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Abstract
Compared with Euler-Maruyama type schemes, there is a lack of studies on the
stability of Runge-Kutta type methods applied to stochastic delay differential
equations (SDDEs). This paper is concerned with filling this imbalance. The focus is on
the almost sure exponential stability of an explicit stochastic Runge-Kutta-Chebyshev
(S-ROCK) method for an Itô-type linear test equation, which is analyzed by applying
the techniques based on a discrete semimartingale convergence theorem.
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1 Introduction
Stability analysis of numerical methods for stochastic differential equations (SDEs) has
recently attracted an increasing interest. Most researchers are concerned with two kinds
of stability, i.e., almost sure stability [–] and moment stability [–], of the numerical
solutions to SDEs as well as SDDEs. Generally, almost sure stability is less restrictive than
moment stability, and almost sure stability results are more difficult to establish if deriv-
ing from the moment stability by the Chebyshev inequality and the Borel-Cantelli lemma.
The situation has been improved since the martingale techniques were introduced to in-
vestigate the almost sure stability. By the discrete semimartingale convergence theorem
(cf. []), the numerical stability of SDDEs has been examined, for example, by [, ].

To the best knowledge of authors, there is no similar result about almost sure stabil-
ity of Runge-Kutta type methods for SDDEs, and nearly all existing results concerned
with Euler-Maruyama type schemes. Recently, stabilized explicit Runge-Kutta schemes
have proved successful for solving SDEs, which are called S-ROCK (stochastic orthogonal
Runge-Kutta-Chebyshev) method; see, for example, [, ]. In this paper, we investigate
the almost sure stability of the S-ROCK method applied to SDDEs. Consider Itô SDDEs
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of the form

dy = f
(
y(t), y(t – τ )

)
dt + g

(
y(t), y(t – τ )

)
dw(t) (.)

for every t ≥ . Here time delay τ > . The initial function y(t) = ψ(t) when t ∈ [–τ , ]. We
further assume that the initial data is independent of Wiener measure driving the equation
and w(t) is a scalar Brownian motion on the complete probability space (�,F ,Ft≥,P)
with a filtration satisfying the usual conditions. Moreover, f , g : R × R → R are Borel-
measurable functions.

The rest of this paper is organized as follows. In the next section, we propose the
S-ROCK method for SDDEs. Our main stability results will be derived in Section .

2 The S-ROCK method and preliminary results
In the following, we employ an equidistant step points I�t = {t, t, . . . , tN } where the time
step size is a submultiple of the delay τ , i.e., �t = τ /m for a given positive integer m, and
the nth step point is denoted by tn = n�t for  ≤ n ≤ N . The numerical approximation
of y(t) at tn is denoted by Yn, and we denote the increment w(tn+) – w(tn) by Jn. Next we
introduce the S-ROCK method for solving SDDEs (.), which is given by

Yn+ =
�t
ν f

(
K (ν)

n , Z(ν)
n

)
+ K (ν)

n – K (ν–)
n + Jn( – α)g

(
K (ν–)

n , Z(ν–)
n

)
, (.)

where {K (i)
n } and {Z(i)

n } are the stage values defined by

K ()
n = Yn,

K ()
n = Yn +

�t
ν f

(
K ()

n , Z()
n

)
,

K (i)
n =

�t
ν f

(
K (i–)

n , Z(i–)
n

)
+ K (i–)

n – K (i–)
n for i = , . . . ,ν – ,

K (ν)
n =

�t
ν f

(
K (ν–)

n , Z(ν–)
n

)
+ K (ν–)

n – K (ν–)
n + Jnαg

(
K (ν–)

n , Z(ν–)
n

)
,

(.)

and

Z(i)
n =

{
ψ(tn + βi�t – τ ), tn + βi�t – τ ≤ ,
K (i)

n–m, tn + βi�t – τ > .
(.)

Here parameters α ∈ [, /] and βi = (i – )/ν for i = , . . . ,ν .
Let C([–τ , ];R) be the family of continuous functions ϕ from [–τ , ] to R, equipped

with the supremum norm ‖ϕ‖ = sup–τ≤θ≤ |ϕ(θ )|. Also, denote by Cb
F

([–τ , ];R) the fam-
ily of bounded, F-measurable, C([–τ , ];R)-valued random variables.

