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Abstract
This paper studies the existence of solutions for two boundary value problems for the
fractional p-Laplacian equation. Under certain nonlinear growth conditions of the
nonlinearity, two new existence results are obtained by using Schaefer’s fixed point
theorem.
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1 Introduction
The fractional calculus is a generalization of the ordinary differentiation and integration
on an arbitrary order that can be noninteger. In the last two decades, the theory of frac-
tional calculus has gained importance and popularity due to its wide range of applications
in varied fields of sciences and engineering. In [–], the applications are mentioned to
fluid flow, rheology, dynamical processes in self-similar and porous structures, electrical
networks, control theory of dynamical systems, viscoelasticity, electrochemistry of corro-
sion, chemical physics, optics and signal processing, and so on. Recently, many important
results about the fractional differential equations have been given. For example, for frac-
tional initial value problems, the existence and multiplicity of solutions were discussed in
[, –]. In addition, for fractional boundary value problems (BVPs for short), Agarwal et
al. (see []) considered a two-point BVP at nonresonance, and Bai (see []) considered
an m-point BVP at resonance. For more papers on the fractional BVPs, see [–] and
the references therein.

The turbulent flow in a porous medium is a fundamental mechanics problem. For study-
ing this type of problems, Leibenson (see []) introduced the p-Laplacian equation as
follows:

(
φp

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
, (.)

where φp(s) = |s|p–s, p > . Obviously, φp is invertible and its inverse operator is φq, where
q >  is a constant such that /p + /q = . In the past few decades, many important results
about equation (.) with certain boundary value conditions have been obtained. We refer
the readers to [–] and the references cited therein.
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Motivated by the works mentioned previously, in this paper, we investigate the existence
of solutions for the fractional p-Laplacian equation of the form

Dβ

+φp
(
Dα

+ x(t)
)

= f
(
t, x(t), Dα

+ x(t)
)
, t ∈ [, ] (.)

subject to the boundary value conditions either

Dα
+ x() = x() =  (.)

or

x() = x() = , (.)

where  < α,β ≤ , Dα
+ is a Caputo fractional derivative, and f : [, ] ×R

 →R is contin-
uous. Note that the nonlinear operator Dβ

+φp(Dα
+ ) reduces to the linear operator Dβ

+ Dα
+

when p =  and the additive index law

Dβ

+ Dα
+ u(t) = Dα+β

+ u(t)

holds under some reasonable constraints on the function u (see []).
The rest of this paper is organized as follows. Section  contains some necessary nota-

tions, definitions and lemmas. In Section , based on Schaefer’s fixed point theorem, we
establish two theorems on the existence of solutions for BVP (.) (.) (Theorem .) and
BVP (.) (.) (Theorem .). Finally, in Section , an explicit example is given to illustrate
the main results.

2 Preliminaries
For convenience of the readers, we present here some necessary basic knowledge and def-
initions as regards the fractional calculus theory, which can be found, for instance, in [,
].

Definition . The Riemann-Liouville fractional integral operator of order α >  of a
function u : (, +∞) →R is given by

Iα
+ u(t) =


�(α)

∫ t


(t – s)α–u(s) ds,

provided that the right-hand side integral is pointwise defined on (, +∞).

Definition . The Caputo fractional derivative of order α >  of a continuous function
u : (, +∞) →R is given by

Dα
+ u(t) = In–α

+
dnu(t)

dtn

=


�(n – α)

∫ t


(t – s)n–α–u(n)(s) ds,

where n is the smallest integer greater than or equal to α, provided that the right-hand
side integral is pointwise defined on (, +∞).
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Lemma . (see []) Let α > . Assume that u, Dα
+ u ∈ L([, ],R). Then the following

equality holds:

Iα
+ Dα

+ u(t) = u(t) + c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , and n is the smallest integer greater than or equal to α.

Lemma . For fixed l ∈ C([, ],R), let us define

Gl(a) =
∫ 


( – s)α–φq

(
a + l(s)

)
ds,

then the equation Gl(a) =  has a unique solution ã(l), and the function ã : C[, ] → R is
continuous and sends bounded sets into bounded sets.

