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Abstract
This paper deals with the singularly perturbed boundary value problem for the
second order delay differential equation. Similar boundary value problems are
associated with expected first-exit times of the membrane potential in models of
neurons. An exponentially fitted difference scheme on a uniform mesh is
accomplished by the method based on cubic spline in compression. The difference
scheme is shown to converge to the continuous solution uniformly with respect to
the perturbation parameter, which is illustrated with numerical results.
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1 Background
In the last few decades there has been a growing interest in the study of delay differen-
tial equations due to their occurrence in a wide variety of application fields such as bio-
sciences, control theory, economics, material science, medicine, robotics etc. Any system
involving a feedback control will almost always involve time delays. These arise because
a finite time is required to sense the information and then to react to it. The delays or
lags can represent gestation times, incubation periods, transport delays etc. Delay mod-
els are also prominent in describing several aspects of infectious disease dynamics such
as primary infection, drug therapy, immune response etc. Delays have also appeared in
the study of chemostat models, circadian rhythms, epidemiology, the respiratory system,
tumor growth and neural networks. Statistical analysis of ecological data has shown that
there is evidence of delay effects in the population dynamics of many species.

The details of the theory and applications of differential difference equations can be
found in the collection of books, to name a few, Bellman and Cooke [], Driver [], El’sgol’ts
and Norkin [], Erneux [], Gopalsamy [], Györi and Ladas [], Halanay [], Kuang []
and Smith []. In recent years there has been a growing interest in the numerical study
of differential difference equations. However, the first discrete solution to delay differ-
ential equations was given by Feldstein [], which became a landmark work to most of
the researchers working in numerical analysis of delay differential equations. Bellen and
Zennaro [] gave the theoretical aspects of numerical methods for ordinary and delay dif-
ferential equations, and suitable techniques for solving numerically such type of equations.
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A singularly perturbed delay differential equation is a differential equation in which the
highest derivative is multiplied by a small parameter and which involves at least one shift
term. Such problems arise frequently in the mathematical modeling of various physical
and biological phenomena like optically bistable devices [, ], description of the human
pupil reflex [], a variety of models for physiological processes or diseases [], variational
problems in control theory [, ] and the first-exit time problem in the modeling of the
activation of neuronal variability [].

Singularly perturbed delay differential equations have up to now not been satisfactorily
discussed in numerical analysis literature; however, in recent years there has been a grow-
ing interest in the numerical study of such problems. Most of the previous works have
been centered on the existence and uniqueness of solutions for initial value problems in
differential difference equations and very little attention has been paid to construction of
approximate solutions. The computation of the solution of delay differential equations has
been a great challenge and great importance due to the appearance of such equations in
mathematical modeling of biological problems. Stein [] approximated the solution of
his model of the activation of neuronal variability, which was studied by Tuckwell [–]
and by Wilbur and Rinzel []. Lange and Miura [–] gave a series of papers on sin-
gularly perturbed differential difference equations by extending the matched asymptotic
expansion approach developed for ordinary differential equations to obtain the approxi-
mate solution of these differential difference equations. An extensive numerical work has
been initiated by Kadalbajoo and Sharma in their papers [–], Kadalbajoo and Kumar
[], Kadalbajoo and Ramesh []. Gulsu and Sezer [] proposed a Taylor polynomial
approach for solving mth order linear differential difference equations with mixed condi-
tions. This method is based on first taking the truncated Taylor’s expansions of the func-
tions in the differential difference equations and then substituting their matrix forms into
the equation. Hence the resultant matrix equation can be solved and the unknown Taylor
coefficients can be found approximately.

It is well known that standard discretization methods for solving singular perturbation
problems are unstable and fail to give accurate results when the perturbation parameter
ε is small. Therefore it is important to develop suitable numerical methods to deal with
these problems whose accuracy does not depend on the parameter value ε. So the method
should be uniformly convergent with respect to the perturbation parameter, and various
approaches for the numerical methods to solve singularly perturbed differential equations
are given in [–]. The use of cubic splines for the solution of linear two point boundary
value problems was suggested by Bickley []. Aziz and Khan [] proposed a method
based on cubic spline in compression for the linear second order singularly perturbed
problems which have second and fourth order convergence depending on the choice of
the parameters λ and λ involved in the method.

