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Abstract
In this paper the Bogdanov-Takens (BT) bifurcation of an 2m coupled neurons
network model with multiple delays is studied, where one neuron is excitatory and
the next is inhibitory. When the origin of the model has a double zero eigenvalue, by
using center manifold reduction of delay differential equations (DDEs), the
second-order and third-order universal unfoldings of the normal forms are deduced,
respectively. Some bifurcation diagrams and numerical simulations are presented to
verify our main results.
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1 Introduction
By using the methods developed by the authors in [–], the codimension one and two
bifurcations for some neural network models with time delays have been studied; see [–
] for example and the references therein. But except the authors in [, ] who have
carried out the Hopf bifurcation of some models with n neurons, there are few codimen-
sion two bifurcation results about the neural network models with n neurons and more
delays. Recently, the BT bifurcation, Hopf-transcritical, and Hopf-pitchfork bifurcations
of the following model:
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have been studied by Yuan and Wei in []. Guo et al. in [] analyzed the fold and Hopf
bifurcations, fold-Hopf bifurcations and Hopf-Hopf bifurcations of system (.) with k = ,
g = g = f .

In the follow-up the authors in [] studied the stability and bifurcation of the following
four coupled model:

u̇(t) = –ku(t) + f
(
u(t – r)

)
+ g

(
u(t – τ)

)
,

u̇(t) = –ku(t) + f
(
u(t – r)

)
+ g

(
u(t – τ)

)
,

u̇(t) = –ku(t) + f
(
u(t – r)

)
+ g

(
u(t – τ)

)
,

u̇(t) = –ku(t) + f
(
u(t – r)

)
+ g

(
u(t – τ)

)
.

(.)

© 2015 Liu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-015-0646-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0646-9&domain=pdf
mailto:rqwang@shu.edu.cn


Liu et al. Advances in Difference Equations  (2015) 2015:334 Page 2 of 14

Fan et al. in [] considered the following coupled model of two neurons:

u̇(t) = –u(t) + a tanh
(
u(t – τv)
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(
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)
,

u̇(t) = –u(t) + a tanh
(
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)
– a tanh

(
u(t – τv)

)
,

(.)

the coupling strengths will change their signs. The authors developed the universal un-
folding of BT bifurcation with Z symmetry at the origin of the system (.) in the special
case of τv = , τ = τ = τ > , and a = a = b.

The relation of systems (.) and (.) motivates us to extend the system (.) involving
n neurons, i.e., the following system:

u̇(t) = –u(t) + af
(
u(t – τs)

)
– am,gm

(
um(t – τm)

)
,

. . . ,

u̇i(t) = –ui(t) + (–)i+afi
(
ui(t – τs)

)
+ (–)iai–,igi–

(
ui–(t – τi–)

)
, (.)

. . . ,

u̇m(t) = –um(t) – afm
(
um(t – τs)

)
+ am–,mgm–

(
um–(t – τm–)

)
,

where m is an integer, a >  is the feedback strength, τs is the feedback delay; τ, τ, . . . , τm

denote the connection delays, a, a, . . . , am–,m, am, represent the connection str-
engths. Each neuron comes with a delayed self-feedback and a delayed connection from
the other neuron, and one neuron is excitatory and the other inhibitory. As regards the
relations of each neuron one can see Figure .

For simplicity, we assume

(H) fi() = gi() = , f ′
i () = g ′

i() = , i = , , . . . , m.

The universal unfoldings about the BT bifurcation at the origin of system (.) will be
given. Therefore, our study is not trivial and our results are general.

The rest of this paper is organized as follows: in Section , the conditions under which
the origin of system (.) is a BT singularity are demonstrated; in Section , the second-
and third-order normal forms at the BT singularity of the coupled system are presented;
in Section , some bifurcation diagrams and numerical simulations are shown.

