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Abstract
In this paper, we study the existence of mild solutions to impulsive integrodifferential
evolution equations in Banach spaces. Based on a measure of noncompactness and
important properties of semicompact sets, new existence results are obtained. Here
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compact or equicontinuous assumptions. Some applications are given to illustrate
the effectiveness of our results.
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1 Introduction
This paper is concerned with integrodifferential evolution equations with impulsive con-
ditions and nonlocal conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′(t) = A(t)u(t) + f (t, u(t),
∫ t

 h(t, s, u(s)) ds),
t ∈ J = [, b], t �= ti, i = , , . . . , p,

�u(ti) = u(t+
i ) – u(t–

i ) = Ii(u(ti)), i = , , . . . , p,
u() = g(u) + u,

(.)

where A(t) is a family of linear operators which generates an evolution system {U(t, s) :  ≤
s ≤ t ≤ b}. The state variable u(·) takes values in the real Banach space X. The operators
h : T × X → X, f : J × X × X → X are continuous, T = {(t, s),  ≤ s ≤ t ≤ b}. Ii : X → X,
i = , , . . . , p, are impulsive functions,  < t < t < · · · < tp < tp+ = b. �u(ti) is the jump of
a function u at ti, u(t–

i ), u(t+
i ) denote the left and the right limit of u at ti, respectively.

g : PC([, b]; X) → X is an appropriate continuous function to be specified later.
The impulsive differential systems can be used to model processes which are subject

to short perturbations whose duration can be negligible in comparison with the duration
of the process, such as the dynamics of populations subject to abrupt changes. For more
details of this theory and its applications, we refer to the monographs of Lakshmikantham
et al. [] and Benchohra et al. [], and to [–] and the references therein. In [], Fan and
Li used the techniques of approximate solutions and fixed points to get the mild solutions
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of nonlocal impulsive differential equation

u′(t) = Au(t) + f
(
t, u(t)

)
, t ∈ [, b], t �= ti,

�u(ti) = u
(
t+
i
)

– u
(
t–
i
)

= Ii
(
u(ti)

)
, i = , , . . . , p,

u() = g(u),

where A generates a compact semigroup T(t), the impulsive functions Ii are not compact.
Abada et al. [] studied the existence of integral solutions and extremal integral solutions
for some nondensely defined impulsive semilinear functional differential inclusions in sep-
arable Banach spaces. Ji et al. [, ] studied the existence and controllability of solutions
to impulsive differential system when the semigroup is equicontinuous.

On the other hand, the abstract nonlocal initial problem was initiated by Byszewski and
Lakshmikantham [, ], where the existence and uniqueness of solutions to semilinear
nonlocal differential equations were discussed. The importance of the problem consists in
the fact that it is more general and has a better effect than the classical initial conditions
u() = u. Therefore the nonlocal Cauchy problem has been studied extensively under var-
ious conditions on A(t) and f , g , by several authors [–]. Ntouyas and Tsamatos []
studied the nonlocal semilinear differential equations with compact conditions. Xue []
discussed the semilinear nonlocal differential equations when the semigroup T(t) gener-
ated by the coefficient operator is compact and the nonlocal function g is not compact.
Some classes of integrodifferential equations with nonlocal conditions have been investi-
gated by Balachandran et al. [, ]. Wang and Wei [] and Machado et al. [] discussed
the existence of a class of impulsive integrodifferential evolution equations, where the evo-
lution system is supposed to be equicontinuous.

In the above work, we find that the compactness of the evolution system plays a key role
in this type of impulsive nonlocal Cauchy problem. However, sometimes it is difficult to
satisfy. For example, let X = L(–∞, +∞). The ordinary differential operator A = d/dx with
D(A) = H(–∞, +∞), generates a semigroup T(t) defined by T(t)u(s) = u(t + s), for every
u ∈ X. The C-semigroup T(t) is not compact on X.