The analytical and numerical solution of singularly perturbed delay differential equa-
tions with large delays can be found in Amiraliyev and Erdogan [], Amiraliyev and
Cimen [], Amiraliyeva et al. [], Erdogan and Amiraliyev []. Subburayan and
Ramanujam [] gave an initial value technique to solve the singularly perturbed boundary
value problem for the second order ordinary differential equations of convection-diffusion
type with delay. Ghomanjani et al. [] presented the Bezier curves to solve the optimal
control problem with pantograph delays. A direct algorithm for solving this problem was
given. Ghomanjani et al. [] applied, for the first time, Bernstein’s approximation on delay
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differential equations and delay systems with inverse delay that models these problems.
A direct algorithm is given for solving this problem. The delay function and inverse time
function are expanded by the Bezier curves. The Bezier curves are chosen as piecewise
polynomials of degree n, and the Bezier curves are determined on any subinterval by n + 
control points. The approximated solution of delay systems containing inverse time is
derived.

In this paper, we propose a scheme based on cubic spline in compression which com-
prises an exponentially fitted difference scheme on a uniform mesh. In Section , we state
some important properties of the exact solution. In Section , we describe a difference
scheme based on cubic spline in compression for a second order singularly perturbed de-
lay differential equation. In Section , we give the numerical algorithm to solve a singularly
perturbed delay differential equation. Some numerical results are presented in Section ,
and conclusions are given in Section .

2 Statement of the problem
We consider the following boundary value problem (BVP) for the delay differential equa-
tion (DDE):

εy′′(x) + a(x)y′(x) + b(x)y(x – ) = f (x),  < x < , ()

subject to the interval and boundary conditions

y(x) = φ(x), x ∈ [–, ];

y() = β ,
()

where  < ε �  and a(x) ≥ α > , a(x), b(x), f (x) are given sufficiently smooth functions on
[, ], φ(x) is a smooth function on [–, ] and β is a given constant which is independent
of ε, the boundary value problem () along with () exhibits a strong boundary layer at
x =  (cf. [], p.).

If a(x) < , a(x), b(x), f (x) are given sufficiently smooth functions on [, ], φ(x) is a
smooth function on [–, ] and β is a given constant which is independent of ε, then the
boundary value problem () along with () exhibits a strong boundary layer at x =  (cf.
[], p.).

2.1 Stability result
Here we show some properties of the solution of () and (). We use the following conven-
tion:

‖g‖∞ = max
≤x≤

∣
∣g(x)

∣
∣, ‖g‖ =

∫ 



∣
∣g(x)

∣
∣dx, ‖g‖∞, =

∫ 



∣
∣g(x)

∣
∣dx,

‖g‖∞, =
∫ 



∣
∣g(x)

∣
∣dx and ‖g‖ =

∫ 

–

∣
∣g(x)

∣
∣dx.

Lemma If a(x), b(x), f (x) ∈ C[, ] and φ(x) ∈ C[–, ] and ρ = α–‖b‖∞, < , then the
solution y(x) of problem () and () follows the estimates

‖y‖∞ ≤ C, ()
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∣
∣y′(x)

∣
∣ ≤ C

(

 +

ε

e– ax
ε

)

,  ≤ x ≤ , ()

where

C =
(∣
∣φ()

∣
∣ + |β| + α–‖f ‖ + α–‖b‖∞,‖φ‖

)

( – ρ)–,

C =
(|β| + |φ()| + C)

c
,

C = α–‖f ‖ + α–‖b‖∞,‖φ‖ + α–‖b‖∞,C,

c =


a∗
(

 – e
–a∗

ε
)

,

and a∗ = ‖a‖∞.

Proof From () we have

y′(x) = y′()e
–
ε

∫ x
 a(η) dη –


ε

∫ x


F(ξ )e

–
ε

∫ x
ξ a(η) dη dξ ()

with F(x) = –f (x) + b(x)y(x – ).
Integrating () over (, x) we get

y(x) – y() = y′()
∫ x


e

–
ε

∫ τ
 a(η) dη dτ –


ε

∫ x


dτ

∫ τ


F(ξ )e

–
ε

∫ τ
ξ a(η) dη dξ .

