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Abstract
In this paper, we study the theory of the harmonic and the hyperharmonic Fibonacci
numbers. Also, we get some combinatoric identities like as harmonic and
hyperharmonic numbers and we obtain some useful formulas for Fn, which is
concerned with finite sums of reciprocals of Fibonacci numbers. We obtain the
spectral and Euclidean norms of circulant matrices involving harmonic and
hyperharmonic Fibonacci numbers.
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1 Introduction
The harmonic numbers have many applications in combinatorics and other areas. Many
authors have studied these numbers. The nth harmonic number, Hn, is defined by

Hn =
n∑

k=


k

,

where H = . The nth harmonic number Hn can be expressed as

Hn =
[n+


]

n!
,

where
[n

k
]

denotes the Stirling number of the first kind, counting the permutations of n
elements that are the product of k disjoint cycles.

Several interesting properties of harmonic numbers can be found in []. For n ≥ , some
of them are the following:

n–∑

k=

Hk = nHn – n, ()
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m

)
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where n = n(n – ) and m is a nonnegative integer.
In [], Spivey proved that, for n ≥ ,

n∑

k=

(
n
k

)
Hk = n

(
Hn –

n∑

k=


kk

)
,

n∑

k=

(
n
k

)
(–)kHk = –


n

.

Harmonic numbers have been generalized by many authors [–]. In [], Conway and
Guy defined the nth hyperharmonic number of order r, H (r)

n for n, r ≥  by the following
recurrence relations:

H (r)
n =

n∑

k=

H (r–)
k ,

where H ()
n = 

n and H ()
n = Hn is the nth ordinary harmonic number.

Furthermore, these numbers can be expressed by binomial coefficients and ordinary
harmonic numbers [], as follows:

H (r)
n =

(
n + r – 

r – 

)
(Hn+r– – Hr–).

In [], Benjamin et al. gave the following properties of hyperharmonic numbers:

H (r)
n =

n∑

t=

(
n + r – t – 

r – 

)

t

, ()

H (r)
n =

n∑

t=

(
n + r – m – t – 

r – m – 

)
H (m)

t , ()

where  ≤ m ≤ r – . In [], Bahsi and Solak defined a special matrix whose entries are
hyperharmonic numbers and gave some properties of this matrix.

The Fibonacci sequence is defined by the following recurrence relation, for n ≥ :

Fn+ = Fn+ + Fn

with F = , F = .
In [], Dil and Mezö defined hyper-Fibonacci numbers, F (r)

n , for positive integer r,

F (r)
n =

n∑

k=

F (r–)
k

with F ()
n = Fn, F (r)

 = , and F (r)
 = . Moreover, the authors obtained some properties of

these numbers.
In [], Ohtsuka and Nakamura studied the partial infinite sums of reciprocals Fibonacci

numbers and the reciprocal of the square of the Fibonacci numbers. Holiday and Komatsu
generalized their results in [].
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The important point to note here is the form of finite sums of reciprocals Fibonacci
numbers. In [], Rabinowitz pointed out that

Fn =
n∑

k=


Fk

is no known simple form. Now we present some preliminaries to our study.
In [], the difference operator of f (x) is defined as

�f (x) = f (x + ) – f (x).

The expression x to the m falling is denoted xm. The value of

xm = x(x – )(x – ) · · · (x – m + )

and it is called the falling power.
The � operator has a very interesting property for m ≥ ,

�xm = mxm–.

Analogously, the � operator has an inverse, the anti-difference or summation operator∑
defined as follows. If �f (x) = g(x) then

b∑

a
g(x)δx =

b–∑

x=a
g(x) = f (b) – f (a).

The anti-difference operator
∑

has some properties as follows:

∑
xmδx =

{
xm+

m+ if m �= –,
Hx if m = –

and

b∑

a
u(x)�v(x)δx = u(x)v(x)

∣∣b+
a –

b∑

a
Ev(x)�u(x)δx, ()

where Ev(x) = v(x + ) [].
In [] the authors use a property of the finite difference operator to show the validity of

the identity () as follows.
Let u(k) = Hk and �v(k) =  be as in (). Then they obtain �u(k) = 

k+ and v(k) = k.
Therefore,

n–∑

k=

Hk = kHk|n –
n∑



(k + )


k + 
δk

= nHn – n.

In this paper, inspired by the definition of a harmonic number, we introduce harmonic
Fibonacci numbers and give various identities for these numbers by using the difference
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operator. Moreover, we introduce hyperharmonic Fibonacci numbers and present some
certain properties of them; the same as hyperharmonic numbers. Finally, we obtain the
spectral and the Euclidean norms of circulant matrices with harmonic and hyperharmonic
Fibonacci numbers.

