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Abstract
The existence of affine-periodic solutions for dynamic equations on time scales is
studied. Mainly, via the topological degree theory, a general existence theorem is
proved, which provides an effective method in the qualitative theory for nonlinear
dynamic equations on time scales.
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1 Introduction
The periodicity problem is a very important topic in the study of differential equations, but
not all the natural phenomena can be described by periodicity only. We found that some
differential equations exhibit a certain symmetry rather than periodicity [–]. For exam-
ple, we denote by GLn(R) the n-dimensional general linear group over R and consider the
system

x′ = f (t, x), ′ =
d
dt

, ()

where f : R × Rn → Rn is continuous, and for some Q ∈ GLn(R), the following affine sym-
metry holds:

f (t + T , x) = Qf
(
t, Q–x

)
. ()

In the sense of (), we have the concept of an affine-periodic system (APS for short).

Definition . The system () is said to be a (Q, T)-affine-periodic system, if there exists
Q ∈ GLn(R) and T >  such that

f (t + T , x) = Qf
(
t, Q–x

)

holds for all (t, x) ∈ R × Rn.

For APS (), we define its affine-periodic solution as follows.
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Definition . If x(t) is a solution of APS () on R and

x(t + T) = Qx(t) ∀t, ()

then x(t) is said to be a (Q, T)-affine-periodic solution.

As a structural property of functions, the affine-periodicity is a generalization of pure
periodicity. Recently, some existence theorems as regards affine-periodic solutions have
been proved for APSs. We refer to [–]. Particularly, in [], the existence of affine-periodic
solutions for APS () was established via topological degree theory. However, the existence
of affine-periodic solutions for APSs when ‘time’ is not continuous has not been discussed
yet. The aim of this paper is to touch on such a topic for APSs on time scales.

A time scale is an arbitrary non-empty closed subset of R, often denoted by T. The
theory of time scales was first introduced by Hilger [] in  in order to study differ-
ences between discrete and continuous analysis. The time scale calculus offers great help
on unifying discrete and continuous dynamic systems and presents a powerful tool for ap-
plications to economics and biology models, among others. Hence it has been attracting
more and more attention during the past years and the existence of solutions for systems
on time scales has become an interesting and popular topic. In this respect, Amster et
al. [] studied boundary value problems for dynamic systems and proved the existence
of solutions via topological degree theory; Lizama and Mesquita [] considered nonau-
tonomous dynamic equations and proved the existence of almost automorphic solutions
by assuming that the associated homogeneous equation of the system admits an exponen-
tial dichotomy. In the field of second- and higher-order periodic problems, the lower and
upper solutions technique is a powerful tool and has been used in most of the studies, for
example, the work of Akin [] and Stehlik []. In this paper, we will establish a topological
degree theory to prove the existence of affine-periodic solutions for APSs on time scales,
which is not very common in this area.

To discuss the APSs on time scales, some basic notations and definitions are needed, and
most of them can be found in []. The first basic and important concept in the theory of
time scales is the forward (backward) jump operator.

Definition . Let T be a time scale. For t ∈ T we define the forward jump operator σ :
T → T by

σ (t) = inf{s ∈ T : s > t},

while the backward jump operator ρ : T→ T is defined by

ρ(t) = sup{s ∈ T : s < t}.

In Definition ., we put inf∅ = supT and sup∅ = infT.

Definition . The graininess function μ : T → [,∞) is defined by

μ(t) = σ (t) – t.
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A point t ∈ T is called right-scattered if σ (t) > t, while if ρ(t) < t we say that t is left-
scattered. Points that are right-scattered and left-scattered at the same time are called
isolated. Also, if t < supT and σ (t) = t, then t is called right-dense, and if t > infT and
ρ(t) = t, then t is called left-dense. Points that are right-dense and left-dense at the same
time are called dense. If T has a left-scattered maximum m, then T

κ = T \ {m}, otherwise
T

κ = T. For a time scale T, we denote by [a, b]T ((a, b)T) the set [a, b]∩T ((a, b)∩T), where
a, b ∈ R. Then we have the definition of the so-called delta derivative.

Definition . Assume f : T → Rn is a function and let t ∈ T
κ . Then we define f �(t) to be

the vector (provided it exists) with the property that given any ε > , there is a neighbor-
hood U of t (i.e. U = (t – δ, t + δ)T for some δ > ) such that

∣
∣[f

(
σ (t)

)
– f (s)

]
– f �(t)

[
σ (t) – s

]∣∣ ≤ ε
∣
∣σ (t) – s

∣
∣ for all s ∈ U .