Since y() = φ(), we have

y(x) = φ() + y′()
∫ x


e

–
ε

∫ τ
 a(η) dη dτ –


ε

∫ x


F(ξ )

(∫ x

ξ

e
–
ε

∫ τ
ξ a(η) dη dτ

)

dξ . ()

Using the condition y() = β , we have

y′() =
β – φ() + 

ε

∫ 
 F(ξ ) dξ

∫ 
ξ

e
–
ε

∫ τ
ξ a(η) dη dτ

∫ 
 e– 

ε

∫ τ
 a(η) dη dτ

. ()

Substituting () in (), we get

y(x) = φ() +
[

β – φ() +

ε

∫ 


F(ξ ) dξ

∫ 

ξ

e
–
ε

∫ τ
ξ a(η) dη dτ

]

×
∫ x

 e –
ε

∫ τ
 a(η) dη dτ

∫ 
 e –

ε

∫ τ
 a(η) dη dτ

–

ε

∫ x



(

F(ξ )
∫ x

ξ

e
–
ε

∫ τ
ξ a(η) dη dτ

)

dξ . ()

Using Green’s function,

G(x, ξ ) =

ε

∫ 

ξ

e
–
ε

∫ τ
ξ a(η) dη dτ ·

∫ x
 e –

ε

∫ s
 a(η) dη ds

∫ 
 e –

ε

∫ τ
 a(η) dη dτ

–

ε

T(x – ξ )
∫ x

ξ

e
–
ε

∫ τ
ξ a(η) dη dτ , ()



Pramod Chakravarthy et al. Advances in Difference Equations  (2015) 2015:300 Page 5 of 14

equation () can be rewritten as

y(x) =
(

 –
∫ x

 e –
ε

∫ s
 a(η) dη ds

∫ 
 e –

ε

∫ τ
 a(η) dη dτ

)

φ() +
∫ x

 e –
ε

∫ s
 a(η) dη ds

∫ 
 e –

ε

∫ τ
 a(η) dη dτ

β +
∫ 


G(x, ξ )F(ξ ) dξ , ()

where T(λ) = , λ ≥ : T(λ) = , λ < .
Alternatively the Green’s function of the operator

Ly = –εy′′(x) – a(x)y′(x),  < x < , y() =  and y() = 

can be expressed as

G(x, ξ ) =


εw(ξ )

{

ϕ(ξ )ϕ(x),  ≤ ξ ≤ x ≤ ,
ϕ(x)ϕ(ξ ),  ≤ x ≤ ξ ≤ ,

()

where the functions ϕ(x) and ϕ(x) are solutions of the problems

Lϕ = , ϕ() = , ϕ() = ,

Lϕ = , ϕ() = , ϕ() = 

and w(ξ ) = ϕ(ξ )
Q() ,

Q(x) =
∫ x


ϕ(s) ds, ϕ(ξ ) = exp

[
–
ε

∫ ξ


a(τ ) dτ

]

.

Formula () means that G(x, ξ ) ≥ , and it follows from () that

max
x,ξ∈[,]

G(x, ξ ) = max
x,ξ∈[,]

(

ε

∫ 

ξ

e
–
ε

∫ τ
ξ a(η) dη dτ

∫ x
 e –

ε

∫ s
 a(η) dη ds

∫ 
 e –

ε

∫ τ
 a(η) dη dτ

–

ε

T(x – ξ )
∫ x

ξ

e
–
ε

∫ τ
ξ a(η) dη dτ

)

≤ max
x,ξ∈[,]

(

ε

∫ 

ξ

e
–
ε

∫ τ
ξ a(η) dη dτ ·

∫ x
 e –

ε

∫ s
 a(η) dη ds

∫ 
 e –

ε

∫ τ
 a(η) dη dτ

)

≤ max
x,ξ∈[,]

(

ε

{

–α–ε
[

e– α
ε (–ξ ) – 

]}
)

≤ max
x,ξ∈[,]

(

ε

{

α–ε
[

 – e– α
ε (–ξ )]}

)

≤ α–.