Figure 1 Architecture of the model with 2m
neurons, m is an integer.
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2 The existence of BT singularity
Since the origin is always the equilibrium of system (.), linearizing system (.) at the
origin yields

u̇(t) = –u(t) + au(t – τs) – am,un(t – τm),

. . . ,

u̇i(t) = –ui(t) + (–)i+aui(t – τs) + (–)iai–,iui–(t – τi–), (.)

. . . ,

u̇m(t) = –um(t) – aum(t – τs) + am–,mum–(t – τm–).

Then the corresponding characteristic equation is

F(λ) =
(
(λ + ) – δe–λτs

)m + (–)m+βme–mλτ = , (.)

where δ = a, βm = aaa · · ·am–,mam,, τ = τ+τ+···+τm
m .

By (.) we can obtain

F() = ( – δ)m + (–)m+βm,

F ′() = m( – δ)m–( + δτs) – (–)m+mτβ
m,

F ′′() = m(m – )( – δ)m–( + δτs) + m( – δ)m–( – δτ 
s
)

+ (–)m+mτ 
 βm.

(.)

Solving F() = , we have δ = β + , then by F ′() =  we have β = +τs
τ–τs

> , which implies
δ = +τ

τ–τs
and then

F ′′() = (–)m– m( + τs)m–(τ + τsτ +  + τs)
(τ – τs)m– �= .

To show that the origin of system (.) is a BT singularity, we should investigate the
conditions under which all the roots of (.), except λ = , have negative real parts.

Let δ = β + . First, when τs = τ = , solving (.) one can obtain λ =  and λ = –.
Second, when τs �= τ, we assume τs = , then (.) can be written as

F(λ) =
[
(λ + ) – (β + )

]m + (–)m+βme–mλτ = , (.)

if λ = iq (q > ) is a root of (.), then it needs (iq + ) – (β + ) = –βe–iqτ , i.e.,

–q – β + β cos(qτ) + i
(
q – β sin(qτ)

)
= ,

by separating the real and negative parts of the above equation and a simple computation
we have

{
cos(qτ) = β+q

β
,

sin(qτ) = q
β

.
(.)
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Hence, q should satisfy the equation q + β +  = , due to β > , a positive q does not
exist.

When τs �= , then λ = iw (w > ) is a root of (.) if and only if w satisfies the following
equation:

(iw + ) – (β + )e–iwτs = –βe–iwτ , (.)

then one can obtain

{
 – w = (β + ) cos(wτs) – β cos(wτ),
w = β sin(wτ) – (β + ) sin(wτs),

which yields

(
 – w) + w = (β + ) + β – β(β + ) cos

(
w(τ – τs)

)
. (.)

We rewrite (.) as

cos
(
w(τ – τs)

)
=

β(β + ) – w – w

β(β + )
. (.)

To investigate the existence of positive root of (.), we first consider the following equa-
tions:

cos
(
w(τ – τs)

)
= ,

β(β + ) – w – w

β(β + )
= ,

which, respectively, have the positive roots

w =
π

(τ – τs)
, w∗ =

√
– +

√
β + (β + ). (.)

It is easy to verify that (.) does not have a positive root w if w∗ < w and has a positive
root w̄ if w∗ ≥ w. To make this clear one can see Figure .

Together with the above discussion, we have the following lemma.

Lemma . Let (H) δ = +τ
τ–τs

, β = +τs
τ–τs

, τ > τs, w∗ < w. Then all the roots of system (.),
except λ = , have negative real parts, i.e., the origin of system (.) is a BT singularity,
where w = π

(τ–τs) , w∗ =
√

– +
√

β + (β + ).