We call f �(t) the delta derivative of f at t.

In order to describe classes of functions that are integrable, we need the following defi-
nition.

Definition . A function f : T → Rn is called rd-continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The
set of rd-continuous functions f : T → Rn will be denoted by

Crd = Crd(T) = Crd
(
T, Rn).

Let f ∈ Crd. If F�(t) = f (t), we have

F(t) – F(a) =
∫ t

a
f (s)�s.

Remark . F(t) is continuous on T when f ∈ Crd(T) (see Theorem . in []).

We also need the notion of periodic time scales which was introduced by Atici et al. [,
]. The following definition is borrowed from [–].

Definition . We say that a time scale T is periodic if there exists T >  such that if t ∈ T

then t ± T ∈ T. For T 
= R, the smallest positive T is called the period of the time scale.

Now, we can define the APSs on time scales.

Definition . LetT be a T-periodic time scale, f : T×Rn → Rn a rd-continuous function.
The system

x� = f (t, x) ()

is said to be a (Q, T)-affine-periodic system, if there exists Q ∈ GLn(R) such that

f (t + T , x) = Qf
(
t, Q–x

)

holds for all (t, x) ∈ T× Rn.
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The solutions of dynamic equations on time scales are defined as follows.

Definition . Consider the equation

x� = f (t, x), ()

where f : T× Rn → Rn. A function x : T → Rn is called a solution of () if

x ∈ {
y : y ∈ C

(
T, Rn), y� ∈ Crd

(
T, Rn)}

and x(t) satisfies () for all t ∈ T. Given t ∈ T and x ∈ Rn, the problem

x� = f (t, x), x(t) = x

is called an initial value problem, and a solution of () with x(t) = x is called a solution
to this initial value problem.

Hence we have the definition of affine-periodic solutions.

Definition . A function x : T → Rn is said to be an affine-periodic solution of () if
x(t) is a solution of () and for any t ∈ T,

x(t + T) = Qx(t).

According to the definitions of APS on time scales and its solutions, we have the follow-
ing existence theorem. The proof can be found in Section .

Consider the APS

x� = f (t, x), ()

where f : T × Rn → Rn is rd-continuous and ensures the uniqueness of solutions with
respect to initial value, Q ∈ O(n), T is a T-periodic time scale.

Theorem . Let D ⊂ Rn be a bounded open set. Assume the following hypotheses hold for
the system ().

(H) For each λ ∈ (, ], every possible affine-periodic solution x(t) of the auxiliary equation
x� = λf (t, x) satisfies the following: if x(t) ∈ D̄, then

x(t) /∈ ∂D ∀t ∈ [, T]T.

(H) The Brouwer degree

deg
(
g, D ∩ Ker(I – Q), 

) 
= , if Ker(I – Q) 
= {},

where

g(a) =

T

∫ T


Pf (s, a)�s,
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P : Rn → Ker(I – Q) is an orthogonal projection.

Then () has at least one (Q, T)-affine-periodic solution x∗(t) ∈ D for all t ∈ [, T]T.

As an application of Theorem ., we have the following corollary on basis of Lyapunov
functions. The proof and two examples can be found in Section .

Corollary . Consider the system (). Assume that there exist constants M >  and δ > ,
such that

〈
x(t), f

(
t, x(t)

)〉
+



μ(t)

∣∣f
(
t, x(t)

)∣∣ ≥ δ >  ∀∣∣x(t)
∣∣ ≥ M, t ∈ T. ()

If Ker(I – Q) 
= {}, for all x ∈ Ker(I – Q) and |x(t)| ≥ M, t ∈ T,

∣∣〈x, Pf (t, x)
〉∣∣ ≥ δ > , ()

where P : Rn → Ker(I – Q) is an orthogonal projection.
Then the system () has at least one (Q, T)-affine-periodic solution x∗(t).

Before starting our proof, we first introduce some basic definitions and theorems in
Section .

2 Preliminaries
In this section, we shall recall some useful theorems and prove a lemma which will be used
in Section . The following theorem shows some easy and useful relationships concerning
the delta derivative.

Theorem . Assume f : T → Rn is a function and let t ∈ T
κ . Then we have the following:

(i) If f is differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f �(t) =
f (σ (t)) – f (t)

μ(t)
.