Hence G(x, ξ ) ≤ α–. Using this inequality in (), we obtain

∥
∥y(x)

∥
∥∞ ≤ ∣

∣φ()
∣
∣ + |β| +

∫ 



∣
∣G(x, ξ )

∣
∣
∣
∣F(ξ )

∣
∣dξ

≤ ∣
∣φ()

∣
∣ + |β| + max

x,ξ∈[,]

∣
∣G(x, ξ )

∣
∣

∫ 



∣
∣F(ξ )

∣
∣dξ
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≤ ∣
∣φ()

∣
∣ + |β| + α–

∫ 



∣
∣F(ξ )

∣
∣dξ

≤ ∣
∣φ()

∣
∣ + |β| + α–‖f ‖ + α–

∫ 



∣
∣b(ξ )y(ξ – )

∣
∣dξ .

Replacing ξ =  + s, we find that

≤ ∣
∣φ()

∣
∣ + |β| + α–‖f ‖ + α–

∫ 

–

∣
∣b( + s)y(s)

∣
∣ds

≤ ∣
∣φ()

∣
∣ + |β| + α–‖f ‖ + α–

∫ 

–

∣
∣b( + s)φ(s)

∣
∣ds + α–

∫ 



∣
∣b( + s)y(s)

∣
∣ds

≤ ∣
∣φ()

∣
∣ + |β| + α–‖f ‖ + α–

∫ 

–

∣
∣b( + s)φ(s)

∣
∣ds + α–‖y‖∞

∫ 



∣
∣b(s)

∣
∣ds

≤ ∣
∣φ()

∣
∣ + |β| + α–‖f ‖ + α–‖b‖∞,‖φ‖ + α–‖b‖∞,‖y‖∞.

Therefore

(

 – α–‖b‖∞,
)‖y‖∞ ≤ ∣

∣φ()
∣
∣ + |β| + α–‖f ‖ + α–‖b‖∞,‖φ‖,

which implies

∥
∥y(x)

∥
∥∞ ≤ (∣

∣φ()
∣
∣ + |β| + α–‖f ‖ + α–‖b‖∞,‖φ‖

)

( – ρ)–

since ρ = α–‖b‖∞, < .
Hence we have ‖y(x)‖∞ ≤ C, where C = (|φ()| + |β| + α–‖f ‖ + α–‖b‖∞,‖φ‖)( –

ρ)–.
Now we prove estimate ().
Since

∫ 


e

–
ε

∫ τ
 a(η) dη dτ ≥

∫ 


e

–a∗τ
ε dτ =

ε

a∗
(

 – e
–a∗

ε
)

≥ ε

a∗
(

 – e
–a∗

ε
)

≡ cε,

where c = 
a∗ ( – e –a∗

ε ) < , a∗ = ‖a‖∞.
Consider from () that we have


ε

∫ 


F(ξ ) dξ

∫ 

ξ

e
–
ε

∫ τ
ξ a(η) dη dτ

≤ 
ε

∫ 



∣
∣F(ξ )

∣
∣dξ

∫ 

ξ

e
–α(τ–ξ )

ε dτ

≤ 
ε

∫ 



∣
∣F(ξ )

∣
∣dξ

{

α–ε
[

 – e– α
ε (–ξ )]}

≤ α–
∫ 



∣
∣F(ξ )

∣
∣dξ
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≤ α–‖f ‖ + α–‖b‖∞,‖φ‖ + α–‖b‖∞,C

≡ C.

Substituting this in (), we get

∣
∣y′()

∣
∣ ≤ |β| + |φ()| + 

ε

∫ 
 |F(ξ )|dξ

∫ 
ξ

e
–
ε

∫ τ
ξ a(η) dη dτ

∫ 
 e– 

ε

∫ τ
 a(η) dη dτ

≤ (|β| + |φ()| + C)
cε

≡ C

ε
, where C =

(|β| + |φ()| + C)
c

.

Using the procedure in (), we get

∣
∣y′(x)

∣
∣ ≤ C

ε
e

–
ε

∫ x
 α dη +


ε

∫ x



∣
∣F(ξ )

∣
∣e

–
ε

∫ x
ξ α dη dξ

≤ C

ε
e– αx

ε + C

≤ C

ε
e– αx

ε + Cc – |β| –
∣
∣φ()

∣
∣

≤ C

ε
e– αx

ε + C, since c < .

