
the dynamic equation ().

Theorem . Let T be a changing-periodic time scale and τt be an index function. If ()
admits an exponential dichotomy on the local part Tτt for all t ∈ T, then () has a unique
local-almost periodic solution on Tτt as follows:

x(t) =
∫ t

–∞
X(t)Pτt X

–(στt (s)
)

�τt s –
∫ +∞

t
X(t)(I – Pτt )X

–(στt (s)
)

f (s)�τt s, ()

where X(t) is the fundamental solution matrix of (), Pτt , I – Pτt are two projections of ex-
ponential dichotomy on Tτt , στt is the forward jump operator on the periodic sub-timescale
Tτt , �τt is the �-integral on the periodic sub-timescale Tτt .
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Proof By Definition . and Proposition ., we know that T =
⋃∞

i= Ti, Ti is ωi-periodic
for each i ∈ Z

+ and {Ti}i∈Z+ is well connected, so Tτt is a periodic sub-timescale. Accord-
ing to Theorem . in [], if () admits an exponential dichotomy on the periodic sub-
timescale Tτt for all t ∈ T, then () has a unique almost periodic solution on Tτt as follows:

x(t) =
∫ t

–∞
X(t)Pτt X

–(στt (s)
)

�τt s –
∫ +∞

t
X(t)(I – Pτt )X

–(στt (s)
)

f (s)�τt s.

Hence, Eq. () has a unique local-almost periodic solution on the periodic sub-time-
scale Tτt . This completes the proof. �

Remark . Note that in (), s, t ∈ Tτt , thus, τs = τt . Hence, () can be written as

x(t) =
∫ t

–∞
X(t)Pτt X

–(στs (s)
)

�τs s –
∫ +∞

t
X(t)(I – Pτt )X

–(στs (s)
)

f (s)�τs s.

By the above Theorem ., we can get the following corollary.

Corollary . Let T be a changing-periodic time scale and Ti be a periodic sub-timescale.
If () admits an exponential dichotomy on the local part Ti for some i ∈ Z

+, then () has a
unique local-almost periodic solution on Ti as follows:

x(t) =
∫ t

–∞
X(t)PiX–(σi(s)

)

�is –
∫ +∞

t
X(t)(I – Pi)X–(σi(s)

)

f (s)�is,

where X(t) is the fundamental solution matrix of (), Pi, I – Pi are two projections of expo-
nential dichotomy on Ti, σi is the forward jump operator on the periodic sub-timescale Ti,
�i is the �-integral on the periodic sub-timescale Ti.

In what follows, we will give the concept of combinable-almost periodic functions on
changing-periodic time scales by Definition ..

Definition . Let T be a changing-periodic time scale. If there exists an ωi -periodic
sub-timescale set {Ti}i∈I such that the periods set {ωi}i∈I has a lowest common multiple
ω and f is almost periodic on Ti for each i, where I is a combinable index number set,
then f is called a combinable-almost periodic function on T. In fact, f is almost periodic
on the ω-periodic sub-timescale

⋃

i∈I Ti . Further, if
⋃

i∈I Ti = T, then f is called the
globally combinable-almost periodic function on T.

The following two corollaries are immediate consequences of Theorem ..

Corollary . Let T be a changing-periodic time scale and f be a combinable-almost pe-
riodic function on T, and I be a combinable index number set. Then () has a unique
combinable-almost periodic solution on

⋃

i∈I Ti given by

x(t) =
∫ t

–∞
X(t)PcX–(σc(s)

)

�cs –
∫ +∞

t
X(t)(I – Pc)X–(σc(s)

)

f (s)�cs,

where X(t) is the fundamental solution matrix of (), Pc, I – Pc are two projections of expo-
nential dichotomy on

⋃

i∈I Ti, σc is the forward jump operator on the periodic sub-timescale
⋃

i∈I Ti, and �c is the �-integral on the periodic sub-timescale
⋃

i∈I Ti.



Wang and Agarwal Advances in Difference Equations  (2015) 2015:296 Page 18 of 21

Corollary . The function f is globally combinable-almost periodic on T if and only if f
is an almost periodic function on the periodic time scale T.

Proof Since Ti is an ωi-periodic sub-timescale, from T =
⋃

i∈I Ti, we find that T is an
ω-periodic time scale, where ω is a lowest common multiple of {ωi}i∈I and I is a com-
binable index number set. Hence, from Definition . the desired conclusion follows im-
mediately. This completes the proof. �

Remark . From Corollary . it follows that the concept of almost periodic functions
on periodic time scales is equivalent to the concept of globally combinable-almost periodic
functions on changing-periodic time scales.