(iii) If t is right-dense, then f is differentiable at t iff the limit

lim
s→t

f (t) – f (s)
t – s

exists as a finite number. In this case

f �(t) = lim
s→t

f (t) – f (s)
t – s

.

(iv) If f is differentiable at t, then

f
(
σ (t)

)
= f (t) + μ(t)f �(t).

To prove Corollary ., a chain rule is obviously necessary. The following chain rule is
due to Pötzsche [] and Keller [].
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Theorem . Let f : R → R be continuously differentiable and suppose that g : T→ R is
delta differentiable. Then f ◦ g : T → R is delta differentiable and the formula

(f ◦ g)�(t) =
∫ 



{
f ′(g(t) + hμ(t)g�(t)

)}
dhg�(t) ()

holds.

Consider the system (). Now a basic topic is to investigate the existence of (Q, T)-affine-
periodic solutions x(t). The following lemma shows that this problem is equivalent to
proving the existence of solutions of a boundary value problem (BVP for short).

Lemma . Consider the system (). The existence of (Q, T)-affine-periodic solutions of ()
is equivalent to the existence of solutions of the BVP

x� = f (t, x),

x(T) = Qx().

Proof For any solution x(t) of (), let u(t) = Q–x(t + T). By Theorem .:
(i) If t is a right-dense point, we have

u�(t) = lim
�t→

u(t + �t) – u(t)
�t

= lim
�t→

Q–x(t + �t + T) – Q–x(t + T)
�t

= Q–x�(t + T)

= Q–f
(
t + T , x(t + T)

)

= f
(
t, Q–x(t + T)

)

= f
(
t, u(t)

)
.

(ii) If t is a right-scattered point, we have

u�(t) =
u(σ (t)) – u(t)

μ(t)

=
Q–x(σ (t) + T) – Q–x(t + T)

μ(t)

= Q–x�(t + T)

= f
(
t, u(t)

)
.

By (i) and (ii), we see that u(t) is a solution of (). Since f (t, x) ensures the uniqueness of
solutions with respect to initial value and u() = Q–x(T), we know that u(t) ≡ x(t) if and
only if x() = Q–x(T). �

Finally, as a useful tool in our proof, we introduce the definition of a retraction map.
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Definition . Let X be a topological space and A a subspace of X. Then a continuous
map r : X → A is called a retraction if the restriction of r to A is the identity map on A.

3 Proof of Theorem 1.1
By a coordinate transformation, we can always make  ∈ T without loss of generality.

Consider the BVP of the auxiliary equation

x� = λf (t, x), ()

x(T) = Qx(), ()

where λ ∈ [, ]. Let x(t) be any solution of ()-(). Then BVP ()-() is equivalent to
the integral equation

x() + λ

∫ T


f
(
τ , x(τ )

)
�τ = Qx().

Denote x() by x. Then

(I – Q)x = –λ

∫ T


f
(
τ , x(τ )

)
�τ , ()

where I is the identity matrix.
Consider () in two parts:
(I) If Ker(I – Q) 
= {}.
In this case, (I – Q)– does not exist. By a coordinate transformation, we can just let

Q =

(
I 
 Q

)

without loss of generality, where (I – Q)– exists.
Let P : Rn → Ker(I – Q) be the orthogonal projection. Then

(I – Q)x = (I – Q)
(
x

Ker + x
⊥
)

= –λ

∫ T


f
(
τ , x(τ )

)
�τ

= –λ

∫ T


Pf

(
τ , x(τ )

)
�τ – λ

∫ T


(I – P)f

(
τ , x(τ )

)
�τ , ()

where x
Ker ∈ Ker(I – Q), x

⊥ ∈ Im(I – Q) and x = x
Ker + x

⊥.
Let J = (I – Q)|Im(I–Q). It is easy to see that J – exists. Thus () is equivalent to

(I – Q)x
Ker = –λ

∫ T


Pf

(
τ , x(τ )

)
�τ = ,

(I – Q)x
⊥ = –λ

∫ T


(I – P)f

(
τ , x(τ )

)
�τ .
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Thus we have

x
⊥ = –λJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ .

Let

X =
{

x : [, T]T → Rn : x(t) is continuous on [, T]T
}

,

and define the norm as ‖x‖ = supt∈[,T]T |x(t)|. It is easy to see that X is a Banach space with
the norm ‖ · ‖.