2 Harmonic Fibonacci numbers and some combinatorial properties
In this section, we investigate various properties of Fn; finite sums of the reciprocals of the
Fibonacci numbers are defined as

Fn =
n∑

k=


Fk

.

Here and subsequently we call it the nth harmonic Fibonacci number. Now we state some
theorems related to harmonic Fibonacci numbers.

Theorem  Let Fn be the nth harmonic Fibonacci number. Then we have

n–∑

k=

Fk = nFn –
n–∑

k=

k + 
Fk+

.

Proof Our proof starts with the observation of a property of the difference operator. Let
u(k) = Fk and �v(k) =  be as in (). Then we obtain �u(k) = 

Fk+
, v(k) = k and Ev(k) = k +.

Hence, we have

n–∑

k=

Fk = nFn –
n–∑

k=

k + 
Fk+

. �

Theorem  Let Fn be the nth harmonic Fibonacci number. Then we have

n–∑

k=

(Fk) = nF
n –

n–∑

k=

k + 
Fk+

(
Fk +


Fk+

)
. ()

Proof Let u(k) = F

k and �v(k) =  be as in (). Then by using (), we obtain

n–∑

k=

(Fk) = nF
n –

n–∑

k=

k + 
Fk+

(
Fk +


Fk+

)
. �

Theorem  Let Fn be the nth harmonic Fibonacci number and m be a nonnegative integer,
we have

n–∑

k=

(
k
m

)
Fk =

(
n

m + 

)
Fn –

n–∑

k=

(
k + 
m + 

)


Fk+
.

Proof Let u(k) = Fk and �v(k) =
( k

m
)

be as in (). Then we obtain �u(k) = 
Fk+

, v(k) =
( k

m+
)
,

and Ev(k) =
( k+

m+
)
. By using (), we have

n–∑

k=

(
k
m

)
Fk =

(
n

m + 

)
Fn –

n–∑

k=

(
k + 
m + 

)


Fk+
. �
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Theorem  Let Fn be the nth harmonic Fibonacci number and m be a nonnegative integer.
Then we have

n–∑

k=

km
Fk =

nm+

m + 
Fn –

n–∑

k=

(k + )m+

m + 


Fk+
.

Proof Let u(k) = Fk and �v(k) = km be as in (). Then we get �u(k) = 
Fk+

, v(k) = km+

m+ , and

Ev(k) = (k+)m+

m+ . With the aid of (), we have

n–∑

k=

km
Fk =

nm+

m + 
Fn –

n–∑

k=

(k + )m+

m + 


Fk+
. �

The following theorem gives the relationship between harmonic numbers and harmonic
Fibonacci numbers.

Theorem  Let Fn be the nth harmonic Fibonacci number, we have

n–∑

k=

Fk

k + 
= HnFn –

n–∑

k=

Hk+

Fk+
.

Proof Let u(k) = Fk and �v(k) = 
k+ be as in (). Then we obtain �u(k) = 

Fk+
, v(k) = Hk ,

and Ev(k) = Hk+. By using (), we have

n–∑

k=

Fk

k + 
= HnFn –

n–∑

k=

Hk+

Fk+
. �

Corollary 

n–∑

k=

Fk

k + 
=

[n+


]

n!
Fn –

n–∑

k=

[k+


]

(k + )!Fk+
.

Proof If we take Hn = [n+
 ]
n! in Theorem  the proof can be completed. �

Theorem  We have

n–∑

k=

Fk–Fk = FnFn – n.

Proof Let u(k) = Fk and �v(k) = Fk– be as in (). Then we obtain �u(k) = 
Fk+

, v(k) = Fk ,
and Ev(k) = Fk+. By using (), we have

n–∑

k=

Fk–Fk = FnFn –
n–∑

k=

kδk

= FnFn – n. �
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3 Hyperharmonic Fibonacci numbers
In this section, hyperharmonic Fibonacci numbers will be defined having used a similarity
and affiliation between harmonic numbers and hyperharmonic numbers with the help of
harmonic Fibonacci numbers. Now we define F(r)

n , the hyperharmonic Fibonacci numbers
of order r.

Definition  Let Fn be the nth harmonic Fibonacci number. For n, r ≥  hyperharmonic
Fibonacci numbers are defined by

F
(r)
n =

n∑

k=

F
(r–)
k ()

with F
()
n = 

Fn
and F

(k)
 =  for k ≥ .

In particular for r =  we get

F
()
n = Fn =

n∑

k=


Fk

, ()

where Fn is nth harmonic Fibonacci numbers.

Lemma  Hyperharmonic Fibonacci numbers have a recurrence relation as follows:

F
(r)
n = F

(r–)
n + F

(r)
n–.

