
Wang and Wang Advances in Difference Equations  (2015) 2015:306 
DOI 10.1186/s13662-015-0640-2

R E S E A R C H Open Access

Hybrid control of the Neimark-Sacker
bifurcation in a delayed Nicholson’s blowflies
equation
Yuanyuan Wang1* and Lisha Wang2

*Correspondence:
y-y-wang@163.com
1College of Science, China
University of Petroleum (East China),
Qingdao, 266580, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this article, for delayed Nicholson’s blowflies equation, we propose a hybrid control
nonstandard finite-difference (NSFD) scheme in which state feedback and parameter
perturbation are used to control the Neimark-Sacker bifurcation. Firstly, the local
stability of the positive equilibria for hybrid control delay differential equation is
discussed according to Hopf bifurcation theory. Then, for any step-size, a hybrid
control numerical algorithm is introduced to generate the Neimark-Sacker bifurcation
at a desired point. Finally, numerical simulation results confirm that the control
strategy is efficient in controlling the Neimark-Sacker bifurcation. At the same time,
the results show that the NSFD control scheme is better than the Euler control
method.

Keywords: hybrid control; nonstandard finite-difference scheme; Neimark-Sacker
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1 Introduction
The delay differential equation (DDE)

ẋ(t) = ax(t – τ )e–bx(t–τ ) – cx(t), (.)

which is one of the important ecological systems, describes the dynamics of Nicholson’s
blowflies equation. Here x(t) is the size of the population at time t, a is the maximum per
capita daily egg production rate, /b is the size at which the population reproduces at the
maximum rate, c is the per capita daily adult death rate, and τ is the generation time, the
positive equilibrium x∗ = (/b) ln(a/c). Equation (.) has been extensively studied in the
literature. The majority of the results on (.) deal with the global attractiveness of the
positive equilibrium and oscillatory behaviors of solutions [, ].

For experimental or computational purposes, it is common to discretize the continuous-
time system corresponding to (.). It is desired that the discrete-time model is ‘dynami-
cally consistent’ with the continuous-time model. The aim of bifurcation control is to delay
(advance) the onset of an inherent bifurcation, change the parameter value of an existing
bifurcation point, stabilize a bifurcated solution or branch, etc. [–]. In [–], the hybrid
control strategy is used to control the bifurcation.
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We consider the delay differential equation

u̇ = f
(
u(t), u(t – )

)
, t ≥ ; u(t) = η(t), – ≤ t ≤ .

The first-order derivative is approximated by the modified forward Euler expression

du(t)
dt

−→ uk+ – uk

φ
,

with the ‘denominator function’ φ such that

φ(h) = h + O
(
h),

where h = /m stands for step-size and uk denotes the approximate value to u(kh), so we
get the method as follows:

uk+ – uk = φ(h)f (uk , uk–m).

A class of numerical methods, named nonstandard finite difference (NSFD) methods by
Mickens, perform well in preserving the properties of the corresponding continuous sys-
tem []. Some NSFD methods have received considerable attention due to the improve-
ment in their efficient computation. NSFD scheme [–] tries to preserve the significant
properties of their continuous analogues and, consequently, gives reliable numerical re-
sults.

In [], for sufficiently small step-size, the discrete model undergoes a Hopf bifurcation
of the same type with the original model by using the Euler forward method. In this pa-
per, we construct a hybrid control nonstandard finite-difference scheme in which state
feedback and parameter perturbation are used to control the Neimark-Sacker bifurca-
tions. The results show that the dynamic behavior of a controlled system can be changed
by choosing appropriate control parameters. For any step-size, we obtain the consistent
dynamical results of the corresponding continuous-time model. To the best of our knowl-
edge, to this day, by the hybrid control NSFD method there are few results dealing with
numerical controlled dynamics for DDEs.

The rest of this paper is organized as follows. In Section , we summarize the existence
and stability of equilibria for the original system (.) (Ref. []). In Section , we analyze
the distribution of the characteristic equation associated with a hybrid control delay dif-
ferential equation with Nicholson’s blowflies equation, and we obtain local stability of the
equilibria and existence of the Hopf bifurcation. In Section , a hybrid control numerical
algorithm is introduced to generate the Neimark-Sacker bifurcation at a desired bifurca-
tion point. In Section , the direction and stability of bifurcating periodic solutions from
the Neimark-Sacker bifurcation of a controlled delay equation are determined by using the
theories of discrete systems. In Section , some computer simulations are performed to
illustrate the theoretical results. The results show that the NSFD control scheme is better
than the Euler control method.
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2 Existence and stability of equilibria
In the original delay differential equation model (.), the time delay τ acts as a bifurcation
parameter. As the delay τ passes through some critical value τk , a couple of complex con-
jugating eigenvalues of the system pass the imaginary axis at some pure imaginary points,
and stable periodic Hopf bifurcating solutions occur. Then, when τ passes τk , the real parts
of these eigenvalues pass to the positive real axis causing the Hopf bifurcating solution to
be unstable. We summarize these features of the solution via the existence and stability of
a positive equilibrium following the works in [], Theorem ..