For x ∈ X which satisfies x(t) ∈ D̄ for all t ∈ [, T]T, we define an operator T (x
Ker, x,λ)

by

T
(
x

Ker, x,λ
)
(t) =

(
x

Ker + 
T

∫ T
 Pf (τ , x(τ ))�τ

x
Ker – λJ –(I – P)

∫ T
 f (τ , x(τ ))�τ + λ

∫ t
 f (τ , x(τ ))�τ

)

, ()

where λ ∈ [, ]. We claim that each fixed point x of T in X is a solution of BVP ()-().
In fact, if x is a fixed point of T , we have

(
x

Ker

x(t)

)

=

(
x

Ker + 
T

∫ T
 Pf (τ , x(τ ))�τ

x
Ker – λJ –(I – P)

∫ T
 f (τ , x(τ ))�τ + λ

∫ t
 f (τ , x(τ ))�τ

)

.

Thus


T

∫ T


Pf

(
τ , x(τ )

)
�τ = , ()

x(t) = x
Ker – λJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ + λ

∫ t


f
(
τ , x(τ )

)
�τ . ()

By (), we know that

x = x
Ker – λJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ .

Thus

Qx = Qx
Ker – λQJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ

= x
Ker – λQJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ .

Since () holds, we have

λ(I – Q)J –(I – P)
∫ T


f
(
τ , x(τ )

)
�τ

= λ(I – P)
∫ T


f
(
τ , x(τ )

)
�τ
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= λ(I – P)
∫ T


f
(
τ , x(τ )

)
�τ + λP

∫ T


f
(
τ , x(τ )

)
�τ

= λ

∫ T


f
(
τ , x(τ )

)
�τ .

Thus

λQJ –(I – P)
∫ T


f
(
τ , x(τ )

)
�τ = λJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ – λ

∫ T


f
(
τ , x(τ )

)
�τ .

Then

Qx = x
Ker – λQJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ

= x
Ker – λJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ + λ

∫ T


f
(
τ , x(τ )

)
�τ

= x(T). ()

By () and (), we know that () holds. Thus

x
⊥ = –λJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ .

Then

x(t) = x
Ker – λJ –(I – P)

∫ T


f
(
τ , x(τ )

)
�τ + λ

∫ t


f
(
τ , x(τ )

)
�τ

= x
Ker + x

⊥ + λ

∫ t


f
(
τ , x(τ )

)
�τ

= x + λ

∫ t


f
(
τ , x(τ )

)
�τ .

It means that the fixed point x is a solution of BVP ()-().
Now, we need to prove the existence of fixed points of T .
Take a constant M which satisfies M > supt∈[,T]T ,x∈D̄ |f (t, x)|, and let

Xλ =
{

x ∈ X :
∣∣
∣∣
x(t) – x(s)

t – s

∣∣
∣∣ ≤ λM ∀t 
= s

}
.

It is easy to make a retraction αλ : X → Xλ.
Define an operator T̂ (x

Ker, x,λ) by

T̂
(
x

Ker, x,λ
)
(t) =

⎛

⎜
⎝

x
Ker + 

T
∫ T

 Pf (τ ,αλ ◦ x(τ ))�τ

αλ ◦ x
Ker – λJ –(I – P)

∫ T
 f (τ ,αλ ◦ x(τ ))�τ

+λ
∫ t

 f (τ ,αλ ◦ x(τ ))�τ

⎞

⎟
⎠ . ()

Obviously,

H
(
x

Ker, x,λ
)

= T̂
(
x

Ker, x,λ
)

()
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is a homotopy, where

(
x

Ker, x,λ
) ∈ (

D ∩ Ker(I – Q)
) × D̃ × [, ],

D̃ =
{

x ∈ X : x(t) ∈ D ∀t ∈ [, T]T
}

.

We claim that

 /∈ (id –H)
(
∂
((

D ∩ Ker(I – Q)
) × D̃

) × [, ]
)
, ()

where id is the identity operator.
Suppose, on the contrary, that there exists (x̂

Ker, x̂, λ̂) ∈ ∂((D ∩ Ker(I – Q)) × D̃) × [, ],
such that (id –H)(x̂

Ker, x̂, λ̂) = . As x̂
Ker ∈ ∂(D ∩ Ker(I – Q)) ⊂ ∂D is contradictory to (H);

we know that x̂
Ker /∈ ∂(D ∩ Ker(I – Q)). In other words, x̂ ∈ ∂D̃. Then () can be proved

as follows:
(i) When λ̂ = , by the definition of set Xλ, we have

X =
{

x ∈ X :
∣
∣∣
∣
x(t) – x(s)

t – s

∣
∣∣
∣ ≤  ∀t 
= s

}
.