3 Normal forms of BT bifurcation
From Lemma . we know that when (H) and (H) hold, then system (.) at the origin
will undergo a BT bifurcation. In the following, we will generalize the methods introduced
in [, ] to compute the second- and third-order normal forms of the BT bifurcation. For
simplicity, as the authors have done in [], we take a = am, = b and choose a and a

as the bifurcation parameters, i.e., we consider a = a + α and a = am, = b + α, where
α and α are all near (, ) and δ = a

 = +τ
τ–τs

, β = +τs
τ–τs

, βm = a
aa · · ·am–,ma

m, =
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Figure 2 The distribution of the roots of (2.8).

b
aa · · ·am–,m. Then system (.) becomes

u̇(t) = –u(t) + (a + α)f
(
u(t – τs)

)
– (b + α)gm

(
um(t – τm)

)
,

u̇(t) = –u(t) – (a + α)f
(
u(t – τs)

)
+ (b + α)g

(
u(t – τ)

)
,

. . . ,

u̇i(t) = –ui(t) + (–)i+(a + α)fi
(
ui(t – τs)

)
+ (–)iai–,igi–

(
ui–(t – τi–)

)
,

. . . ,

u̇m(t) = –um(t) – (a + α)fm
(
um(t – τs)

)
+ am–,mgm–

(
um–(t – τm–)

)
.

(.)

For simplicity, we rewrite system (.) as the following retarded functional differential
equation (FDE) with parameters in the phase space C = C([–τ, ]; Rn) []:

U̇(t) = L(α)Ut + G(Ut ,α), (.)

with ϕ = (ϕ,ϕ · · · ,ϕn)T ∈ C.
The operator L = L() has the form

L(ϕ) =
∫ 

–τ

dη(θ )ϕ(θ ) = Au(t) +
m∑

l=

Blu(t – τl) + Bm+u(t – τs).
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Define � to be the set of eigenvalues with zero real part, for a BT bifurcation, we have
� = {, }, using the formal adjoint theory to decompose the phase space of an FDE.
P denotes the generalized eigenspace associated with the eigenvalues in �, and P∗ is the
dual space of P. Then the phase space C can be decomposed as C = P ⊕ Q by �, where

Q =
{
φ ∈ C : 〈ψ ,φ〉 = 

}
.

Denote the dual bases of P and P∗ by � and � , respectively, satisfying 〈�(s),�(θ )〉 = I,
�̇ = �B and –�̇ = B� , with B =

(  
 

)
. Following similar methods to Lemma . in [], we

can obtain

�(θ ) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

 θ

φ φ + θφ

φ φ + θφ

· · · · · ·
φm, φn + θφm,

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

, �() =

(
ψ ψ · · · ψ,m

ψ ψ · · · ψ,m

)

,

where

φ =
b

 + a
, φ =

ba

( + a)(– + a)
, . . . ,

φi =
baa · · ·ai–,i

( + a) i
 (– + a) i

 –
(i is even),

φi =
baa · · ·ai–,i

( + a) i–
 (– + a) i–


(i is odd), . . . , φm, =

 + a

b
;

φ =
b[a(τs – τ) –  – τ]

( + a) , φ =
ba[a

(τs – τ – τ) +  + τ + τ]
( + a)(– + a) ,

. . . ,

φi =
baa · · ·ai–,i[a

((i – )τs –
∑i–

l= τl) – a(τs + ) + i –  +
∑i–

l= τl]

( + a) i
 +(– + a) i



(i is even),

φi =
baa · · ·ai–,i[a

((i – )τs –
∑i–

l= τl) + i –  +
∑i–

l= τl]

( + a) i+
 (– + a) i+


(i is odd),

. . . ,

φm, =
a(τm – τs) – ( + τm)

b
; ψ =

 + a

ξ
, ξ = mτs + ( + τs)

m∑

l=

τl +
m


,

ψ = –
(– + a)ψ

b
, ψ =

( + a)(– + a)ψ

ba
, . . . ,

ψi = –
( + a) i

 –(– + a) i
 ψ

baa · · · , ai–,i
(i is even),

ψi =
( + a) i–

 (– + a) i–
 ψ

baa · · ·ai–,i
(i is odd), . . . ,
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ψ,m =
bψ