Proof The proof is similar to the proof of Proposition . in [], so we omit the details.
�

In this paper, we take Y = C([, ],R) with the norm ‖y‖ = maxt∈[,] |y(t)|, and X =
{x|x, Dα

+ x ∈ Y } with the norm ‖x‖X = max{‖x‖,‖Dα
+ x‖}. By means of the linear func-

tional analysis theory, we can prove that X is a Banach space.

3 Main results
In this section, two theorems on the existence of solutions for BVP (.) (.) and BVP
(.) (.) will be given under nonlinear growth restrictions of f .

As a consequence of Lemma ., we have the following results that are useful in what
follows.

Lemma . Given h ∈ Y , the unique solution of

{
Dβ

+φp(Dα
+ x(t)) = h(t), t ∈ [, ],

Dα
+ x() = x() = 

(.)

is

x(t) = Iα
+φq

(
Iβ

+ h
)
(t) + Ah(t)

=


�(α)

∫ t


(t – s)α–φq

(


�(β)

∫ s


(s – τ )β–h(τ ) dτ

)
ds + Ah(t),

where

Ah(t) = –Iα
+φq

(
Iβ

+ h
)
()

= –


�(α)

∫ 


( – s)α–φq

(


�(β)

∫ s


(s – τ )β–h(τ ) dτ

)
ds,

and φq is understood as the operator φq : Y → Y defined by φq(x)(t) = φq(x(t)).
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Proof Assume that x(t) satisfies the equation of BVP (.), then Lemma . implies

φp
(
Dα

+ x(t)
)

= c + Iβ

+ h(t), c ∈R.

From the boundary value condition Dα
+ x() = , one has c = . Thus, we have

x(t) = c + Iα
+φq

(
Iβ

+ h
)
(t), c ∈R.

By the condition x() = , we get

c = –Iα
+φq

(
Iβ

+ h
)
() = Ah(t).

The proof is completed. �

Define the operator K : X → X by

Kx(t)

= Iα
+φq

(
Iβ

+ Nf x
)
(t) + ANf x(t)

=


�(α)

∫ t


(t – s)α–φq

(


�(β)

∫ s


(s – τ )β–f

(
τ , x(τ ), Dα

+ x(τ )
)

dτ

)
ds

–


�(α)

∫ 


( – s)α–φq

(


�(β)

∫ s


(s – τ )β–f

(
τ , x(τ ), Dα

+ x(τ )
)

dτ

)
ds,

where Nf : X → Y is the Nemytskii operator defined by

Nf x(t) = f
(
t, x(t), Dα

+ x(t)
)
, ∀t ∈ [, ]. (.)

Clearly, the fixed points of K are the solutions of BVP (.) (.).

Lemma . Given h ∈ Y , the unique solution of

{
Dβ

+φp(Dα
+ x(t)) = h(t), t ∈ [, ],

x() = x() = 
(.)

is

x(t) = Iα
+φq

(
Iβ

+ h + Bh
)
(t)

=


�(α)

∫ t


(t – s)α–φq

(


�(β)

∫ s


(s – τ )β–h(τ ) dτ + Bh(s)

)
ds,

where

Bh(t) = –Iβ

+ h
(
η(h)

)

= –


�(β)

∫ η(h)



(
η(h) – s

)β–h(s) ds,

and η(h) ∈ (, ) is a unique constant dependent on h(t).
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Proof Assume that x(t) satisfies the equation of BVP (.), by Lemma ., we get

x(t) = c + Iα
+φq

(
a + Iβ

+ h
)
(t), a, c ∈R.

From the boundary value conditions x() = x() = , one has c =  and

∫ 


( – s)α–φq

(
a + Iβ

+ h(s)
)

ds = . (.)

Then, basing on Lemma ., we know equation (.) has a unique solution ã(Iβ

+ h). More-
over, by the integral mean value theorem, there exists a unique constant η(h) ∈ (, ) de-
pendent on h(t) such that φq (̃a(Iβ

+ h)+Iβ

+ h)(η(h)) = , which implies (̃a(Iβ

+ h)+Iβ

+ h)(η(h)) =
. Thus, we have

ã
(
Iβ

+ h
)

= –Iβ

+ h
(
η(h)

)
= Bh(t).