Recently, by using a new two-component measure of noncompactness, Benchohra and
Ziane [] proved the existence of mild solutions for a class of impulsive semilinear evo-
lution differential inclusions with state-dependent delay when A(t) generates a strongly
continuous evolution operator. It is an interesting result. In this paper we explain that the
existence results of differential systems under a noncompact evolution system can also be
obtained via the classical Hausdorff measure of noncompactness. By applying the property
of semicompact sets (see Lemma .), we discuss the existence of mild solutions to (.)
without the compactness of evolution system U(t, s), even its equicontinuity. This is one
motivation of the present work. Note that the assumption on the evolution system here
is weaker than that in [, , ], and no more conditions are added. The Banach space
here is nonseparable. Another motivation of the present work is the exact controllability
problem of the differential system. Our method can also be applied to an impulsive con-
trol system and can deal with the technical error on the exact controllability of differential
system caused by the compactness of the evolution system (see Remark .).

The paper is organized as follows. In Section  we recall some preliminary facts that we
need in the sequel. In Section  we prove our results when the evolution system U(t, s) is
strongly continuous. Some applications of our results are given in Section .
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2 Preliminaries
Let (X,‖ · ‖) be a real Banach space. We denote by C([, b]; X) the space of X-valued con-
tinuous functions on [, b] with the norm ‖x‖ = sup{‖x(t)‖, t ∈ [, b]} and by L([, b]; X)
the space of X-valued Bochner integrable functions on [, b] with the norm ‖f ‖L =
∫ b

 ‖f (t)‖dt.
For the sake of simplicity, we put J = [, b]; J = [, t]; Ji = (ti, ti+], i = , . . . , p. In order to

define the mild solution of problem (.), we introduce the set PC([, b]; X) = {u : [, b] →
X such that u(·) is continuous except for a finite number of points ti, at which u(t+

i ), u(t–
i )

exist and u(ti) = u(t–
i ), i = , . . . , p}. It is easy to verify that PC([, b]; X) is a Banach space

with the norm ‖u‖PC = sup{‖u(t)‖, t ∈ [, b]}.
Now we recall the Hausdorff measure of noncompactness (in short MNC) β(·) defined

by

β(B) = inf{ε > ; B has a finite ε-net in X}

for each bounded subset B in Banach space X. We recall the following properties of the
Hausdorff measure of noncompactness β .

Lemma . ([]) Let X be a real Banach space and B, C ⊆ X be bounded. Then the fol-
lowing properties are satisfied:

() B is relatively compact if and only if β(B) = ;
() β(B) = β(B) = β(conv B), where B and conv B mean the closure and convex hull of B,

respectively;
() β(B) ≤ β(C) when B ⊆ C;
() β(B + C) ≤ β(B) + β(C), where B + C = {x + y : x ∈ B, y ∈ C};
() β(B ∪ C) ≤ max{β(B),β(C)};
() β(λB) ≤ |λ|β(B) for any λ ∈R;
() if the map Q : D(Q) ⊆ X → Z is Lipschitz continuous with constant k, then

βZ(QB) ≤ kβ(B) for any bounded subset B ⊆ D(Q), where Z is a Banach space.

A two parameter family of bounded linear operators {U(t, s),  ≤ s ≤ t ≤ b} on X is called
an evolution system if the following two conditions are satisfied:

(i) U(s, s) = I , U(t, r)U(r, s) = U(t, s) for  ≤ s ≤ r ≤ t ≤ b;
(ii) (t, s) → U(t, s) is strongly continuous for  ≤ s ≤ t ≤ b.
In a natural way, we can consider the respective evolution operator U : J × J → L(X),

where L(X) is the space of all bounded linear operators in X. Since the evolution sys-
tem U(t, s) is strongly continuous on the compact set J × J , there exists M >  such that
‖U(t, s)‖ ≤ M for any (t, s) ∈ J × J . More details as regards this evolution system can be
found in Pazy [].