Next, we introduce the concepts of local-almost automorphic functions on changing-
periodic time scales.

Definition . Let X be a Banach space and T be a changing-periodic time scale.
(i) Let f : T→X be a bounded continuous function. We say that f is local-almost

automorphic if for every adaption factor sequence {sτ
n}∞n= ⊂ Sτt ⊂ �, we can extract

a subsequence {τ τ
n }∞n= such that

g(t) = lim
n→∞ f

(

t + τ τ
n
)

is well defined for each t ∈ T, and

lim
n→∞ g

(

t – τ τ
n
)

= f (t)

for each t ∈ T. We shall denote by AA(T,X) the set of all such functions.
(ii) A continuous function f : T× B →X is said to be local-almost automorphic if f (t, x)

is local-almost automorphic in t ∈ T uniformly for all x ∈ B, where B is any bounded
subset of X or B = X. We shall denote by AA(T×X,X) the set of all such functions.

Remark . Since the changing-periodic time scales include periodic and almost peri-
odic time scales, if T is a τ̃ -periodic time scale, then Tr = ∅, R = ∅ and Sτt = {nτ̃ : n ∈ Z}.
Thus, Definition . is equivalent to Definition . in []. Further, if T is an almost peri-
odic time scale, then μ is bounded, and hence T is a changing-periodic time scale. There-
fore, Definition . is more general than Definition  in [] because Definition . covers
the almost automorphy on the part T\T of Definition  in [].

Remark . From Definition . and the property of Sτt , we can obtain the local almost
automorphy on the periodic sub-timescale Tτt .

In fact, as a consequence of Definition ., we have the following proposition.

Proposition . Let T be a changing-periodic time scale. If f ∈ C(T × D,En) is a local-
almost automorphic in t uniformly for x ∈ D, then f ∈ C(T × D,En) is local-almost auto-
morphic in t uniformly for x ∈ D, where T is a changing-periodic time scale and T ⊂ T.
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Proof Let f ∈ C(T×D,En) be uniformly local-almost automorphic, then by Definition .,
for any adaption factors sequence (ατ )′ ⊂ Sτt ⊂ �, there exists a subsequence ατ ⊂ (ατ )′

such that Tατ f (t, x) = g(t, x) and T–ατ g(t, x) = f (t, x) for each t ∈ T uniformly for x ∈ S,
where S is any compact set in D. Thus it follows that Tατ f (t, x) = g(t, x) and T–ατ g(t, x) =
f (t, x) for each t ∈ T uniformly for x ∈ S. This completes the proof. �

Definition . Let f , g ∈ C(T×D,En) be uniformly local-almost automorphic and T be a
changing-periodic time scale. We say f and g are synchronously local-almost automorphic
if f , g are almost automorphic on the same periodic sub-timescales of T.

Now we assume that in () and () A(t) is a local-almost automorphic matrix function
and f (t) is a local-almost automorphic vector function. Further, we let f (t) and A(t) be
synchronously local-almost automorphic functions.

In the following result, as a further application of our decomposition theorem of time
scales (i.e., Theorem .), we shall establish the existence and uniqueness of local-almost
automorphic solutions for the dynamic equation ().

Theorem . Let T be a changing-periodic time scale and τt be an index function. Sup-
pose that A ∈R(T,Rn×n) is almost automorphic and nonsingular on Tτt and {A–(t)}t∈Tτt ,
{(I + μτt (t)A(t))–}t∈Tτt are bounded for all t ∈ T. If () admits an exponential dichotomy
on the local part Tτt , then () has a unique local-almost automorphic solution on Tτt as
follows:

x(t) =
∫ t

–∞
X(t)Pτt X

–(στt (s)
)

�τt s –
∫ +∞

t
X(t)(I – Pτt )X

–(στt (s)
)

f (s)�τt s, ()

where X(t) is the fundamental solution matrix of (), Pτt , I – Pτt are two projections of ex-
ponential dichotomy on Tτt , στt is the forward jump operator on the periodic sub-timescale
Tτt , �τt is the �-integral on the periodic sub-timescale Tτt .

Proof By Definition . and Proposition ., we know that T =
⋃∞

i= Ti, Ti is ωi-periodic
for each i ∈ Z

+ and {Ti}i∈Z+ is well connected, thus, Tτt is a periodic sub-timescale. Ac-
cording to Theorem . in [], if () admits an exponential dichotomy on the periodic
sub-timescale Tτt for all t ∈ T, then () has a unique almost automorphic solution on Tτt

as follows:

x(t) =
∫ t

–∞
X(t)Pτt X

–(στt (s)
)

�τt s –
∫ +∞

t
X(t)(I – Pτt )X

–(στt (s)
)

f (s)�τt s.