Now we give some definitions on the almost sure exponential stability of exact and nu-
merical solutions to SDDEs (cf. []).

Definition . The solution y(t,ψ) to SDDEs (.) is said to be almost surely exponentially
stable if there exists a constant η >  such that

lim sup
t→∞


t

log
∣∣y(t,ψ)

∣∣ ≤ –η a.s. (.)

for any initial data ψ ∈ Cb
F

([–τ , ];R).
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Definition . The solution Yn to numerical scheme (.) is said to be almost surely ex-
ponentially stable if there exists a constant γ >  such that

lim sup
n→∞


n�t

log |Yn| ≤ –γ a.s. (.)

for any bounded variables ψ(ϑ�t) when ϑ�t ∈ [–τ , ].

For the purpose of stability, we assume that f (, ) = g(, ) = , which implies that (.)
admits the equilibrium solution y(t) =  corresponding to the initial condition ψ(t) = 
for t ∈ [–τ , ]. As a standing hypothesis, we shall impose the following local Lipschitz
condition (cf. []) on the coefficients f and g .

(A) For each integer D, there exists a positive constant KD such that, for all
y, y, z, z ∈ R with |y| ∨ |y| ∨ |z| ∨ |z| ≤ D,
|f (y, z) – f (y, z)| ∨ |g(y, z) – g(y, z)| ≤ KD(|y – y| + |z – z|), where ∨ is
the maximal operator.

In what follows we introduce the result of almost sure stability of SDDEs (.). The proof
of the following lemma can be found in [].

Lemma . Let Assumptions (A) hold. Assume that there are four nonnegative constants
λ, . . . ,λ such that

yf (y, ) ≤ –λ|y|,
∣
∣f (y, z) – f (y, )

∣
∣ ≤ λ|z|,

∣
∣g(y, z)

∣
∣ ≤ λ|y| + λ|z|

for y, z ∈R. If

λ > λ + λ + λ,

then the trivial solution of (.) is almost surely exponentially stable.

To explain our idea, we cite the discrete semimartingale convergence theorem as follows
(see also []).

Theorem . Let {Aj}, {Uj} be two sequences of nonnegative random variables such that
both Aj and Uj are Fj–-measurable for j = , , . . . , and A = U =  a.s. Let Mj be a real-
value local martingale with M =  a.s. Let ζ be a nonnegative F-measurable random
variable. Assume that {Xj} is a nonnegative semimartingale with the Doob-Mayer decom-
position

Xj = ζ + Aj – Uj + Mj.

If limj→+∞ Aj < +∞ a.s. then for almost all ω ∈ �,

lim
j→+∞ Xj < +∞ and lim

j→+∞ Uj < +∞.
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3 Almost sure asymptotic exponential stability of numerical solution
Consider the linear SDDE

dy(t) =
(
ay(t) + dy(t – τ )

)
dt +

(
by(t) + cy(t – τ )

)
dw(t). (.)

It seems that the stability of approximate solutions to (.) using Runge-Kutta type meth-
ods is still an open problem. Here we consider the almost sure stability of the linear equa-
tion

dy(t) = ay(t) dt +
(
by(t) + cy(t – τ )

)
dw(t), (.)

which is the same test model as []. In this section, our aim is to examine how the S-ROCK
method can reproduce the almost sure exponential stability of the exact solution of (.).
By applying Lemma ., the exact solution of (.) is almost surely exponentially stable
when a < –(b + c). Now we give a main result of the almost sure stability of the approxi-
mate solution (.).

Theorem . Suppose that the conditions of Lemma . are satisfied. Then the approxi-
mate solution (.) applied to test model (.) is almost surely exponentially stable if the
step size �t satisfies

[
Tν

(
 +

a�t
ν

)]

+ �t
(
b + c)

(
 + α

a�t
ν

)[
Tν–

(
 +

a�t
ν

)]

< , (.)

where Tν(x) is defined as a Chebyshev polynomial of the first kind of degree ν .