Definition . A function u ∈ PC([, b]; X) is said to be a mild solution of (.) if

u(t) = U(t, )u() +
∫ t


U(t, s)f

(

s, u(s),
∫ s


h
(
s, τ , u(τ )

)
dτ

)

ds +
∑

<ti<t

U(t, ti)Ii
(
u(ti)

)

for all t ∈ [, b], where u() = g(u) + u.
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Definition . A countable set {fn}+∞
n= ⊂ L([, b]; X) is said to be semicompact if

• the sequence {fn(t)}+∞
n= is relatively compact in X for a.a. t ∈ [, b];

• there is a function μ ∈ L([, b];R+) satisfying supn≥ ‖fn(t)‖ ≤ μ(t) for a.e. t ∈ [, b].

Lemma . ([], Theorem ..) Let {fn}+∞
n= be a sequence of functions in L([, b]; X).

Assume that there exist μ,η ∈ L([, b]; R+) satisfying

sup
n≥

∥
∥fn(t)

∥
∥ ≤ μ(t) and β

({
fn(t)

}+∞
n=

) ≤ η(t) a.e. t ∈ [, b].

Then for all t ∈ [, b], we have

β

({∫ t


U(t, s)fn(s) ds : n ≥ 

})

≤ M
∫ t


η(s) ds.

The following lemma can be found in Theorem  of [] and Theorem .. of [].

Lemma . Let (Gf )(t) =
∫ t

 U(t, s)f (s) ds. If {fn}+∞
n= ⊂ L([, b]; X) is semicompact, then the

set {Gfn}+∞
n= is relatively compact in C([, b]; X) and, moreover, if fn ⇀ f, then for all t ∈

[, b], (Gfn)(t) → (Gf )(t) as n → +∞.

Lemma . ([]) Let D be a bounded set of X. Then for any ε > , there exists a sequence
{uk}∞k= ⊂ D such that

β(D) ≤ β
({uk}∞k=

)
+ ε.

Lemma . ([]) If W ⊆ PC([, b]; X) is bounded, then β(W (t)) ≤ β(W ) for all t ∈ [, b],
where W (t) = {u(t); u ∈ W } ⊆ X. Furthermore, suppose the following conditions are satis-
fied:

() W is equicontinuous on J = [, t] and each Ji = (ti, ti+], i = , . . . , p;
() W is equicontinuous at t = t+

i , i = , . . . , p.
Then supt∈[,b] β(W (t)) = β(W ).

Throughout this paper, we denote M = sup{‖U(t, s)‖ : (t, s) ∈ J × J}, Wr = {u ∈ PC([, b];
X) : ‖u(t)‖ ≤ r,∀t ∈ [, b]}. Without loss of generality, we let u = .

3 Main results
First we give the following hypotheses:

(H) A(t) is a family of linear (not necessarily bounded) operators and A(t) : D(A) → X
generates a strongly continuous evolution system {U(t, s) :  ≤ s ≤ t ≤ b}, D(A) not
depending on t and a dense subset of X (see []).

(H) g : PC([, b]; X) → X is continuous and compact.
(H) Ii : X → X is continuous and compact for each i = , , . . . , p.
(H) The function f : [, b] × X × X → X satisfies the following:

() For a.e. t ∈ [, b], the function f (t, ·, ·) : X × X → X is continuous and for all
x, y ∈ X × X , the function f (·, x, y) : [, b] → X is strongly measurable.
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() There exists a function θ ∈ L(J ;R+) such that

∥
∥f (t, x, y)

∥
∥ ≤ θ (t)

(‖x‖ + ‖y‖)

for a.e. t ∈ [, b] and all x, y ∈ X .
() There exists a function l ∈ L(J ; R+) such that for every bounded set A, B ⊂ X ,

β
(
f (t, A, B)

) ≤ l(t)
[
β(A) + β(B)

]

for a.e. t ∈ [, b].
(H) The function h : T × X → X satisfies the following:

() For a.e. (t, s) ∈ T , the function h(t, s, ·) : X → X is continuous and for all x ∈ X ,
the function h(·, ·, x) : T → X is strongly measurable.

() There exists a function m ∈ L(T ;R+) such that

∥
∥h(t, s, x)

∥
∥ ≤ m(t, s)‖x‖.