The proof is completed. �

Define the operator K : X → X by

Kx(t)

= Iα
+φq

(
Iβ

+ Nf x + BNf x
)
(t)

=


�(α)

∫ t


(t – s)α–φq

(


�(β)

∫ s


(s – τ )β–f

(
τ , x(τ ), Dα

+ x(τ )
)

dτ

–


�(β)

∫ η(x)



(
η(x) – τ

)β–f
(
τ , x(τ ), Dα

+ x(τ )
)

dτ

)
ds,

where η(x) ∈ (, ) is a unique constant dependent on x(t) and Nf is the Nemytskii operator
defined by (.). Clearly, the fixed points of K are the solutions of BVP (.) (.).

Our first result, based on Schaefer’s fixed point theorem and Lemma ., is stated as
follows.

Theorem . Let f : [, ] ×R
 →R be continuous. Assume that

(H) there exist nonnegative functions a, b, c ∈ Y such that

∣∣f (t, u, v)
∣∣ ≤ a(t) + b(t)|u|p– + c(t)|v|p–, ∀t ∈ [, ], (u, v) ∈R

.

Then BVP (.) (.) has at least one solution provided that

γ :=


�(β + )

[
p–‖b‖

(�(α + ))p– + ‖c‖

]
< . (.)

Proof The proof will be given in the following two steps.
Step : K : X → X is completely continuous.
By the definition of K, we obtain

Dα
+Kx(t) = φq

(
Iβ

+ Nf x
)
(t).
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Obviously, the operators K and Dα
+K are compositions of the continuous operators. So

K and Dα
+K are continuous in Y . Hence, K is a continuous operator.

Let 	 ⊂ X be an open bounded set, then K(	) and Dα
+K(	) are bounded. Moreover,

for ∀x ∈ 	, t ∈ [, ], there exists a constant T >  such that |Iβ

+ Nf x(t)| ≤ T . Thus, in view
of the Arzelà-Ascoli theorem, we need only to prove that K(	) ⊂ X is equicontinuous.

For  ≤ t < t ≤ , x ∈ 	, we have

∣
∣Kx(t) – Kx(t)

∣
∣

=


�(α)

∣∣
∣∣

∫ t


(t – s)α–φq

(
Iβ

+ Nf x(s)
)

ds –
∫ t


(t – s)α–φq

(
Iβ

+ Nf x(s)
)

ds
∣∣
∣∣

≤ Tq–

�(α)

{∫ t



[
(t – s)α– – (t – s)α–]ds +

∫ t

t

(t – s)α– ds
}

=
Tq–

�(α + )
[
tα
 – tα

 + (t – t)α
]
.

Since tα is uniformly continuous in [, ], we can obtain that K(	) ⊂ Y is equicontinuous.
A similar proof can show that Iβ

+ Nf (	) ⊂ Y is equicontinuous. This, together with the
uniform continuity of φq(s) on [–T , T], yields that Dα

+K(	) ⊂ Y is also equicontinuous.
Thus, we find that K : X → X is compact.

Step : A priori bounds.
Set

	 =
{

x ∈ X|x = λq–Kx,λ ∈ (, )
}

.

Now it remains to show that the set 	 is bounded.
By Lemma . and the boundary value condition x() = , one has

x(t) = Iα
+Dα

+ x(t) – Iα
+Dα

+ x(),

which together with

∣
∣Iα

+ Dα
+ x(t)

∣
∣ =


�(α)

∣∣
∣∣

∫ t


(t – s)α–Dα

+ x(s) ds
∣∣
∣∣

≤ 
�(α)

∥
∥Dα

+ x
∥
∥

 · 
α

tα

≤ 
�(α + )

∥∥Dα
+ x

∥∥
, ∀t ∈ [, ] (.)

yields

‖x‖ ≤ 
�(α + )

∥∥Dα
+ x

∥∥
. (.)

For x ∈ 	, we have

φp
(
Dα

+ x(t)
)

= λIβ

+ Nf x(t)

=
λ

�(β)

∫ t


(t – s)β–f

(
s, x(s), Dα

+ x(s)
)

ds.
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So, from (H), we obtain

∣∣φp
(
Dα

+ x(t)
)∣∣

≤ 
�(β)

∫ t


(t – s)β–(a(s) + b(s)

∣∣x(s)
∣∣p– + c(s)

∣∣Dα
+ x(s)

∣∣p–)ds

≤ 
�(β)

(‖a‖ + ‖b‖‖x‖p–
 + ‖c‖

∥∥Dα
+ x

∥∥p–


) · 
β

tβ

≤ 
�(β + )

(‖a‖ + ‖b‖‖x‖p–
 + ‖c‖

∥∥Dα
+ x

∥∥p–


)
, ∀t ∈ [, ],

which, together with |φp(Dα
+ x(t))| = |Dα

+ x(t)|p– and (.), yields

∥∥Dα
+ x

∥∥p–
 ≤ 

�(β + )

[
‖a‖ +

(
p–‖b‖

(�(α + ))p– + ‖c‖

)∥∥Dα
+ x

∥∥p–


]
.