Proof Applying (.) to test model (.), we have K ()
n = T( + a�t

ν )Yn and K ()
n = T( +

a�t
ν )Yn. Next, by the three-term recurrence relation for Chebyshev polynomials, it is easy

to prove that

K (i)
n = Ti–

(
 +

a�t
ν

)
Yn (.)

for i = , . . . ,ν – . Then, from (.), we have

K (ν)
n = 

�t
ν aK (ν–)

n + K (ν–)
n – K (ν–)

n + Jnα
[
bK (ν–)

n + cZ(ν–)
n

]

= 
(

 +
a�t
ν

)
Tν–

(
 +

a�t
ν

)
Yn – Tν–

(
 +

a�t
ν

)
Yn + JnαbTν–

(
 +

a�t
ν

)
Yn

+ JnαcZ(ν–)
n

= Tν–

(
 +

a�t
ν

)
Yn + Jnα

[
bTν–

(
 +

a�t
ν

)
Yn + cZ(ν–)

n

]
.

Similarly, we have

Yn+ = 
(

 +
a�t
ν

)
K (ν)

n – K (ν–)
n + Jn( – α)

[
bK (ν–)

n + cZ(ν–)
n

]

= Tν

(
 +

a�t
ν

)
Yn + Jn

(
 + 

a�t
ν α

)[
bTν–

(
 +

a�t
ν

)
Yn + cZ(ν–)

n

]
.
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Note that

|Yn+| = |Yn| +
{[

Tν

(
 +

a�t
ν

)]

– 
}
|Yn|

+
(
J
n – �t

)
(

 + 
a�t
ν α

)[
bTν–

(
 +

a�t
ν

)
Yn + cZ(ν–)

n

]

+ �t
(

 + 
a�t
ν α

)[
bTν–

(
 +

a�t
ν

)
Yn + cZ(ν–)

n

]

+ Tν

(
 +

a�t
ν

)(
 + 

a�t
ν α

)[
bTν–

(
 +

a�t
ν

)
Yn + cZ(ν–)

n

]
YnJn

≤ |Yn| +
{[

Tν

(
 +

a�t
ν

)]

– 
}
|Yn| + Mn

+ �t
(

 + 
a�t
ν α

){[
bTν–

(
 +

a�t
ν

)
Yn

]

+
[
cZ(ν–)

n
]

}
, (.)

where Mn = (J
n – �t)( +  a�t

ν α)[bTν–( + a�t
ν )Yn + cZ(ν–)

n ] + Tν( + a�t
ν )( +  a�t

ν α) ×
[bTν–( + a�t

ν )Yn + cZ(ν–)
n ]YnJn.

For any positive constant C > , we have

C(�+)�t|Y�+| – C��t|Y�| = C(�+)�t(|Y�+| – |Y�|
)

+
(
C(�+)�t – C��t)|Y�|. (.)

Therefore, by (.) and (.), we obtain

C(�+)�t|Y�+| – C��t|Y�|

≤ C(�+)�t
{

–C–�t +
[

Tν

(
 +

a�t
ν

)]}
|Y�| + C(�+)�tM�

+ C(�+)�tb�t
(

 + 
a�t
ν α

)[
Tν–

(
 +

a�t
ν

)]

|Y�|

+ C(�+)�tc�t
(

 + 
a�t
ν α

)∣∣Z(ν–)
�

∣∣ (.)

for any nonnegative integer �. Summing up both sides of inequality (.) from � =  to
n –  (n ≥ ), we have

Cn�t|Yn| ≤ |Y| +
n–∑

�=

C(�+)�tM� +
{

–C–�t +
[

Tν

(
 +

a�t
ν

)]

+ b�t
(

 + 
a�t
ν α

)[
Tν–

(
 +

a�t
ν

)]} n–∑

�=

C(�+)�t|Y�|

+ c�t
(

 + 
a�t
ν α

) n–∑

�=

C(�+)�t∣∣Z(ν–)
�

∣
∣. (.)
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Let Mn =
∑n–

�= C(�+)�tM�. Note that the expectation values E(J
n– – �t) = , E(Jn–) = ,

moreover, Yn– and Z(ν–)
n– are F(n–)�t-measurable, then we have

E[Mn|F(n–)�t] = Mn– + Cn�tE[Mn–|F(n–)�t]

= Mn–,

which implies that Mn is a martingale with M = .
When tn ≤ τ , from (.) and (.), we have

Cn�t|Yn| ≤ |Y| + Mn +
{

–C–�t +
[

Tν

(
 +

a�t
ν

)]

+ b�t
(

 + 
a�t
ν α

)[
Tν–

(
 +

a�t
ν

)]} n–∑

�=

C(�+)�t|Y�|

+ c�t
(

 + 
a�t
ν α

) n–∑

�=

C(�+)�tψ(t� + βν–�t – τ ). (.)