Let us take m∗ = max(t,s)∈T
∫ t

 m(t, s) ds.
() There exist functions ζ, ζ ∈ L(J ;R+) such that

β
(
h(t, s, D)

) ≤ ζ(t)ζ(s)β(D)

for a.e. (t, s) ∈ T , D ⊂ X a bounded set.

Now, we give the existence result under the above hypotheses.

Theorem . Assume that the hypotheses (H)-(H) are satisfied, then the nonlocal im-
pulsive problem (.) has at least one mild solution on [, b], provided that

M

[

sup
u∈Wr

∥
∥g(u)

∥
∥ + r‖θ‖L + m∗r‖θ‖L + sup

u∈Wr

p∑

i=

∥
∥Ii

(
u(ti)

)∥
∥

]

≤ r. (.)

Proof Put the map K : PC([, b]; X) → PC([, b]; X) defined by

(Ku)(t) = (Ku)(t) + (Ku)(t),

with

(Ku)(t) = U(t, )g(u) +
∫ t


U(t, s)f

(

s, u(s),
∫ s


h
(
s, τ , u(τ )

)
dτ

)

ds,

(Ku)(t) =
∑

<ti<t

U(t, ti)Ii
(
u(ti)

)

for all t ∈ [, b].
It is easy to see that the fixed point of K is the mild solution of nonlocal impulsive prob-

lem (.). Subsequently, we will prove that K has a fixed point by using the Schauder fixed
point theorem.
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From our hypotheses, we see that K is continuous on PC(J ; X). For this purpose, we
assume that un → u in PC(J ; X). By hypotheses (H) and (H), we have

f
(

s, un(s),
∫ s


h
(
s, τ , un(τ )

)
dτ

)

→ f
(

s, u(s),
∫ s


h
(
s, τ , u(τ )

)
dτ

)

, n → +∞

for s ∈ [, b].
Then from the continuity of g , Ii and the dominated convergence theorem, we have

‖Kun – Ku‖PC ≤ M
∥
∥g(un) – g(u)

∥
∥

+ M
∫ b



∥
∥
∥
∥f

(

s, un(s),
∫ s


h
(
s, τ , un(τ )

)
dτ

)

– f
(

s, u(s),
∫ s


h
(
s, τ , u(τ )

)
dτ

)∥
∥
∥
∥ds

+
p∑

i=

M
∥
∥Ii

(
un(ti)

)
– Ii

(
u(ti)

)∥
∥ → , as n → +∞,

i.e., K is continuous.
We denote by W = {u ∈ PC([, b]; X) : ‖u(t)‖ ≤ r for all t ∈ [, b]}. Then W ⊂ PC([, b];

X) is bounded and convex.
Define W = co{K(W), u}, where co means the closure of the convex hull in PC([, b];

X), u ∈ W. For any u ∈ K(W), we know that

∥
∥u(t)

∥
∥ ≤ M

[
∥
∥g(u)

∥
∥ +

∫ b


θ (s)

(
∥
∥u(s)

∥
∥ +

∫ s



∥
∥h

(
s, τ , u(τ )

)∥
∥dτ

)

ds
]

+ M
p∑

i=

∥
∥Ii

(
u(ti)

)∥
∥

≤ M

[

sup
u∈Wr

∥
∥g(u)

∥
∥ + r‖θ‖L + m∗r‖θ‖L + sup

u∈Wr

p∑

i=

∥
∥Ii

(
u(ti)

)∥
∥

]

for t ∈ [, b]. From (.), it follows that W ⊂ W.
We define

Wn+ = co
{

K(Wn), u
}

for n = , , . . . . (.)