Therefore we have

∣
∣y′(x)

∣
∣ ≤ C

(

 +

ε

e–α x
ε

)

,  ≤ x ≤ . �

3 Derivation of the method
Let x = , xN = , xi = ih, h = /N .

A function s(x, τ ) = s(x) satisfying in [xi, xi+] the differential equations is

s′′(x) + τ s(x) =
[

s′′(xi) + τ s(xi)
] (xi+ – x)

h
+

[

s′′(xi+) + τ s(xi+)
] (x – xi)

h
, ()

where s(xi) = yi and τ >  is termed cubic spline in compression.
Solving () as a linear second order differential equation, we get

s(xi) = A cos
λ

h
xi + B sin

λ

h
xi +

(
Mi + τyi

τ

)(
xi+ – x

h

)(
Mi+ + τyi+

τ

)(
x – xi

h

)

.

We can find the arbitrary constants A and B by using interpolatory conditions

s(xi+) = yi+, s(xi) = yi.

Writing λ = hτ / and Mi = s′′(xi), we get

s(x) =
–h

λ sinλ

[

Mi+ sin
λ(x – xi)

h
+ Mi sin

λ(xi+ – x)
h

]

+
h

λ

[
(x – xi)

h

(

Mi+ +
λ

h yi+

)

+
(xi+ – x)

h

(

Mi +
λ

h yi

)]

. ()
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Differentiating equation () and equating the left- and right-hand derivatives at xi, we
have

yi – yi–

h
+

h
λ

[

( – λ cotλ)Mi –
(

 –
λ

sinλ

)

Mi–

]

=
yi+ – yi

h
+

h
λ

[(

 –
λ

sinλ

)

Mi+ – ( – λ cotλ)Mi

]

. ()

This leads to a tridiagonal system

h(λMi– + λMi + λMi+) = yi+ – yi + yi–, i = , , . . . , N – , ()

where

λ =

λ

(
λ

sinλ
– 

)

, λ =

λ ( – λ cotλ).

The condition of continuity given by () ensures the continuity of first order derivatives
of the spline s(x, τ ) at interior points.

Substituting, εMi = –a(xi)y′
i –b(xi)y(xi –)+ f (xi) in equation () and using the following

approximations for first order derivative of y:

y′
i
∼= (yi+ – yi–)

h
,

y′
i+

∼= (yi+ – yi + yi–)
h

,

y′
i–

∼= (–yi+ + yi – yi–)
h

,

we get the following tridiagonal linear system:

(

–ε +


λhai– + λhai –

λ


hai+

)

yi– + (ε – λhai– + λhai+)yi

+
(

–ε +
λ


hai– – λhai –



λhai+

)

yi+

= –h[λ(fi– – bi–yi––N ) + λ(fi – biyi–N )

+ λ(fi+ – bi+yi+–N )
]

, i = , , . . . , N – . ()

4 Numerical algorithm
Step . We obtain the reduced problem by setting ε =  in equation () with an appropriate
interval condition. Let y(x) be the solution of the reduced problem of () and (), i.e.,

a(x)y′
(x) + b(x)y(x – ) = f (x) ()

with

y(x) = φ(x), – ≤ x ≤ . ()

We solve () and () by using the classical Runge-Kutta method of order four in  ≤ x ≤ .
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We consider y() = γ .
Step . To obtain the solution in  < x < , we consider the numerical scheme from ()

with a fitting factor

σ (ρ) =
aiρ


Coth

(
aiρ



)

, where ρ =
h
ε

(cf. []).

Scheme () with a fitting factor can be written as

Eiyi– – Fiyi + Giyi+ = Hi,  < i < N – ,

where

Ei = –εσ +


λhai– + λhai –

λ


hai+, Fi = –(εσ – λhai– + λhai+),

Gi = –εσ +
λ


hai– – λhai –



λhai+ and

Hi = –h(λ(fi– – bi–φi––N ) + λ(fi – biφi–N ) + λ(fi+ – bi+φi+–N )
)

.

We solve this system by Thomas algorithm with the boundary conditions

y = φ() and yN = γ .

Similarly, to obtain the solution in  < x < , we rewrite the numerical scheme with the
fitting factor as:

Eiyi– – Fiyi + Giyi+ = Hi, N +  < i < N – ,

where

Ei = –εσ +


λhai– + λhai –

λ


hai+, Fi = –(εσ – λhai– + λhai+),

Gi = –εσ +
λ


hai– – λhai –



λhai+ and

Hi = –h(λ(fi– – bi–yi––N ) + λ(fi – biyi–N ) + λ(fi+ – bi+yi+–N )
)

.