In summary:
- If c < a < ce, then x = x∗ is asymptotically stable.
- If a > ce (bx∗ > ), then x = x∗ is asymptotically stable for τ ∈ [, τ) and unstable for

τ > τ. Equation (.) undergoes a Hopf bifurcation at x = x∗ when τ = τk for
k = , , , . . . .

3 Hopf bifurcation in hybrid control DDE
Let u(t) = x(τ t). Then Eq. (.) can be rewritten as

u̇(t) = aτu(t – )e–bu(t–) – cτu(t). (.)

One can see that if u∗ is a positive fixed point to Eq. (.), then u∗ satisfies

c = ae–bu∗ , (.)

here u∗ = x∗. Apply both parameter perturbation and state feedback to system (.) as
follows:

u̇(t) = α
[
aτu(t – )e–bu(t–) – cτu(t)

]
+ ( – α)τ

(
u(t – ) – u∗

)
,  < α ≤ . (.)

Set z(t) = u(t) – u∗. Equation (.) becomes

ż(t) = α
[
aτ

(
z(t – ) + u∗

)
e–b(z(t–)+u∗) – cτ

(
z(t) + u∗

)]
+ ( – α)τz(t – ). (.)

The linearization of Eq. (.) at z =  is

ż(t) = αcτ
[
( – bu∗)z(t – ) – z(t)

]
+ ( – α)τz(t – ), (.)

whose characteristic equation is

λ = αcτ
[
( – bu∗)e–λ – 

]
+ ( – α)τe–λ. (.)

When bu∗ > –α
αc , λ < . For ω �= , iω is a root of Eq. (.) if and only if

iω = αcτ
[
( – bu∗)e–iω – 

]
+ ( – α)τe–iω.

Separating the real and imaginary parts, we obtain
⎧
⎨

⎩
[αcτ ( – bu∗) + ( – α)τ ] cosω = αcτ ,

[αcτ ( – bu∗) + ( – α)τ ] sinω = –ω,
(.)
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which leads to

ω + (αcτ ) =
[
αcτ ( – bu∗) + ( – α)τ

],

that is,

ω = ±τ

√[
( – α) – αcbu∗

][
( – α) – αc( – bu∗)

]
. (.)

This is possible if and only if bu∗ >  + –α
αc .

For bu∗ >  + –α
αc , let

τk = arcsin

[
–

w
αcτ ( – bu∗) + ( – α)τ

]
+ kπ , k = , , , . . . .

Set

ω = τ

√[
( – α) – αcbu∗

][
( – α) – αc( – bu∗)

]
.

Let λk = αk(τ ) + iωk(τ ) denote a root of Eq. (.) near τ = τk such that αk(τk) = , ωk(τk) =
ω. We have the following result.

Lemma  α′
k(τk) > .

Proof Differentiating both sides of Eq. (.) with respect to τ , we obtain

dλ

dτ
=

[αc( – bu∗) + ( – α)]e–λ – αc
 + τ [αc( – bu∗) + ( – α)]e–λ

.

Therefore

dλ

dτ

∣
∣∣
∣
τ=τk

=
[αc( – bu∗) + ( – α)] cosω – αc – i[αc( – bu∗) + ( – α)] sinω

 + τk[αc( – bu∗) + ( – α)] cosω – iτk[αc( – bu∗) + ( – α)] sinω
.

This implies that

α′
k(τk) =

[αc( – bu∗) + ( – α)] cosω + τk[αc( – bu∗) + ( – α)]

	

=
αc + τk[αc( – bu∗) + ( – α)]

	
,

where 	 = [ + τk[αc( – bu∗) + ( – α)] cosω] + [τk[αc( – bu∗) + ( – α)] sinω], com-
pleting the proof. �

Theorem  For system (.), the following statements are true:
- If –α

αc < bu∗ <  + –α
αc , then u = u∗ is asymptotically stable.