It is easy to show that {Wn}∞n= is a decreasing sequence of bounded, closed, convex subsets
in PC([, b]; X). Then the set W =

⋂∞
n= Wn is a nonempty bounded convex closed subset

in PC([, b]; X). Taking the limit in both sides of (.), we have W = co{K(W ), u}.
Now we shall prove that W is relatively compact in PC([, b]; X).
For n ≥  and t ∈ [, b], Wn(t) and K(Wn(t)) are bounded subsets of X. Hence, from

Lemma ., for any ε >  and each t ∈ [, b], there is a sequence {u(n)
k }∞k= ⊂ Wn such

that

β
(
Wn+(t)

)
= β

(
co

{
(KWn)(t), u(t)

})
= β

(
KWn(t)

)

≤ β
({(

Ku(n)
k

)
(t)

}∞
k=

)
+ ε
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≤ β
(
U(t, )g

({
u(n)

k
}∞

k=

))

+ β

(∫ t


U(t, s)f

(

s,
{

u(n)
k (s)

}∞
k=,

{∫ s


h
(
s, τ , u(n)

k (τ )
)

dτ

}∞

k=

)

ds
)

+ 
p∑

i=

β
(
U(t, ti)Ii

({
u(n)

k (ti)
}∞

k=

))
+ ε.

From the compactness of g and Ii, we get

β
(
U(t, )g

({
u(n)

k
}∞

k=

))
= ,

β
(
U(t, ti)Ii

({
u(n)

k (ti)
}∞

k=

))
= 

for each i = , . . . , p. Then by Lemma . and hypothesis (H), we have

β
(
Wn+(t)

) ≤ β

(∫ t


U(t, s)f

(

s,
{

u(n)
k (s)

}∞
k=,

{∫ s


h
(
s, τ , u(n)

k (τ )
)

dτ

}∞

k=

)

ds
)

+ ε

≤ M
∫ t


β

(

f
(

s,
{

u(n)
k (s)

}∞
k=,

{∫ s


h
(
s, τ , u(n)

k (τ )
)

dτ

}∞

k=

))

ds + ε

≤ M
∫ t


l(s)

[

β
({

u(n)
k (s)

}∞
k=

)
+ β

({∫ s


h
(
s, τ , u(n)

k (τ )
)

dτ

}∞

k=

)]

ds + ε

≤ M
[∫ t


l(s)β

({
u(n)

k (s)
}∞

k=

)
ds

+ 
∫ t


l(s)

(∫ s


β
({

h
(
s, τ , u(n)

k (τ )
)}∞

k=

)
dτ

)

ds
]

+ ε

≤ M
[∫ t


l(s)β

(
Wn(s)

)
ds + 

∫ t


l(s)

(∫ s


β
(
h
(
s, τ , Wn(τ )

))
dτ

)

ds
]

+ ε

≤ M
[∫ t


l(s)β

(
Wn(s)

)
ds + 

∫ t



∫ s


l(s)ζ(s)ζ(τ )β

(
Wn(τ )

)
dτ ds

]

+ ε

≤ M
[∫ t


l(s)β

(
Wn(s)

)
ds + 

∫ t


ζ(τ )β

(
Wn(τ )

)
dτ ·

∫ t


l(s)ζ(s) ds

]

+ ε

for each t ∈ [, b]. We let γ = maxt∈[,b]
∫ t

 l(s)ζ(s) ds, k(s) = Ml(s) + Mγ ζ(s). Since ε > 
is arbitrary, it follows from the above inequality that

β
(
Wn+(t)

) ≤
∫ t


k(s)β

(
Wn(s)

)
ds (.)

for each t ∈ [, b]. As Wn is decreasing for n, we define

η(t) = lim
n→∞β

(
Wn(t)

)

for each t ∈ [, b]. Taking the limit in both sides of (.), we obtain

η(t) ≤
∫ t


k(s)η(s) ds for each t ∈ [, b].

Noticing that η(·) ∈ L([, b];R+) is not continuous on [, b], we cannot apply the classical
Gronwall inequality to obtain η(t) =  for t ∈ [, b]. This is due to the fact that the conti-
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nuity of β(Wn(t)) for t ∈ [, b] is based on the equicontinuity of U(t, s), which is absent in
our assumptions. Thus we look for a new way to consider the problem.