–( + a)
,

ψ =
 + a

mξ 

[

aξ

( m∑

l=

τl – mτs

)

–
m∑

l=

τl

( m∑

l=

τl + m

)

– τs

( m∑

l=

τl + m

)( m∑

l=

τl – mτs

)]

,

ψ = –
ψ(– + a) + ψ[a(τs – τ) –  – τ]

b
,

ψ =
ψ(– + a)( + a) + ψ[a

(τ + τ – τs) –  – τ – τ]
ba

,

. . . ,

ψi = –
ψ( + a) i–

 (– + a) i


baa · · ·ai–,i
–

ψ( + a) i–
 (– + a) i–



baa · · ·ai–,i

×
[

a


( i–∑

l=

τl – (i – )τs

)

– a(τs + ) – (i – ) –
i–∑

l=

τl

]

(i is even),

ψi =
ψ( + a) i–

 (– + a) i–


baa · · ·ai–,i
+

ψ( + a) i–
 (– + a) i–



baa · · ·ai–,i

×
[

a


( i–∑

l=

τl – (i – )τs

)

– (i – ) –
i–∑

l=

τl

]

(i is odd),

. . . ,

ψ,m = –
ψ( + a)m–(– + a)m

baa · · ·am–,m
–

ψ( + a)m–(– + a)m–

baa · · ·am–,m

×
[

a


(m–∑

l=

τl – (m – )τs

)

– a(τs + ) – (m – ) –
m–∑

l=

τl

]

.

The representation of �(s) is given in the Appendix. Denote the Taylor expansion of
F̂(ut ,α) with respect to ut and α in system (.) as F̂(ut ,α) =

∑
j≥


j! F̂j(ut ,α), we have




F̂(ut ,α) = Au(t)α + Au(t)α +
m+∑

l=

[
Blu(t – τl)α + Blu(t – τl)α

]

+
m+∑

i=

∑

≤k≤j≤m+

Dikjui(t – τk)u(t – τj), (.)

where τ = .
Using (.) and the formulas obtained in [], we deduce the second order of the BT

bifurcation normal form as follows.

Theorem . Let (H) and (H) hold. Then the delay differential system (.) can be re-
duced to the following two-dimensional system of ODE on the center manifold at (ut ,α) =
(, ):

ż = z,

ż = kz + kz + ηz
 + ηzz + h.o.t.,

(.)
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where

k = ψ


(

A +
m+∑

l=

Bl

)

φ
 α + ψ



(

A +
m+∑

l=

Bl

)

φ
 α,

k =

{

ψ


(

A +
m+∑

l=

Bl

)

φ
 + ψ



[(

A +
m+∑

l=

Bl

)

φ
 –

m+∑

l=

τlBlφ



]}

α

+

{

ψ


(

A +
m+∑

l=

Bl

)

φ
 + ψ



[(

A +
m+∑

l=

Bl

)

φ
 –

m+∑

l=

τlBlφ



]}

α,

η = ψ


(m+∑

i=

∑

≤k≤j≤m+

Dikjφ

 φ

i

)

,

η = ψ


(m+∑

i=

∑

≤k≤j≤m

Dikjφ

 φ

i

)

+ ψ


{m+∑

i=

∑

≤k≤j≤m+

Dikj
(
φ

 φ
i + φ

 φ
i
)

–
m+∑

i=

∑

≤k≤j≤m+

(τk + τj)Dikjφ

 φ

i

}

.

If η �=  and η �=  hold, the bifurcation curves related to the perturbation parameters
α, α are as follows [, , ]:

TB: k =  (transcritical bifurcation occurs),
H: k = , k <  (Hopf bifurcation from the zero equilibrium point),
H: k = η

η
k, k >  (a Hopf bifurcation from the non-trivial equilibrium),

H
c : k = η

η
k, k <  (a homoclinic bifurcation with the zero equilibrium point),

H
c : k = η

η
k, k >  (a homoclinic bifurcation from the non-trivial equilibrium).