- If bu∗ >  + –α
αc (when α = , bx∗ > ), then u = u∗ is asymptotically stable for τ ∈ [, τ)

and unstable for τ > τ. Equation (.) undergoes a Hopf bifurcation at u = u∗ when
τ = τk for k = , , , . . . .
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4 Stabilization of NSFD hybrid control system
In this section, we mainly discuss the stability and bifurcation of the numerical discrete
hybrid control system. We implement the hybrid control strategy [–]. Set v(t) = u(t) –
u∗. Equation (.) becomes

v̇(t) = α
[
aτ

(
v(t –)+u∗

)
e–b(v(t–)+u∗) –cτ

(
v(t)+u∗

)]
+(–α)τv(t –),  < α ≤ . (.)

When α = , Eq. (.) is the uncontrolled system. The differential equation

dv
dt

= –αcτv(t)

has the general solution v(t) = C̄e–αcτ t . We consider step-size of the form h = /m, where
m ∈ Z+. The solution can be written as

v(t + h) – v(t)
–e–αcτh

αcτ

= –αcτv(t).

This is an exact finite difference numerical method:

v(t + h) – v(t) = C̄e–αcτ (t+h) – C̄e–αcτ t

= C̄e–αcτ t(e–αcτh – 
)

= –αcτv(t)
 – e–αcτh

αcτ
.

Employ the NSFD scheme [, , ] to Eq. (.) and choose the ‘denominator function’
ψ as

ψ(h) =
 – e–αcτh

αcτ
. (.)

It yields the difference equation

vn+ = e–αcτhvn +
(
e–αcτh – 

)
u∗ +

(
 – e–αcτh)(vn–m + u∗)e–bvn–m

+
( – e–αcτh)( – α)

αc
vn–m. (.)

Introducing a new variable Vn = (vn, vn–, . . . , vn–m)T , we can rewrite (.) as

Vn+ = F̄(Vn, τ ), (.)

where F̄ = (F̄, F̄, . . . , F̄m)T , and

F̄k =

⎧
⎪⎪⎨

⎪⎪⎩

e–αcτhvn–k + (e–αcτh – )u∗ + ( – e–αcτh)(vn–m–k + u∗)e–bvn–m–k

+ (–e–αcτh)(–α)
αc vn–m–k , k = ,

vn–k+,  ≤ k ≤ m.

(.)
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Clearly the linear part of map (.) is

Vn+ = ÃVn. (.)

Here

Ã =

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

e–αcτh  · · ·   ( – e–αcτh)( – bu∗ + –α
αc )

  · · ·   
  · · ·   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  · · ·   
  · · ·   

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

. (.)

The characteristic equation of Ã is

λm+ – e–αcτhλm –
(
 – e–αcτh)

(
 – bu∗ +

 – α

αc

)
= . (.)

Lemma  If bu∗ > –α
αc , then all roots of Eq. (.) have modulus less than one for sufficiently

small τ > .

Proof For τ = , Eq. (.) becomes

λm+ – λm = .

The equation has an m-fold root λ =  and a simple root λ = .
Consider the root λ(τ ) such that |λ()| = . This root is a C function of τ . For Eq. (.),

we have

d|λ|
dτ

= λ
dλ

dτ
+ λ

dλ

dτ
,

d|λ|
dτ

∣∣∣
∣
λ=,τ=

= h( – α – bu∗αc).

Consequently, if  – α – bu∗αc < , then all roots of Eq. (.) lie in |λ| <  for sufficiently
small τ > . �

Lemma  For any step-size h, if –α
αc < bu∗ < + –α

αc , then Eq. (.) has no root with modulus
one for all τ > .

Proof A Neimark-Sacker bifurcation occurs when two roots of the characteristic equation
(.) cross the unit circle. We have to find values of τ such that there exist roots on the
unit circle. The roots on the unit circle are given by eiω , ω ∈ (–π ,π ]. Since we are dealing
with a real polynomial, complex roots occur in complex conjugate pairs and we have only
to look for ω ∈ (,π ]. For ω ∈ (,π ], eiω is a root of (.) if and only if

eiω – e–αcτh –
(
 – e–αcτh)

(
 – bu∗ +

 – α

αc

)
e–imω = . (.)
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Hence
⎧
⎨

⎩
cosω – e–αcτh – ( – e–αcτh)( – bu∗ + –α

αc ) cos mω = ,

sinω + ( – e–αcτh)( – bu∗ + –α
αc ) sin mω = .