Hence, Eq. () has a unique local-almost automorphic solution on the periodic sub-
timescale Tτt . This completes the proof. �

Remark . Note that in (), s, t ∈ Tτt , thus τs = τt . Hence, () can also be written as

x(t) =
∫ t

–∞
X(t)Pτt X

–(στs (s)
)

�τs s –
∫ +∞

t
X(t)(I – Pτt )X

–(στs (s)
)

f (s)�τs s.

By the above Theorem ., we can get the following corollary.
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Corollary . Let T be a changing-periodic time scale and Ti be a periodic sub-
timescale. Suppose that A ∈ R(T,Rn×n) is almost automorphic and nonsingular on Ti

and {A–(t)}t∈Ti , {(I + μi(t)A(t))–}t∈Ti are bounded for some i ∈ Z
+. If () admits an ex-

ponential dichotomy on the local part Ti, then () has a unique local-almost automorphic
solution on Ti as follows:

x(t) =
∫ t

–∞
X(t)PiX–(σi(s)

)

�is –
∫ +∞

t
X(t)(I – Pi)X–(σi(s)

)

f (s)�is,

where X(t) is the fundamental solution matrix of (), Pi, I – Pi are two projections of expo-
nential dichotomy on Ti, σi is the forward jump operator on the periodic sub-timescale Ti,
�i is the �-integral on the periodic sub-timescale Ti.

In what follows, we will introduce the concept of combinable-almost automorphic func-
tions on changing-periodic time scales.

Definition . Let T be a changing-periodic time scale. If there exists an ωi -periodic
sub-timescale set {Ti}i∈I such that the periods set {ωi}i∈I has a lowest common multiple
ω and f is almost automorphic on Ti for each i, where I is a combinable index number
set, then we say f is a combinable-almost automorphic function on T. In fact, then f is
almost automorphic on the ω-periodic sub-timescale

⋃

i∈I Ti . Further, if
⋃

i∈I Ti = T,
then f is called globally combinable-almost automorphic function on T.

The following two corollaries are immediate consequences of Theorem ..

Corollary . Let T be a changing-periodic time scale and f be a combinable-almost au-
tomorphic function on T, and I be a combinable index number set. If A ∈R(T,Rn×n) is al-
most automorphic and nonsingular on

⋃

i∈I Ti, and {A–(t)}t∈∪i∈ITi and {(I +
μi(t)A(t))–}t∈∪i∈ITi are bounded, then () has a unique combinable-almost automorphic
solution on

⋃

i∈I Ti given by

x(t) =
∫ t

–∞
X(t)PcX–(σc(s)

)

�cs –
∫ +∞

t
X(t)(I – Pc)X–(σc(s)

)

f (s)�cs,

where X(t) is the fundamental solution matrix of (), Pc, I – Pc are two projections of expo-
nential dichotomy on

⋃

i∈I Ti, σc is the forward jump operator on the periodic sub-timescale
⋃

i∈I Ti, and �c is the �-integral on the periodic sub-timescale
⋃

i∈I Ti.

Corollary . The function f is globally combinable-almost automorphic onT if and only
if f is almost automorphic on the periodic time scale T.

Proof Since Ti is an ωi-periodic sub-timescale, from T =
⋃

i∈I Ti it follows that T is an
ω-periodic time scale, where ω is a lowest common multiple of {ωi}i∈I and I is a com-
binable index number set. Hence, the desired result follows from Definition .. This
completes the proof. �

Remark . From Corollary . it follows that the concept of almost automorphic func-
tions on periodic time scales is equivalent to the concept of globally combinable-almost
automorphic functions on changing-periodic time scales.
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4 Conclusion
In this work we have introduced a completely new type of time scales - ‘changing periodic
time scales’, and examined some of their properties. The main propose of this kind of
time scales is to resolve the problems from an arbitrary time scale to the ones on periodic
time scales. Our decomposition theorem of time scales divides an arbitrary time scale
into a countable union of periodic time scales. This result not only provides us with a
new approach to investigate problems by the known methods on periodic time scales,
but also opens up new avenues to study local properties of the functions defined on time
scales. It is clearly shown that the changing-periodic time scales are more general than
the time scales with bounded graininess function μ, and therefore results obtained on
this new type of time scales include all the known results on time scales with bounded
graininess function μ. Hence, it is compelling to study problems on changing-periodic
time scales. To illustrate the importance of our theory, first we introduce new concepts -
‘local-almost periodic functions’ and ‘local-almost automorphic functions’ on time scales,
and then we use the properties of changing-periodic time scales to establish the local-
almost periodicity and local-almost automorphy of solutions of dynamic equations.
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