A numerical example is given in Section  (see Figures -).
If f ′′

i () = g ′′
i () = , then η = η = , system (.) is degenerate. To determine the dy-

namics near BT bifurcation we need to calculate the higher-order normal form. As [, ]
we have

g
(z, ,μ) =

(
I – P

I,
)
f̃ 
 (z, ,μ) = ProjIm(M

)c f̃ 
 (z, ,μ), (.)

where

f̃ 
 (z, ,μ) = f 

 (z, ,μ) +


[(

Dzf 

)
(z, ,μ)U

(z,μ) +
(
Dyf 


)
(z, ,μ)U

 (z,μ)

–
(
DzU


)
(z,μ)g

(z, ,μ)
]
.

It is easy to obtain

f 
 (z, ,μ) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

ψ[af ′′′
 ϕ

 (–τs) – bg ′′′
mϕ

m(–τm)]
+ ψ[–af ′′′

 ϕ
 (–τs) + bg ′′′

 ϕ
 (–τ)]

+
∑m

i= ψi[(–)i+af ′′′
i ϕ

i (–τs) + (–)iai–,ig ′′′
i–ϕ


i–(–τi–)]

ψ[af ′′′
 ϕ

 (–τs) – am,g ′′′
mϕ

m(–τm)]
+ ψ[–af ′′′

 ϕ
 (–τs) + bg ′′′

 ϕ
 (–τ)]

+
∑m

i= ψi[(–)i+af ′′′
i ϕ

i (–τs) + (–)iai–,ig ′′′
i–ϕ


i–(–τi–)]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

, (.)
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where f ′′′
i = f ′′′

i () and g ′′′
i = g ′′′

i (), i = , , , . . . , m, ϕ(θ ) = z + θz, ϕj(θ ) = φjz + (φj +
θφj)z, j = , , . . . , m.

To obtain the third-order normal form, one needs the decomposition

V

(
R) = Im

(
M


) ⊕ Im

(
M


)c.

Then the canonical basis in V
X(R) has  elements: ((z,α), )T , (, (z,α))T , and for the

bases of Im(M
) and Im(M

)c one can refer to []. By the definition of ProjIm(M
)c we have

ProjIm(M
)c p =

{
p, p ∈ Im(M

)c,
, p ∈ Im(M

),
ProjIm(M

)c

(
z





)

=

(


z
 z

)

,

ProjIm(M
)c

(
zα


i



)

=

(


zα

i

)

, ProjIm(M
)c

(
zαα



)

=

(


ααz

)

,

ProjIm(M
)c

(
z

αi



)

=

(


zzαi

)

.

Together with (.) and by [, ] the third-order normal form of system (.) can be
written as

ż = z,

ż = kz + kz + cz
 + dz

 z + h.o.t.,
(.)

where k and k are the same as in (.), and

c =



[

ψ
(
af ′′′

 – bg ′′′
mφ

m,
)

+ ψ
(
bg ′′′

 – af ′′′
 φ


)

+
m∑

i=

ψi
(
(–)i+af ′′′

i φ
i + (–)iai–,ig ′′′

i–φ

i–,

)
]

,

d =



{

af ′′′


(
ψ – ψτs – ψφ


 – φ

(φ – τsφ)ψ
)

+ bg ′′′
 (ψ – τψ)

– bg ′′′
mφ

m,
(
ψφm, + (φm, – τmφm,)ψ

)

+
m∑

i=

[
(–)i+af ′′′

 φ
i
(
ψiφi + ψi(φi – τsφi)

)

+ (–)iai–,ig ′′′
i–φ


i–,

(
ψiφi–, + (φi–, – τi–φi–,)ψi

)]
}

.