(.)

We obtain

cosω =  +
( – e–αcτh)(bu∗ – –α

αc )( + –α
αc – bu∗)

e–αcτh . (.)

If –α
αc < bu∗ <  + –α

αc , then cosω > , which yields a contradiction. So Eq. (.) has no root
with modulus one for all τ > . �

For bu∗ >  + –α
αc , for any step-size h, | cosω| <  and τ >  is positive real, from (.) we

know that

ωk = arccos

(
 +

( – e–αcτh)(bu∗ – –α
αc )( + –α

αc – bu∗)
e–αcτh

)
+ kπ ,

k = , , , . . . ,
[

m – 


]
, (.)

where [·] denotes the greatest integer function. It is clear that there exists a sequence of
the time delay parameters τk satisfying Eq. (.) according to ω = ωk .

Lemma  For any step-size h, if bu∗ >  + –α
αc , let λk(τ ) = rk(τ )eiωk (τ ) be a root of Eq. (.)

near τ = τk satisfying rk(τk) =  and ωk(τk) = ωk , then dr
k (τ )
dτ

|τ=τk ,ω=ωk > .

Proof From Eq. (.), we obtain

λm =
( – e–αcτh)( + –α

αc – bu∗)
λ – e–αcτh ,

dr
k (τ )
dτ

∣
∣∣∣
τ=τk ,ω=ωk

= 	
(

λ
dλ

dτ

)∣
∣∣∣
τ=τk ,ω=ωk

=
αche–αcτh(m +  + me–αcτh)( – cosω)

( – e–αcτh)[((m + ) cosω – me–αcτh) + ((m + ) sinω)]

∣
∣∣
∣
τ=τk ,ω=ωk

> .

This completes the proof. �

Theorem  For system (.), the following statements are true:
() If –α

αc < bu∗ <  + –α
αc , then u = u∗ is asymptotically stable for any τ > ;

() If bu∗ >  + –α
αc , then u = u∗ is asymptotically stable for τ ∈ (, τ) and unstable for

τ > τ. Equation (.) undergoes a Neimark-Sacker bifurcation at u = u∗ when τ = τk

for k = , , , . . . , [ m–
 ].

Proof () If –α
αc < bu∗ <  + –α

αc , from Lemmas  and  we know that Eq. (.) has no root
with modulus one for all τ > . Applying Corollary . in [], all roots of Eq. (.) have
modulus less than one for all τ > . The conclusion follows.
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() If bu∗ >  + –α
αc , applying Lemmas  and , we know that all roots of Eq. (.) have

modulus less than one when τ ∈ (, τ), and Eq. (.) has at least a couple of roots with
modulus greater than one when τ > τ. The conclusion follows. �

Remark  According to the conclusions of Lemmas - and Theorem , for any step-size,
due to bu∗ >  + –α

αc , we can delay the onset of a Neimark-Sacker bifurcation by choosing
different α ( < α < ).

5 Direction and stability of the Neimark-Sacker bifurcation in discrete control
model

In this section, we discuss direction and stability of the Neimark-Sacker bifurcation in
a discrete control system. In Section , we obtained conditions for the Neimark-Sacker
bifurcation to occur when τ = τk for k = , , , . . . , [ m–

 ]. In this section we study the di-
rection of the Neimark-Sacker bifurcation and the stability of the bifurcating periodic so-
lutions when τ = τ, using techniques from normal form and center manifold theory [,
].

vn+ = e–αcτhvn +
(
 – e–αcτh)

(
 +

 – α

αc
– bu∗

)
vn–m

+


(
 – e–αcτh)(bu∗ – b

)
v

n–m +



(
 – e–αcτh)(b – bu∗

)
v

n–m + O
(|xn–m|).

So, we can write system (.) as

Vn+ = ÃVn +



B(Vn, Vn) +



C(Vn, Vn, Vn) + O
(‖Vn‖),

where

B(Vn, Vn) =
(
b(Vn, Vn), , . . . , 

)T , C(Vn, Vn, Vn) =
(
c(Vn, Vn, Vn), , . . . , 

)T ,

and

ã = e–αcτh,

ã =
(
 – e–αcτh)

(
 +

 – α

αc
– bu∗

)
,

b(φ,φ) =
(
 – e–αcτh)(bu∗ – b

)
φ

m = b̃ · φ
m,

c(φ,φ,φ) =
(
 – e–αcτh)(b – bu∗

)
φ

m = c̃ · φ
m.