Proof From () we have

F
(r)
n =

n∑

k=

F
(r–)
k

=
n–∑

k=

F
(r–)
k + F

(r–)
n

= F
(r)
n– + F

(r–)
n . �

We give an interesting property of hyperharmonic numbers; the same as in ().

Theorem  For  ≤ i, j ≤ n, we have

F
(j)
n–i+ =

n∑

k=i

(
n – k + j – 

j – 

)


Fk–i+
.

Proof We begin by recalling the definition of F(r)
n . If we use this definition j –  times, we

get

F
(j)
n–i+ =

n–i+∑

k=

F
(j–)
k

=
n–i+∑

kj=

kj∑

kj–=

· · ·
k∑

k=


Fk

.
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We use induction on n to obtain

n–i+∑

kj=

kj∑

kj–=

· · ·
k∑

k=


Fk

=
n∑

k=i

(
n – k + j – 

j – 

)


Fk–i+
.

Clearly it is true for n = . Suppose it is true for some n > , then using the induction
hypothesis, we have

n–i+∑

kj=

kj∑

kj–=

· · ·
k∑

k=


Fk

=
n–i+∑

kj=

kj∑

kj–=

· · ·
k∑

k=


Fk

+
n–i+∑

kj–=

kj–∑

kj–=

· · ·
k∑

k=


Fk

=
n–i+∑

kj=

kj∑

kj–=

· · ·
k∑

k=


Fk

+
n–i+∑

kj–=

kj–∑

kj–=

· · ·
k∑

k=


Fk

+
n–i+∑

kj–=

kj–∑

kj–=

· · ·
k∑

k=


Fk

=
n–i+∑

kj=

kj∑

kj–=

· · ·
k∑

k=


Fk

+
n–i+∑

kj–=

kj–∑

kj–=

· · ·
k∑

k=


Fk

+ · · ·

+
n–i+∑

k=

k∑

k=


Fk

+
n–i+∑

k=


Fk

=
n–i+∑

kj=

kj∑

kj–=

· · ·
k∑

k=


Fk

+
n–i+∑

kj–=

kj–∑

kj–=

· · ·
k∑

k=


Fk

+ · · ·

+
n–i+∑

k=

k∑

k=


Fk

+
n–i+∑

k=


Fk

+


Fn–i+

=
n∑

k=i


Fk–i+

[(
n – k + j – 

j – 

)
+

(
n – k + j – 

j – 

)
+ · · · +

(
n – k



)]

+


Fn–i+

=
n∑

k=i


Fk–i+

(
n – k + j

j – 

)
+


Fn–i+

=
n+∑

k=i

(
n – k + j

j – 

)


Fk–i+
.

Finally we obtain

F
(j)
n–i+ =

n∑

k=i

(
n – k + j – 

j – 

)


Fk–i+
. �

Corollary  We have

F
(r)
n =

n∑

k=

(
n – k + r – 

r – 

)


Fk
.
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Proof By putting i =  and j = r in Theorem , one has

F
(r)
n =

n∑

k=

(
n – k + r – 

r – 

)


Fk
. �

At this point, we express F
(r+s)
n in terms of F

(s)
 ,F(s)

 , . . . ,F(s)
n with the following theo-

rem.

Theorem  For r ≥  and s ≥  we have

F
(r+s)
n =

n∑

t=

(
n – t + r – 

r – 

)
F

(s)
t . ()

Proof We prove this by induction on n. Clearly it is true for n = . Assuming () to hold
for n > , we will prove it for n + . Thus,

F
(r+s)
n+ = F

(r+s–)
n+ + F

(r+s)
n

= F
(r+s–)
n+ + F

(r+s–)
n + F

(r+s)
n

...

= F
(s)
n+ + F

(s+)
n + · · · + F

(r+s–)
n + F

(r+s)
n

= F
(s)
n+ +

n∑

t=

[(
n – t



)
+

(
n – t + 



)
+ · · · +

(
n – r – t – 

r – 

)]
F

(s)
t

= F
(s)
n+ +

n∑

t=

(
n – t + r

r – 

)
F

(s)
t

=
n+∑

t=

(
n – t + r

r – 

)
F

(s)
t .

Thus the proof is completed by the mathematical induction. �

Another proof Let C(r)
n be the n × n matrix which is defined by

C(r)
n =

⎛

⎜⎜⎜⎜⎝

F
(r)
n F

(r+)
n · · · F

(r+n–)
n

F
(r)
n– F

(r+)
n– · · · F

(r+n–)
n–

...
... · · · ...