Hence α ◦ x(t) ≡ α ◦ x() for all t ∈ [, T]T. Since (id –H)(x̂
Ker, x̂, ) = , we have

(
x̂

Ker

x̂(t)

)

=

(
x̂

Ker + 
T

∫ T
 Pf (τ ,αλ ◦ x̂(τ ))�τ

α ◦ x̂
Ker

)

.

It means that x̂(t) ≡ x̂() for all t ∈ [, T]T. Take x̂(t) = p, we have α ◦ x̂
Ker = x̂(t) = p.

Consequently 
T

∫ T
 Pf (τ , p)�τ = , and this is equivalent to g(p) =  by the definition of

g(a). Notice that x̂ ∈ ∂D̃ and D̃ = {x ∈ X : x(t) ∈ D ∀t ∈ [, T]T}. Hence there exists t ∈
[, T]T such that x̂(t) ∈ ∂D. As x̂(t) ≡ p for all t ∈ [, T]T, we obtain p ∈ ∂D. Thus we have
p ∈ ∂D and g(p) = . It is contradictory to (H) because the Brouwer degree deg(g, D, ) 
= .

(ii) When λ̂ ∈ (, ], as  = (id –H)(x̂
Ker, x̂, λ̂), we have

(
x̂

Ker

x̂(t)

)

=

⎛

⎜
⎝

x̂
Ker + 

T
∫ T

 Pf (τ ,αλ̂ ◦ x̂(τ ))�τ

αλ̂ ◦ x̂
Ker – λ̂J –(I – P)

∫ T
 f (τ ,αλ̂ ◦ x̂(τ ))�τ

+λ̂
∫ t

 f (τ ,αλ̂ ◦ x̂(τ ))�τ

⎞

⎟
⎠ .

Thus


T

∫ T


Pf

(
τ ,αλ̂ ◦ x̂(τ )

)
�τ = 

and

x̂(t) = αλ̂ ◦ x̂
Ker – λ̂J –(I – P)

∫ T


f
(
τ ,αλ̂ ◦ x̂(τ )

)
�τ

+ λ̂

∫ t


f
(
τ ,αλ̂ ◦ x̂(τ )

)
�τ . ()
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Note that
∣∣∣
∣
x̂(t) – x̂(s)

t – s

∣∣∣
∣ =


|t – s|

∣∣∣
∣λ̂

∫ t

s
f
(
τ ,αλ̂ ◦ x̂(τ )

)
�τ

∣∣∣
∣

≤ λ̂

|t – s|
∫ t

s

∣∣f
(
τ ,αλ̂ ◦ x̂(τ )

)∣∣�τ

≤ λ̂M.

By the definition of Xλ, we obtain x̂ ∈ Xλ̂, which means that αλ̂ ◦ x̂ = x̂. Thus () is equiv-
alent to

x̂(t) = x̂
Ker – λ̂J –(I – P)

∫ T


f
(
τ , x̂(τ )

)
�τ + λ̂

∫ t


f
(
τ , x̂(τ )

)
�τ .

By a similar discussion to (), we can prove that x̂(t) is a solution of BVP ()-(). By
hypothesis (H), we know that x̂(t) /∈ ∂D for any t ∈ [, T]T. It is contradictory to x̂ ∈ ∂D̃.

By (i) and (ii), we obtain

 /∈ (id –H)
(
∂
((

D ∩ Ker(I – Q)
) × D̃

) × [, ]
)
.

Therefore, by the homotopy invariance and the theory of the Brouwer degree, we have

deg
(
id –H

(
x

Ker, ·, 
)
,
(
D ∩ Ker(I – Q)

) × D̃, 
)

= deg
(
id –H

(
x

Ker, ·, 
)
,
(
D ∩ Ker(I – Q)

) × D̃, 
)

= deg
(
g, D ∩ Ker(I – Q), 

)


= .