(.)

Let q = q(τ) ∈C
m+ be an eigenvector of Ã corresponding to eiω , then

Ãq = eiω q, Ãq = e–iω q.

We also introduce an adjoint eigenvector q∗ = q∗(τ ) ∈C
m+ having the properties

ÃT q∗ = e–iω q∗, ÃT q∗ = eiω q∗,

and satisfying the normalization 〈q∗, q〉 = , where 〈q∗, q〉 =
∑m

i= q∗
i qi.
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Lemma  ([]) Define a vector-valued function p : C −→C
m+ by

p(ξ ) =
(
ξm, ξm–, . . . , 

)T .

If ξ is an eigenvalue of Ã, then Ãp(ξ ) = ξp(ξ ).

In view of Lemma , we have

q = p
(
eiw

)
=

(
eimw , ei(m–)w , . . . , eiw , 

)T . (.)

Lemma  Suppose q∗ = (q∗
, q∗

 , . . . , q∗
m)T is the eigenvector of ÃT corresponding to the eigen-

value e–iw , and 〈q∗, q〉 = . Then

q∗ = K
(
, ãeimw , ãei(m–)w , . . . , ãeiw , ãeiw

)T , (.)

where

K =
[
e–imw + mãe–iw

]–. (.)

Proof Assign q∗ satisfies ÃT q∗ = zq∗ with z = e–iw . Then there are

⎧
⎪⎪⎨

⎪⎪⎩

ãq∗
 + q∗

 = e–iw q∗
,

q∗
k = e–iw q∗

k–, k = , , . . . , m,

ãq∗
 = e–iw q∗

m.

(.)

Let q∗
m = ãeiw K , by the normalization 〈q∗, q〉 =  and direct computation, the lemma fol-

lows. �

Let Tcenter denote a real eigenspace corresponding to e±iw , which is two-dimensional
and is spanned by {Re(q), Im(q̄)}, and let Tstable be a real eigenspace corresponding to all
eigenvalues of ÃT , other than e±iw , which is (m – )-dimensional.

All vectors x ∈R
m+ can be decomposed as

x = vq + v̄q̄ + y,

where v ∈ C, vq + v̄q̄ ∈ Tcenter, and y ∈ Tstable. The complex variable v can be viewed as a
new coordinate on Tcenter, so we have

v =
〈
q∗ , x

〉
,

y = x –
〈
q∗ , x

〉
q –

〈
q∗ , x

〉
q.

Let a(λ) be characteristic polynomial of Ã and λ = eiw . Following the algorithms in []
and using a computation process similar to that in [, ], we have

g =
〈
q∗, B(q, q)

〉
,
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g =
〈
q∗, B(q, q)

〉
,

g =
〈
q∗, B(q, q)

〉
,

g =
〈
q∗, B(q, w)

〉
+ 

〈
q∗, B(q, w)

〉
+

〈
q∗, C(q, q, q)

〉
,

where

w =
b(q, q)
a(λ

)
p
(
λ


)

–
〈q∗, B(q, q)〉

λ
 – λ

q –
〈q∗, B(q, q)〉

λ
 – λ

q,

w =
b(q, q)

a()
p() –

〈q∗, B(q, q)〉
 – λ

q –
〈q∗, B(q, q)〉

 – λ
q.

So, we can compute an expression for the critical coefficient c(τ)

c(τ) =
gg( – λ)

(λ
 – λ)

+
|g|
 – λ

+
|g|

(λ
 – λ)

+
g


. (.)

By (.), (.) and Lemma , we get

c(τ) =
K


(
b̃

a(ewi)
+

̃b

a()
+ c̃

)
. (.)

Thus applying the Neimark-Sacker bifurcation theorem [], the stability of the closed
invariant curve can be summarized as follows.

Theorem  If bu∗ >  + –α
αc , then u = u∗ is asymptotically stable for any τ ∈ [, τ) and

unstable for τ > τ. An attracting (repelling) invariant closed curve exists for τ > τ if
	[e–iw c(τ)] <  (> ) (when α = , we obtain the results of the uncontrolled system).

Remark  The parameter α could decide the dynamics of system (.), e.g., the direction
of the bifurcation, the stability and the amplitude of the closed invariant curve.

6 Numerical simulations
One of the purposes of this section is to test the results in Sections - by numerical ex-
amples; the second one is to show that the hybrid control NSFD numerical algorithm is
better than the Euler control method.