F
(r)
 F

(r+)
 · · · F

(r+n–)


⎞

⎟⎟⎟⎟⎠
,

where F
(r)
n is the nth hyperharmonic Fibonacci number. Let

A =

⎛

⎜⎜⎜⎜⎝

  · · · 
  · · · 
...

...
. . .

...
  · · · 

⎞

⎟⎟⎟⎟⎠
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be an n × n upper triangle matrix. In [], Bahsi and Solak show that Ar = (bij)n×n, where

bij =

{(j–i+r–
r–

)
if i ≤ j,

 otherwise.

From the matrix multiplication one obtains

C(r+s)
n = ArC(s)

n .

Hence the element of (C(r+s)
n ) is

F
(r+s)
n =

n∑

j=

bjF
(s)
n–j+

=
n∑

j=

(
j + r – 

r – 

)
F

(s)
n–j+

=
n∑

t=

(
n – t + r – 

r – 

)
F

(s)
t . �

4 An application of harmonic and hyperharmonic Fibonacci numbers in
circulant matrices

In this section, we will give some applications on matrix norms of harmonic Fibonacci and
hyperharmonic Fibonacci numbers. Recently, there have been many papers on the norms
of circulant matrices with special numbers [–].

Let A = (aij) be any m × n complex matrix. The Euclidean norm and the spectral norm
of the matrix A are, respectively,

‖A‖E =

( m∑

i=

n∑

j=

|aij|
) 



and

‖A‖ =
√

max
≤i≤n

∣∣λi
(
AHA

)∣∣,

where λi(AHA) is an eigenvalue of AH A and AH is the conjugate transpose of the matrix A.
Then the following inequality holds:

‖A‖ ≤ ‖A‖E ≤ √
n‖A‖. ()

By a circulant matrix of order n is meant a square matrix of the form

C = Circ(c, c, . . . , cn–) =

⎛

⎜⎜⎜⎜⎝

c c c · · · cn–

cn– c c · · · cn–
...

...
...

...
c c c · · · c

⎞

⎟⎟⎟⎟⎠
.
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Theorem  Let C = Circ(F,F,F, . . . ,Fn–) be an n × n circulant matrix. The Euclidean
norm of C is

‖C‖E =

[
n
F


n – n

n–∑

k=

k + 
Fk+

(
Fk +


Fk+

)] 


.

Proof From the definition of the Euclidean norm, we have

‖C‖
E = n

n–∑

k=

F

k .

Then by using (), we have

‖C‖E =

[
n
F


n – n

n–∑

k=

k + 
Fk+

(
Fk +


Fk+

)] 


. �

For the proof of the following theorem, we use the same method as in [].

Theorem  Let C = Circ(F,F,F, . . . ,Fn–) be an n × n circulant matrix. The spectral
norm of C is

‖C‖ = nFn –
n–∑

k=

k + 
Fk+

.

Proof Since the circulant matrices are normal, the spectral norm of the circulant C is
equal to its spectral radius. Furthermore, C is irreducible and its entries are nonnegative,
we see that the spectral radius of the matrix C is equal to its Perron root. Let υ be a vector
with all components . Then

Cυ =

( n–∑

k=

Fk

)
υ.

Obviously,
∑n–

k= Fk is an eigenvalue of C. Corresponding to a positive eigenvector, it must
be the Perron root of the matrix C. Hence from Theorem , we have

‖C‖ = nFn –
n–∑

k=

k + 
Fk+

. �

Theorem  Let C = Circ(F(r)
 ,F(r)

 ,F(r)
 , . . . ,F(r)

n–) be an n × n circulant matrix. The spec-
tral norm of C is

‖C‖ = F
(r+)
n– .

Proof An analysis similar to that in the proof of Theorem  shows that

‖C‖ =
n–∑

k=

F
(r)
k .
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From the definition of hyperharmonic Fibonacci numbers, we have

‖C‖ = F
(r+)
n– . �

Corollary  For the Euclidean norm of the matrix C = Circ(F(r)
 ,F(r)

 ,F(r)
 , . . . ,F(r)

n–), we
have

F
(r+)
n– ≤ ‖C‖E ≤ √

nF(r+)
n– .

Proof The proof is trivial from Theorem  and the relation between the spectral norm
and the Euclidean norm in (). �

Corollary  For the sum of the squares of hyperharmonic Fibonacci numbers, we have

√
n
F

(r+)
n– ≤

√√√√
n–∑

k=

(
F

(r)
k

) ≤ F
(r+)
n– .

Proof It is easily seen from the definition of the Euclidean norm and Corollary . �

5 Conclusion
Our results can be applied to any linear recurrence sequences by using a similar method;
for example, Lucas numbers, Pell numbers, Horadam numbers, generalized Fibonacci
p-numbers.
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