It means that there exists x̂∗ ∈ D̃, such that
(

x̂
∗Ker

x̂∗(t)

)

= T̂
(
x̂

∗Ker, x̂∗(t), 
)
. ()

Similar to the proof in (ii), we get x̂∗ ∈ X. Then

T̂
(
x̂

∗Ker, x̂∗(t), 
)

= T
(
x̂

∗Ker, x̂∗(t), 
)
. ()

By () and (), we see that x̂∗ is a fixed point of T in X. Thus x̂∗(t) is a solution of BVP
()-().

(II) If Ker(I – Q) = {}.
In this case, (I – Q)– exists. Then

x = –λJ –(I – P)
∫ T


f
(
τ , x(τ )

)
�τ .

Hypothesis (H) will not be needed anymore. Consider the homotopy

H(x,λ) = –λJ –(I – P)
∫ T


f
(
τ ,αλ ◦ x(τ )

)
�τ + λ

∫ t


f
(
τ ,αλ ◦ x(τ )

)
�τ .
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Similar to the proof when Ker(I – Q) 
= {}, we have  /∈ (id –H)(∂D̃ × [, ]). Hence

deg
(
id –H(·, ), D̃, 

)
= deg

(
id –H(·, ), D̃, 

)

= deg(id, D̃, )

= .

It means that there exists x̂∗, which satisfies x̂∗(t) ∈ D for all t ∈ [, T]T, such that

x̂∗(t) = x̂∗() +
∫ t


f
(
τ , x̂∗(τ )

)
�τ .

Therefore x̂∗(t) is a solution of BVP ()-().
By Lemma . and the proofs in (I) and (II), it is easy to see that APS () has a (Q, T)-

affine-periodic solution x∗(t), which is an extension of x̂∗(t) on T. By hypothesis (H) and
x̂∗(t) ∈ D for all t ∈ [, T]T, we know that x∗(t) ∈ D for all t ∈ [, T]T.

4 Proof of Corollary 1.1
Consider the auxiliary equation () of the system (),

x�(t) = λf
(
t, x(t)

)
.

Let

V
(
x(t)

)
=



∣∣x(t)

∣∣,

D =
{

p ∈ Rn : V (p) < M + 
}

.

Clearly, D is bounded. We claim that for λ ∈ (, ], every possible (Q, T)-affine-periodic
solution x(t) of () satisfies (H).

In fact, assume that x(t) is a (Q, T)-affine-periodic solution of (), Q ∈ O(n). Set u(t) =
V (x(t)). Then

u(t + T) = V
(
x(t + T)

)
= V

(
Qx(t)

)
=



∣
∣Qx(t)

∣
∣ =



∣
∣x(t)

∣
∣ = V

(
x(t)

)
= u(t),

hence u : T → R
+ is T-periodic. Thereby there exists tj ∈ [, T) ∩ T and t ∈ [, T] ∩ T

with tj ↗ t or tj ↘ t such that

u(tj) → sup
[,T]T

u(t), tj → t. ()

By Definition ., we know that x ∈ C(T, Rn). Hence u(t) = sup[,T]T u(t). By Theo-
rem ., we have

u�(t) =
〈∫ 



{
x(t) + hμ(t)x�(t)

}
dh, x�(t)

〉

=
〈∫ 



{
x(t) + hμ(t)f

(
t, x(t)

)}
dh, f

(
t, x(t)

)〉
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=
〈
x(t), f

(
t, x(t)

)〉
+



μ(t)

∣∣f
(
t, x(t)

)∣∣

≤ .

By (), this result yields

∣
∣x(t)

∣
∣ < M.

Consequently, by the definition of D and (), we have

x(t) ∈ D ∀t.

Thus (H) holds.
If Ker(I – Q) = {}, by the proof of Theorem ., we know that the system () admits a

(Q, T)-affine-periodic solution.
Now we prove that if Ker(I – Q) 
= {},

deg
(
g, D ∩ Ker(I – Q), 

) 
= .

Indeed, let BM = {p ∈ Rn : |p| < M}. Consider the homotopy

H(p,λ) = λ sgn
(〈∇V (·), Pf (t, ·)〉|∂(BM∩Ker(I–Q))

)∇V (p) + ( – λ)g(p),

where (p,λ) ∈ (BM ∩ Ker(I – Q)) × [, ]. It follows that

〈∇V (p), H(p,λ)
〉

= λ sgn
(〈∇V (·), Pf (t, ·)〉|∂(BM∩Ker(I–Q))

)∣∣∇V (p)
∣
∣

+ ( – λ)
〈∇V (p), g(p)

〉
. ()

For any (p, t) ∈ ∂(BM ∩ Ker(I – Q)) × R, by (), we know that the sign of 〈∇V (p), Pf (t, p)〉
does not change. By the definition of g(a), we have

〈∇V (p), g(p)
〉

=
〈
∇V (p),


T

∫ T


Pf (s, p)�s

〉
=


T

∫ T



〈∇V (p), Pf (s, p)
〉
�s.