Let t̄ = – |c|
d t, w = d√|c| z, w = – d

|c|√|c| z. Then system (.) becomes

ẇ = w,

ẇ = vw + vw + sw
 – w

 w + h.o.t.,
(.)
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where v = ( d
c )k, v = – d

|c| k, s = sgn(c). From [] we know the bifurcation of system (.)
is related to the sign of s. If s = , we have

S: v = , v ∈ R (a pitchfork bifurcation),
H : v = , v <  (a Hopf bifurcation at the trivial equilibrium),
T : v = – 

 v, v <  (a heteroclinic bifurcation).
In Section , we show a numerical example under the case of s =  (see Figure ).
If s = –, we have

S: v = , v ∈ R (a pitchfork bifurcation),
H : v = v, v >  (a Hopf bifurcation at the non-trivial equilibrium),
T : v = 

 v, v >  (a homoclinic bifurcation),
Hd : v = dv, v > , d ≈ . (a double cycle bifurcation).

4 Numerical simulation
To verify our main results in the previous sections, in this section, we choose system pa-
rameters and functions fi(ui), gi(ui) satisfying the conditions obtained in Sections  and 
and give some numerical examples and simulations.

First, we take n = , fi(ui) = (+ε)(eui –)
eui +ε

, gi(ui) = tanh(diui)
di

[], i = , , ε = ., d = ,
d = , τ = , τ =  = τ = , a, = a, =

√


 , a = 
√


 . One can verify that all the con-

ditions in (H) and (H) are satisfied. Moreover, fi() = , f ′
i () = , f ′′

i () �= , gi() = ,
g ′

i() = , i = , . Thus, the coefficients in (.) are k = .α – .α, k =
–.α + .α, η = ., η = .. The
corresponding bifurcation curves of system (.) with m =  is obtained. (See Figure .)

If we take (α,α) = (–., –.) and initial conditions (u(), u()) = (., .),
then, in Figure (a), one can see that the equilibrium (, ) is a locally stable focus. How-
ever, when (α,α) = (–., .), the origin loses its stability, and a periodic solution
is bifurcated from the origin (see Figure (b)).

Under initial values (u(), u()) = (–., –.), if we take parameters (α,α) =
(., .), then system (.) has a locally stable non-trivial equilibrium which, how-

Figure 3 The bifurcation set and phase portraits for (3.4).
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Figure 4 The Hopf bifurcation from the zero equilibrium. (a) The time series with parameters
(α1,α2) = (–0.01, –0.001) and initial conditions (u1(0),u2(0)) = (0.001, 0.001). (b) The time series with
parameters (α1,α2) = (–0.01, 0.007935) and initial conditions (u1(0),u2(0)) = (0.001, 0.001).

Figure 5 The Hopf bifurcation from the non-trivial equilibrium. (a) The time series with parameters
(α1,α2) = (0.01, 0.000053) and initial conditions (u1(0),u2(0)) = (–0.02, –0.00001). (b) The time series with
parameters (α1,α2) = (0.01, 0.006053) and initial conditions (u1(0),u2(0)) = (–0.02, –0.00001).

ever, becomes unstable when the parameters (α,α) cross the Hopf bifurcation curve H

to another side. One can see a periodic solution is bifurcated from the non-trivial equilib-
rium as shown in Figure .

Second, when f ′′
i () = g ′′

i () = , we also give an example with m =  where τ = τ =
τ = τ = , τs = , a = ., a =

√


 , a =
√


 , a =

√


 , a =
√


 , fi(ui) = gi(ui) = tanh(ui),

i = , , , . One can verify s = , thus, with the parameters α and α changing in the small
neighborhood of (, ), system (.) can undergo a pitchfork bifurcation, a Hopf bifurca-
tion, and a heteroclinic bifurcation. The corresponding bifurcation diagram is exhibited
in the parameter plane (α,α) (see Figure ).