Hence, in view of (.), we can get

∥∥Dα
+ x

∥∥
 ≤

[ ‖a‖

( – γ)�(β + )

]q–

:= M. (.)

Thus, from (.), one has

‖x‖ ≤ M

�(α + )
:= M. (.)

Therefore, combining (.) with (.), we have

‖x‖X = max
{‖x‖,

∥∥Dα
+ x

∥∥


}

≤ max{M, M}.

As a consequence of Schaefer’s fixed point theorem, we deduce that K has a fixed point
which is the solution of BVP (.) (.). The proof is completed. �

Our second result, based on Schaefer’s fixed point theorem and Lemma ., is stated as
follows.

Theorem . Let f : [, ] × R
 → R be continuous. Suppose (H) holds, then BVP (.)

(.) has at least one solution provided that

γ :=


�(β + )

[ ‖b‖

(�(α + ))p– + ‖c‖

]
< . (.)

Proof The proof of complete continuity ofK is similar to the proof of complete continuity
of K, so we omit the details.

Set

	 =
{

x ∈ X|x = λq–Kx,λ ∈ (, )
}

.
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From Lemma . and x() = , one has

x(t) = Iα
+Dα

+ x(t),

which together with (.) yields

‖x‖ ≤ 
�(α + )

∥
∥Dα

+ x
∥
∥

. (.)

Then, by the hypothesis (H) and (.), we obtain

∣∣Iβ

+ Nf x(t)
∣∣ ≤ 

�(β + )

[( ‖b‖

(�(α + ))p– + ‖c‖

)∥∥Dα
+ x

∥∥p–
 + ‖a‖

]
,

∀t ∈ [, ]. (.)

For x ∈ 	, we have

φp
(
Dα

+ x(t)
)

= λIβ

+ Nf x(t) – λIβ

+ Nf x
(
η(x)

)
, η(x) ∈ (, ),

which, together with |φp(Dα
+ x(t))| = |Dα

+ x(t)|p– and (.), yields

∥
∥Dα

+ x
∥
∥p–

 ≤ 
�(β + )

[
‖a‖ +

( ‖b‖

(�(α + ))p– + ‖c‖

)∥
∥Dα

+ x
∥
∥p–



]
.

Thus, in view of (.), we can get

∥∥Dα
+ x

∥∥
 ≤

[
‖a‖

( – γ)�(β + )

]q–

:= M. (.)

So, from (.), one has

‖x‖ ≤ M

�(α + )
:= M. (.)

Hence, combining (.) with (.), we obtain

‖x‖X ≤ max{M, M}.

Therefore, 	 is bounded.
As a consequence of Schaefer’s fixed point theorem, we deduce that K has a fixed point

which is the solution of BVP (.) (.). The proof is completed. �

4 An example
In this section, we give an example to illustrate our main results.

Example . Consider the following fractional p-Laplacian equation:

D


+φ

(
D



+ x(t)

)
= sin t +




x(t) + t cos
(
D



+ x(t)

)
, t ∈ [, ]. (.)
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Corresponding to equation (.), we get p = , α = /, β = / and

f (t, u, v) = sin t +



u + t cos v.

Choose a(t) = , b(t) = /, c(t) = . By a simple calculation, we obtain ‖b‖ = /, ‖c‖ = 
and

γ =


�( 
 + )

[


(�( 
 + ))

× 


+ 
]

< ,

γ =


�( 
 + )

[


(�( 
 + ))

× 


+ 
]

< .

Obviously, equation (.) subject to the boundary value conditions (.) (or (.)) satisfies
all assumptions of Theorem . (or Theorem .). Hence, BVP (.) (.) (or BVP (.)
(.)) has at least one solution.
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