We solve the system with the boundary conditions

yN = γ and yN = β .

5 Numerical examples
To demonstrate the applicability of the method, we consider one boundary value prob-
lem of singularly perturbed linear differential difference equations exhibiting boundary
layer at the left end of the interval [, ] and four boundary value problems with right-end
boundary layer. These problems were widely discussed in the literature. The numerical
results are presented for λ = 

 , λ = 
 .

Since the exact solutions of the problems are not known, the maximum absolute errors
for the examples are calculated using the following double mesh principle:

EN
ε = max

≤i≤N

∣
∣yN

i – yN
i

∣
∣.
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For a value of N , the ε-uniform maximum absolute error is calculated by the formula
EN = maxε EN

ε .
The numerical rate of convergence for all the examples has been calculated by the for-

mula

RN =
log |EN

ε /EN
ε |

log 
.

Example  ([], p.) εy′′(x) + y′(x) + .y(x – ) = .(x – ),  < x < 
 , y(x) = x,

– ≤ x ≤ , y( 
 ) = .

The numerical results are presented in Table  for different vales of perturbation param-
eter ε.

Example  ([], p.) εy′′(x) – y′(x) + y(x – ) = , y(x) = , – ≤ x ≤ , y() = .

Table 1 The maximum absolute errors for Example 1 for different values of ε

ε↓ \ N→ 32 64 128 256 512 1,024

2–5 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 1.967E–06
2–6 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 7.480E–07
2–7 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.579E–07
2–8 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–9 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–10 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–11 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–12 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–13 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–14 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–15 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–16 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–17 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–18 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–19 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
2–20 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
EN 1.017E–05 5.086E–06 2.543E–06 1.272E–06 6.358E–07 5.544E–07
RN 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.976E–01 1.284E+00

Table 2 The maximum absolute errors for Example 2 for different values of ε

ε↓ \ N→ 32 64 128 256 512 1,024

2–5 5.155E–04 1.465E–04 3.789E–05 9.552E–06 2.403E–06 8.200E–07
2–6 7.592E–04 2.664E–04 7.515E–05 1.945E–05 4.911E–06 1.202E–06
2–7 8.368E–04 3.857E–04 1.353E–04 3.818E–05 9.876E–06 2.470E–06
2–8 8.409E–04 4.251E–04 1.944E–04 6.821E–05 1.924E–05 4.963E–06
2–9 8.409E–04 4.272E–04 2.143E–04 9.756E–05 3.425E–05 9.658E–06
2–10 8.409E–04 4.272E–04 2.153E–04 1.075E–04 4.892E–05 1.717E–05
2–11 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.387E–05 2.450E–05
2–12 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.694E–05
2–13 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.707E–05
2–14 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.707E–05
2–15 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.707E–05
2–16 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.707E–05
2–17 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.707E–05
2–18 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.707E–05
2–19 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.707E–05
2–20 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.707E–05
EN 8.409E–04 4.272E–04 2.153E–04 1.081E–04 5.414E–05 2.707E–05
RN 9.769E–01 9.885E–01 9.947E–01 9.969E–01 9.998E–01 8.436E–01
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Table 3 The maximum absolute errors for Example 3 for different values of ε

ε↓ \ N→ 32 64 128 256 512 1,024

2–5 2.074E–02 5.496E–03 1.395E–03 3.503E–04 8.744E–05 4.587E–05
2–6 3.534E–02 1.073E–02 2.853E–03 7.243E–04 1.816E–04 6.401E–05
2–7 4.558E–02 1.801E–02 5.495E–03 1.456E–03 3.697E–04 1.040E–04
2–8 4.727E–02 2.316E–02 9.148E–03 2.781E–03 7.368E–04 1.916E–04
2–9 4.730E–02 2.402E–02 1.167E–02 4.611E–03 1.399E–03 3.722E–04
2–10 4.730E–02 2.403E–02 1.210E–02 5.860E–03 2.314E–03 7.028E–04
2–11 4.730E–02 2.403E–02 1.211E–02 6.076E–03 2.935E–03 1.160E–03
2–12 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.044E–03 1.473E–03
2–13 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.046E–03 1.526E–03
2–14 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.046E–03 1.527E–03
2–15 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.046E–03 1.527E–03
2–16 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.046E–03 1.527E–03
2–17 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.046E–03 1.527E–03
2–18 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.046E–03 1.527E–03
2–19 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.046E–03 1.527E–03
2–20 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.046E–03 1.527E–03
EN 4.730E–02 2.403E–02 1.211E–02 6.080E–03 3.046E–03 1.527E–03
RN 9.769E–01 9.886E–01 9.941E–01 9.972E–01 9.965E–01 1.002E+00