It means that 〈∇V (p), g(p)〉 always has the same sign with 〈∇V (p), Pf (t, p)〉. Also, by (),
we know that |∇V (p)| 
=  when p ∈ ∂(BM ∩ Ker(I – Q)). Consequently, the right hand side
of () is nonzero.

Thus

〈∇V (p), H(p,λ)
〉 
=  ∀(p,λ) ∈ ∂

(
BM ∩ Ker(I – Q)

) × [, ],

which implies that  /∈ H(∂(BM ∩ Ker(I – Q)) × [, ]).
The homotopy invariance of the Brouwer degree implies

deg
(
g, BM ∩ Ker(I – Q), 

)

= deg
(
sgn

(〈∇V (·), Pf (t, ·)〉|∂(BM∩Ker(I–Q))
)∇V , BM ∩ Ker(I – Q), 

)
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= deg
(
sgn

(〈∇V (·), Pf (t, ·)〉|∂(BM∩Ker(I–Q))
)

id, BM ∩ Ker(I – Q), 
)


= .

Hence hypothesis (H) holds. Thus Corollary . follows from Theorem ..

5 Examples
As an application of Theorem ., Corollary . is very useful and more directly. In this
section, we will show two examples and prove the existence of affine-periodic solutions of
them by using Corollary ..

Example . Let T be a π-periodic time scale. Consider the system

x�(t) = x(t) + sin t. ()

Let M be a constant large enough. Set V (x) = 
 x, f (t, x(t)) = x(t) + sin t. We have

f
(
t + π , x(t)

)
= x(t) + sin(t + π )

= x(t) + sin t

= f
(
t, x(t)

)
.

Hence () is a π-affine-periodic system. Then when |x| > M, it is easy to see that

(V ◦ x)�(t) = x�(t)
∫ 



{
V ′(x(t) + hμ(t)x�(t)

)}
dh

= f (t, x)
∫ 



{
x(t) + hμ(t)f (t, x)

}
dh

= xf (t, x) +


μ(t)f (t, x)

= x + x sin t +


μ(t)

(
x + sin t

) > δ >  ∀t ∈ T.

Also, since P = id, we have

∣∣x + x sin t
∣∣ >  ∀|x| > M, t ∈ T.

By Corollary ., () has a π-periodic solution.

Example . Let T be a -periodic time scale. Consider the system

x� = |x|x + (sin t, cos t, sin π t, cos π t)T. ()

Set

Q =

⎛

⎜
⎜⎜
⎝

cos(π – ) – sin(π – )  
sin(π – ) cos(π – )  

   
   

⎞

⎟
⎟⎟
⎠

.
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Then () is a (Q, )-affine-periodic system. Let

f (t, x) = |x|x + (sin t, cos t, sin π t, cos π t)T,

and M a constant large enough. When |x| > M, similar to Example ., it is easy to see that

〈
x(t), f

(
t, x(t)

)〉
+



μ(t)

∣∣f
(
t, x(t)

)∣∣ ≥ δ >  ∀t ∈ T.

Also, since P : R → Ker(I – Q) is an orthogonal projection,

P =

⎛

⎜⎜
⎜
⎝

   
   
   
   

⎞

⎟⎟
⎟
⎠

,

we have

∣
∣〈x, Pf (t, x)

〉∣∣ >  ∀|x| > M, t ∈ T.

By Corollary ., () has a (Q, )-affine-periodic solution.

6 Conclusion
In this paper, we considered the affine-periodic systems on time scales and provided The-
orem .. This theorem asserts the existence of affine-periodic solutions in a certain topo-
logical formalism. As an application of Theorem ., we proved Corollary . and gave two
examples. The affine-periodicity is a new and attractive topic in this area, and many sig-
nificant problems remain to be further studied. In our forthcoming papers, we will discuss
the affine-periodic solutions for impulsive equations. Besides, affine-periodic solutions of
higher-order equations and delay equations etc. are also very interesting problems.
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