Set ηn(t) = β(Wn(t)), ρn+(t) =
∫ t

 k(s)ηn(s) ds. As for each t ∈ [, b], ηn(t) is a decreasing
sequence and η(t) = limn→∞ ηn(t), we see that limn→∞ ρn+(t) exists (the proof is similar
to the Levi lemma except for a trivial modification). Let ρ(t) = limn→∞ ρn+(t). Taking the
limit in both sides of ρn+(t) =

∫ t
 k(s)ηn(s) ds, we have

ρ(t) ≤
∫ t


k(s)η(s) ds, (.)

ρ is a continuous function. From (.), we have ηn(t) ≤ ∫ t
 k(s)ηn–(s) ds = ρn(t). Taking the

limit in both sides, we get

η(t) ≤ ρ(t). (.)

From inequalities (.) and (.), we derive that

ρ(t) ≤
∫ t


k(s)ρ(s) ds,

here ρ(t) is continuous on [, b]. Using the Gronwall inequality, we conclude that ρ(t) ≡ 
on [, b]. As η(t) ≤ ρ(t), it follows that η(t) ≡  on [, b]. That is,

η(t) = lim
n→∞β

(
Wn(t)

)
=  for each t ∈ [, b]. (.)

As W (t) =
⋂∞

n= Wn(t) = limn→∞ Wn(t), from (.), we have

β
(
W (t)

)
=  (.)

for each t ∈ [, b].
Subsequently, we shall prove that β(KW ) = . To this end, from Lemma ., we see that,

for any ε > , there exists a sequence {yn}∞n= ⊂ KW such that

β(KW ) ≤ β
({yn}∞n=

)
+ ε. (.)

Then there exists {un}∞n= ⊂ W , such that

yn = K(un) + K(un). (.)

Firstly, we show that {K(un)}∞n= ⊂ C([, b]; X) is relatively compact, making full use of
Lemma .. From hypotheses (H)() and (H)(), we get

β

({

f
(

s, un(s),
∫ s


h
(
s, τ , un(τ )

)
dτ

)}∞

n=

)

≤ l(s)
[

β
({

un(s)
}∞

n=

)
+ β

({∫ s


h
(
s, τ , un(τ )

)
dτ

}∞

n=

)]

≤ l(s)
[

β
(
W (s)

)
+ 

∫ s


ζ(s)ζ(τ )β

(
W (τ )

)
dτ

]
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for a.e. s ∈ [, b]. Then from (.), β(W (s)) = , we have

β

({

f
(

s, un(s),
∫ s


h
(
s, τ , un(τ )

)
dτ

)}∞

n=

)

= ,

i.e., {f (s, un(s),
∫ s

 h(s, τ , un(τ )) dτ )}∞n= is relatively compact in X for a.a. s ∈ [, b]. Moreover,
from the fact {un}∞n= ⊂ W and hypotheses (H) and (H), we have

∥
∥
∥
∥f

(

s, un(s),
∫ s


h
(
s, τ , un(τ )

)
dτ

)∥
∥
∥
∥

≤ θ (s)
(

∥
∥un(s)

∥
∥ +

∥
∥
∥
∥

∫ s


h
(
s, τ , un(τ )

)
dτ

∥
∥
∥
∥

)

≤ θ (s)
(
r + M∗r

)
.

Then we see that the sequence of functions {f (s, un(s),
∫ s

 h(s, τ , un(τ )) dτ )}∞n= is uniformly
integrable for a.e. s ∈ [, b]. So {f (·, un(·), ∫ ·

 h(·, τ , un(τ )) dτ )}∞n= ⊂ L([, b]; X) is semicom-
pact due to Definition .. By applying Lemma ., we see that the set {G(fn)}∞n= is relatively
compact in C([, b]; X), where (Gf )(t) =

∫ t
 U(t, s)f (s, u(s),

∫ s
 h(s, τ , u(τ )) dτ ) ds.

From the strong continuity of U(t, s) and the compactness of g , we see, for each t ∈ [, b],
that the set {U(t, )g(un) : n ≥ } is relatively compact in X. Now, for  ≤ t < t +h ≤ b, using
the semigroup property,

∥
∥U(t + h, )g(un) – U(t, )g(un)

∥
∥ ≤ M

∥
∥
[
U(t + h, t) – I

]
g(un)

∥
∥.