Let a = , b = , c = , then u∗ = .. From Table  we can see the different values of
τ by choosing α with hybrid control NSFD scheme. For h = /, at different α and τ , the
results refer to Figures -. At the same τ , different α, the results are shown in Figures 
and  (when α = , we obtain the results of the uncontrolled system).

From the point of view of control, the controlled system can delay the onset of an in-
herent bifurcation when such a bifurcation is desired (undesired). At the same time, the
parameter α could decide the amplitude of the closed invariant curve (Figures  and ).

Table 1 The values of τ0 of Hybrid control NSFD scheme

α = 1 τ0 α = 0.9 τ0 α = 0.6 τ0

h = 1 0.4403 h = 1 0.5162 h = 1 1.0832
h = 1/2 0.5891 h = 1/2 0.6938 h = 1/2 1.5058
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(a) (b)

Figure 1 The numerical solution of Eq. (3.3) with hybrid control NSFD scheme corresponding to α = 1,
h = 1/2 when (a) τ = 0.5, (b) τ = 0.6.

(a) (b)

Figure 2 The numerical solution of Eq. (3.3) with hybrid control NSFD scheme corresponding to
α = 0.9, h = 1/2 when (a) τ = 0.6, (b) τ = 0.8.

(a) (b)

Figure 3 The numerical solution of Eq. (3.3) with hybrid control NSFD scheme corresponding to
α = 0.6, h = 1/2 when (a) τ = 1, (b) τ = 1.6.
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Figure 4 The numerical solution of Eq. (3.3) with
hybrid control NSFD scheme corresponding to
τ = 0.8, h = 1/2 for different α.

Figure 5 The numerical solution of Eq. (3.3) with
hybrid control NSFD scheme corresponding to
τ = 1.6, h = 1/2 for different α.

Table 2 The values of τ0 of Hybrid control Euler method

α = 1 τ0 α = 0.9 τ0 α = 0.6 τ0

h = 1 0.2927 h = 1 0.3362 h = 1 0.6062
h = 1/2 0.4452 h = 1/2 0.5160 h = 1/2 0.9914

In fact, similar to the analysis for the NSFD control scheme, applying the Euler control
method for sufficiently small step-size, we can prove the result. Through the Euler control
method to Eq. (.), it yields the difference equation

ṽn+ = ṽn + ατh
[
a(ṽn–m + u∗)e–b(ṽn–m+u∗) – c(ṽn + u∗)

]
+ ( – α)τhṽn–m. (.)

From Figures - and Figures -, Tables  and , we could argue that NSFD is better
than the Euler method under the means of describing approximately the dynamics of the
system with the same step-size.

Through the above analysis, we can improve the stability and enlarge the stable region by
choosing control parameter, and thereby delay the onset of Neimark-Sacker bifurcation.

7 Conclusions
In this paper, we have developed a hybrid control nonstandard finite-difference (NSFD)
scheme by combining state feedback and parameter perturbation for controlling the
Neimark-Sacker bifurcation in a discrete nonlinear dynamical system. In Section , by
applying hybrid control Nicholson’s blowflies equation with delay, we obtain the Hopf bi-
furcation. In Section , compared with the results in Section , for any step-size, the hybrid
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(a) (b)

Figure 6 The numerical solution of Eq. (3.3) with hybrid control Euler method corresponding to α = 1,
h = 1/2 when (a) τ = 0.4, (b) τ = 0.5.

(a) (b)

Figure 7 The numerical solution of Eq. (3.3) with hybrid control Euler method corresponding to
α = 0.9, h = 1/2 when (a) τ = 0.5, (b) τ = 0.6.

(a) (b)

Figure 8 The numerical solution of Eq. (3.3) with hybrid control Euler method corresponding to
α = 0.6, h = 1/2 when (a) τ = 0.9, (b) τ = 1.

control numerical strategy can delay the onset of an inherent bifurcation when such a bi-
furcation is undesired (desired) by choosing an appropriate control parameter α. For any
step-size, we obtain the consistent dynamical results of the corresponding continuous-
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time model. In Section , numerical examples are provided to illustrate the theoretical
results. Applying the Euler control method for sufficiently small step-size, we can also
prove the result. We obtain that the NSFD control scheme is better than the Euler control
method. There are lots of good prospects in bifurcation and control area. In the future, we
can further design a better controller to control the bifurcation of Nicholson’s blowflies
equation with delay.
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