Table 4 The maximum absolute errors for Example 4 for different values of ε

ε↓ \ N→ 32 64 128 256 512 1,024

2–5 1.299E–03 6.461E–04 2.673E–04 9.036E–05 2.661E–05 7.234E–06
2–6 1.273E–03 6.528E–04 3.238E–04 1.339E–04 4.524E–05 1.331E–05
2–7 1.269E–03 6.381E–04 3.272E–04 1.621E–04 6.701E–05 2.263E–05
2–8 1.269E–03 6.362E–04 3.195E–04 1.638E–04 8.113E–05 3.352E–05
2–9 1.269E–03 6.362E–04 3.186E–04 1.598E–04 8.194E–05 4.058E–05
2–10 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.994E–05 4.098E–05
2–11 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.998E–05
2–12 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
2–13 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
2–14 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
2–15 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
2–16 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
2–17 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
2–18 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
2–19 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
2–20 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
EN 1.269E–03 6.362E–04 3.186E–04 1.593E–04 7.971E–05 3.986E–05
RN 9.958E–01 9.978E–01 9.996E–01 9.991E–01 9.996E–01 7.166E–01

The numerical results are presented in Table  for different vales of perturbation pa-
rameter ε.

Example  ([], p.) εy′′(x) – y′(x) + y(x – ) = , y(x) = , – ≤ x ≤ , y() = .
The numerical results are presented in Table  for different vales of perturbation param-

eter ε.

Example  ([], p.) εy′′(x) – y′(x) + 
 y(x – ) =

{ –,  ≤ x ≤ ,
,  ≤ x ≤ , y(x) = , – ≤ x ≤ ,

y() = .
The numerical results are presented in Table  for different vales of perturbation pa-

rameter ε.

Example  ([], p.) εy′′(x) – (x + )y′(x) + y(x – ) = –x, y(x) = x, – ≤ x ≤ , y() = .
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Table 5 The maximum absolute errors for Example 5 for different values of ε

ε↓ \ N→ 32 64 128 256 512 1,024

2–5 1.576E–03 9.904E–03 1.478E–02 1.051E–02 5.821E–03 3.000E–03
2–6 2.743E–03 9.310E–04 1.032E–02 1.511E–02 1.067E–02 5.887E–03
2–7 2.766E–03 1.378E–03 1.304E–03 1.053E–02 1.528E–02 1.075E–02
2–8 2.766E–03 1.402E–03 6.817E–04 1.656E–03 1.063E–02 1.538E–02
2–9 2.766E–03 1.402E–03 7.056E–04 3.299E–04 1.832E–03 1.074E–02
2–10 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.531E–04 1.920E–03
2–11 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 6.508E–05
2–12 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
2–13 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
2–14 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
2–15 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
2–16 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
2–17 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
2–18 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
2–19 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
2–20 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
EN 2.766E–03 1.402E–03 7.056E–04 3.540E–04 1.772E–04 8.922E–05
RN 9.806E–01 9.904E–01 9.952E–01 9.979E–01 9.902E–01 9.943E–01

The numerical results are presented in Table  for different vales of perturbation param-
eter ε.

6 Discussion and conclusions
In this paper we present an exponentially fitted finite difference scheme to solve singularly
perturbed delay differential equation of second order with large delay. The method is based
on cubic spline in compression. We have implemented the present method on one linear
example with left-end boundary layer and four examples with right-end boundary layer by
taking different values of ε. Numerical results are presented in tables. From the results, it
can be observed that as the grid size h decreases, the maximum absolute errors decrease,
which shows the convergence to the computed solution. On the basis of the numerical
results of a variety of examples, it is concluded that the present method offers significant
advantage for the linear singularly perturbed delay differential equations with large delays.
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