Thus the functions in {U(·, )g(un) : n ≥ } are equicontinuous due to the compactness
of g and the strong continuity of U(t, s). According to the Ascoli-Arzela theorem, we get
{U(·, )g(un) : n ≥ } is relatively compact in C([, b]; X). So the set {Kun}∞n= is relatively
compact in C([, b]; X), noticing that Kun = Gun + U(·, )g(un).

Next, the same idea can be used to prove the equicontinuity of {Kun}∞n= on each Ji,
i = , , . . . , p. In fact, for ti < t < t +h ≤ ti+, i = , , . . . , p, by using the semigroup properties,
we have

∥
∥(Kun)(t + h) – (Kun)(t)

∥
∥

≤
∥
∥
∥
∥

∑

<tj<t+h

U(t + h, tj)Ij
(
un(tj)

)
–

∑

<tj<t

U(t + h, tj)Ij
(
un(tj)

)
∥
∥
∥
∥

+
∥
∥
∥
∥

∑

<tj<t

U(t + h, tj)Ij
(
un(tj)

)
–

∑

<tj<t

U(t, tj)Ij
(
un(tj)

)
∥
∥
∥
∥

≤
∑

<tj<t

∥
∥U(t + h, tj)Ij

(
un(tj)

)
– U(t, tj)Ij

(
un(tj)

)∥
∥

≤
∑

<tj<t

M
∥
∥
[
U(t + h, t) – I

]
Ij
(
un(tj)

)∥
∥,

from which it follows that {Kun}∞n= is equicontinuous on each Ji due to the compactness
of Ii and the strong continuity of U(t, s). Similarly, {Kun}∞n= is equicontinuous at t+

i , i =
, , . . . , p.

Since Ii, i = , , . . . , p, are compact, we have

β
({

(Kun)(t)
}∞

n=

)
= β

({ ∑

<ti<t

U(t, ti)Ii
(
un(ti)

)
}∞

n=

)

= 



Ji and Wang Advances in Difference Equations  (2015) 2015:302 Page 10 of 13

for t ∈ [, b]. Then, by Lemma ., we get

β
({Kun}∞n=

)
= sup

t∈[,b]
β
({

(Kun)(t)
}∞

n=

)
= .

From (.), we have

β
({yn}∞n=

) ≤ β
({Kun}∞n=

)
+ β

({Kun}∞n=
)
,

which implies β({yn}∞n=) = . Due to (.), we have

β(KW ) ≤ β
({yn}∞n=

)
+ ε.

As ε is arbitrary, it follows from the above inequality that β(KW ) = . Thus, we get

β(W ) = β
(
co{KW , u}

)
= β(KW ) = .

Therefore, W is convex compact and nonempty in PC([, b]; X), and K(W ) ⊂ W . By the
Schauder fixed point theorem, there exists at least one mild solution u of the problem
(.), where u ∈ W is a fixed point of the continuous map K . This completes the proof of
Theorem .. �

Remark . If the function f is compact or Lipschitz continuous (see, e.g., [, ]), then
l(t) in hypothesis (H) becomes zero or a Lipschitz constant. In our proof, the measure
of noncompactness (MNC) is used to get rid of the compactness of the evolution system.
Note that in [, , , ], MNC is adopted to discuss the differential and integrodifferential
system in Banach spaces when the operation semigroup (evolution system) is compact or
equicontinuous. Here the condition on the evolution system U(t, s) is only supposed to
be strongly continuous and they are weak in essence compared with the previous results.
In our recent paper [], we get some existence results of fractional differential equations
with nonlocal conditions when the semigroup is strongly continuous. There the work is
based on a new regular measure of noncompactness defined by us (see Lemma . of []).
We conjecture that the two different approaches in [] and in the present paper may be
considered from a unified point of view in some way. It is an interesting problem and is
worth discussing later.