According to Theorem ., we denote the right side of inequality (.) by Xn. Then, let
ζ = |Y| + c�t( +  a�t

ν α) ∑n–
�= C(�+)�tψ(t� + βν–�t – τ ), Un = , and

An = H(C)
n–∑

�=

C(�+)�t|Y�|,

where H(C) = –C–�t + [Tν( + a�t
ν )] + b�t( +  a�t

ν α)[Tν–( + a�t
ν )]. There exists a

unique C∗ >  such that H(C∗) =  if

[
Tν

(
 +

a�t
ν

)]

+ b�t
(

 + 
a�t
ν α

)[
Tν–

(
 +

a�t
ν

)]

< . (.)

Applying Theorem ., we therefore have limn→∞ Xn < +∞, which means

lim
n→∞

(
C∗)n�t|Yn| < +∞. (.)

When tn > τ , that is, n > m, we have

n–∑

�=

C(�+)�t∣∣Z(ν–)
�

∣
∣ =

m–∑

�=

C(�+)�tψ(t� + βν–�t – τ )

+
n–∑

�=

C(�+m+)�t∣∣K (ν–)
�

∣
∣ –

n–∑

�=n–m

C(�+m+)�t∣∣K (ν–)
�

∣
∣.

Then, by using (.) and (.), we have

Cn�t|Yn| + c�t
(

 + 
a�t
ν α

) n–∑

�=n–m

C(�+m+)�t∣∣K (ν–)
�

∣∣ ≤ Xn (.)
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and

Xn = ζ + Mn + H(C)
n–∑

�=

C(�+)�t|Y�|, (.)

where ζ = |Y| + c�t( +  a�t
ν α) ∑m–

�= C(�+)�tψ(t� + βν–�t – τ ), H(C) = H(C) +
c�t( +  a�t

ν α)Cm�t[Tν–( + a�t
ν )].

Note that

H() = – +
[

Tν

(
 +

a�t
ν

)]

+ �t
(
b + c)

(
 + 

a�t
ν α

)[
Tν–

(
 +

a�t
ν

)]

,

H ′
(C) = �tC(–�t–) + cm(�t)

(
 + 

a�t
ν α

)[
Tν–

(
 +

a�t
ν

)]

C(m�t–) > 

for any C > , and H(∞) > .
Obviously, the condition (.) yields H() < , which implies that there exists a unique

C∗ >  such that H(C∗) = . We therefore have limn→∞ Xn < +∞ with Theorem ., which
means

lim
n→∞

(
C∗)n�t|Yn| ≤ lim

n→∞ Xn < +∞ (.)

by (.). Choose the γ > , such that C∗ = eγ and hence

lim
n→∞ eγ n�t|Yn| < +∞. (.)

We therefore obtain

lim
n→∞


n�t

log |Yn| ≤ –
γ


, a.s. (.)

as required.
Finally, (.) also implies (.). This completes the proof of Theorem .. �

Next, we state how to choose a parameter α and the stage number ν to obtain almost
surely stable numerical solution based on Theorem ..

Corollary . Suppose that conditions of Lemma . are satisfied. The approximate solu-
tion (.) applied to test model (.) is almost surely exponentially stable if we choose the
parameter α = – ν

a�t and a�t satisfies

–ν < a�t ≤ –ν and Tν

(
 +

a�t
ν

)
�= ±,

where stage number ν ≥ .

Proof The inequality a�t ≤ –ν guarantees that – ν

a�t ∈ (, /], hence choosing α =
– ν

a�t satisfies the definition of the S-ROCK method and also simplifies the left hand side
of (.) into [Tν( + a�t

ν )]. Finally, [Tν( + a�t
ν )] <  if –ν < a�t <  and Tν( + a�t

ν ) �= ±
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such that the inequality (.) is valid. This completes the proof of Corollary . by using
Theorem .. �

Now we consider the case – < a�t < .
To guarantee the sufficient condition (.), ( +  a�t

ν α) should be as small as possible
such that (.) is valid. Therefore, it is a good choice to set α = / and a small ν because
( +  a�t

ν α) is a monotonically decreasing and continuous function of the parameter α on
[, /].
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