It can be seen that when (α,α) = (–., –.), three trajectory curves with differ-
ent initial values consistently converge to the origin (, , , ), i.e., the zero equilibrium
is a locally asymptotically stable focus under the given parameters α and α. Keeping the
initial conditions fixed, we move the perturbation parameter (α,α) until they across the
pitchfork bifurcation curve S to another side, then the origin becomes unstable. Simulta-
neously, two local stable non-zero equilibria are bifurcated from the origin, which leads to
system (.) undergoing a pitchfork bifurcation. In Figure , we see that system (.) has
two local stable foci when (α,α) = (–., –.).
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Figure 6 The bifurcation set and phase portraits
for (3.7) with m = 2.

Figure 7 Pitchfork bifurcation is shown with initial values (u1(0), u2(0), u3(0), u4(0)) = (0.00053, 0.004,
0.0002, 0.0004) (green curve), (–0.00053, –0.004, –0.0002, –0.0004) (blue curve), (0.5, 0.4, 0.3, 0.4) (red
curve). (a) The time series when (α1,α2) = (–0.001, –0.001). (b) The time series when
(α1,α2) = (–0.001, –0.006).

Figure 8 Hopf bifurcation from the origin with initial values (u1(0), u2(0), u3(0), u4(0)) = (0.00053,
0.0004, 0.0002, 0.0004) (blue curve), (–0.153, –0.04, –0.02, –0.04) (green curve), and parameters
(α1,α2) = (–0.001, 0.005). (a) The phase portrait in the plane (u4,u1). (b) The time series in the plane (t,u1).

Above the line S, we let (α,α) pass the Hopf bifurcation curve H , and take (α,α) =
(–., .), then the zero equilibrium loses stability, which yields a stable periodic
solution as shown in Figure .

When the parameters (α,α) are located under the bifurcation of S+, and near S+, all
solutions will approach the outer stable periodic solution excluding equilibria and the sta-
ble manifold of the trivial equilibrium (see Figure (a)). However, when (α,α) are chosen
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Figure 9 Initial values (u1(0), u2(0), u3(0), u4(0)) = (0.00053, 0.004, 0.0002, 0.0004) (blue curve),
(0.00053, 0.004, 0.0002, 0.0004) (green curve), (0.5, 0.4, 0.05, 0.4) (red curve). (a) (α1,α2) = (0.001, 0.002).
(b) (α1,α2) = (0.001, 0.0018).

at the upper-left side of the curve S, then the solutions of system (.) are attracted to the
corresponding non-zero equilibria if the initial conditions are close to one of the two non-
zero equilibria (see the green and blue curves in Figure (b)). But if the initial conditions
are chosen sufficiently far from the two non-zero equilibria, then the solutions approach
the outer stable periodic solution (see the red curve in Figure ).

Appendix
The bases of P and its dual space P∗ have the following representations:

P = span�, �(θ ) =
(
φ(θ ),φ(θ )

)
,

P∗ = span� , �(s) = col
(
ψ(s),ψ(s)

)
,

where φ(θ ) = φ
 ∈ Rn\{}, φ(θ ) = φ

 + φ
 θ , φ

 ∈ Rn, and ψ(s) = ψ
 ∈ Rn∗\{}, ψ(s) =

ψ
 – sψ

 , ψ
 ∈ Rn∗, which satisfy

()

(

A +
m+∑

l=

Bl

)

φ
 = ,

()

(

A +
m+∑

l=

Bl

)

φ
 =

(m+∑

l=

τlBl + I

)

φ
 ,

() ψ


(

A +
m+∑

l=

Bl

)

= ,

() ψ


(

A +
m+∑

l=

Bl

)

= ψ


(m+∑

l=

τlBl + I

)

,

() ψ
 φ

 + ψ


m+∑

l=

τlBlφ

 –



ψ



m+∑

l=

τ 
l Blφ


 = ,

() ψ
 φ

 + ψ


m+∑

l=

τlBlφ

 –



ψ



m+∑

l=

τ 
l Blφ




–


ψ



m+∑

l=

τ 
l Blφ


 +




ψ


m+∑

l=

τ 
l Blφ


 = .
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