4 Applications
Example . Consider the following integrodifferential evolution system with impulsive
condition:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωt(t, θ ) = ωθ (t, θ ) + F(t,ω(t, θ ),
∫ t

 h(t, s,ω(s, θ )) ds),  ≤ t ≤ b,  ≤ θ ≤ π , t �= ti,
ω(t, ) = ω(t,π ) = ,  ≤ t ≤ b,
ω(t+

i , θ ) – ω(t–
i , θ ) = Ii(ω(ti, θ )), i = , , . . . , p,

ω(, θ ) =
∫ b

 g(s) log( + |ω(s, θ )|) ds + u(θ ),  ≤ θ ≤ π ,

where F : [, b] ×R×R →R, h : [, b] × [, b] ×R →R, and u ∈ L[,π ].
Take X = L[,π ]. Define A(t) ≡ A : D(A) ⊂ X → X by Az = z′ with the domain D(A) =

{z ∈ X : z′ ∈ X, z() = z(π ) = }. It is well known that A is an infinitesimal generator of a



Ji and Wang Advances in Difference Equations  (2015) 2015:302 Page 11 of 13

semigroup T(t) defined by T(t)z(s) = z(t + s) for each z ∈ X. T(t) is not a compact semi-
group on X and β(T(t)D) ≤ β(D) for a bounded subset D, where β is the Hausdorff MNC.

Now, we assume that:
() f : [, b] × X × X → X is a continuous function defined by

f (t, x, h)(θ ) = F
(
t, x(t, θ ), h(t, θ )

)
, t ∈ [, b],  ≤ θ ≤ π ,

h(t, θ ) =
∫ t


h

(
t, s, x(s, θ )

)
ds.

We take

F
(

t, x(t, θ ),
∫ t


h

(
t, s, x(s, θ )

)
ds

)

= c sin
(
t, x(t, θ )

)
+ c

∫ t



√
x(ξ , θ ) +  dξ ,

c is a constant. Then f , h satisfy hypotheses (H) and (H) of Section .
() Ii : X → X is a continuous function for each i = , , . . . , p, defined by

Ii(x)(θ ) = Ii
(
x(θ )

)
.

We take

Ii
(
x(θ )

)
=

∫ π


ρi(θ , y) cos(x(y)

)
dy,

x ∈ X , ρi ∈ C([,π ] × [,π ],R), for each i = , , . . . , p. Then Ii is compact and
satisfies hypothesis (H).

() g : PC([, b]; X) → X is a continuous function defined by

g(u)(θ ) =
∫ b


g(s) log

(
 +

∣
∣u(s)(θ )

∣
∣
)

ds, u ∈ PC
(
[, b]; X

)
,

with u(s)(θ ) = ω(s, θ ). Then g is a compact operator.
Under these assumptions, the above partial differential system can be reformulated as

the abstract problem (.). Then due to Theorem ., the partial differential system has at
least one mild solution on [, b].

Remark . We can extend our method to exact controllability for integrodifferential
evolution system with impulsive conditions. That is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′(t) = A(t)u(t) + f (t, u(t),
∫ t

 h(t, s, u(s) ds)) + Bv(t),
t ∈ J = [, b], t �= ti, i = , , . . . , p,

�u(ti) = u(t+
i ) – u(t–

i ) = Ii(u(ti)), i = , , . . . , p,
u() = g(u) + u,

here B is a bounded linear operator from a Banach space V to X and the control function
v(·) is given in L([, b], V ).

Hernández and O’Regan [] point out that some papers on exact controllability of ab-
stract control system contain a similar technical error when the compactness of semigroup
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and other hypotheses are satisfied, that is, in this case the applications of controllability
results are restricted to a finite-dimensional space. In order to fix this problem, Ji et al.
[] and Machado et al. [] used some measures of noncompactness to weaken the as-
sumptions of compactness on the evolution system U(t, s), where the evolution system is
supposed to be equicontinuous. In this paper, the evolution system is only supposed to be
strongly continuous, without any restrictions of compactness or equicontinuity. Since the
method used in this paper is also available for controllability of the evolution equations
with impulsive conditions, we can improve many controllability results under a noncom-
pact semigroup, like in [, , ].
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