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Abstract
In this paper, we study the permanence and the periodic solution of the periodic
predator-prey-mutualist system. It is well known that mutualist species can reduce
the capture rate of the predator species to the prey species. By further developing the
analysis technique of Teng, a set of conditions which ensure the permanence of the
system are obtained. In addition, sufficient conditions are derived for the existence of
positive periodic solutions to the system. An example together with its numerical
simulation shows the feasibility of the main results.
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1 Introduction
As was pointed out by Berryman [], the dynamic relationship between predator and prey
has long been and will continue to be one of the dominant themes in both ecology and
mathematical ecology due to its universal existence and importance. Already the predator-
prey model has been studied by several scholars [–]. For example, Das et al. [] inves-
tigated a three species ecosystem consisting of a prey, a predator, and a top predator. They
derived the criteria for local and global stability of all the eight equilibrium points by us-
ing a Routh-Hurwitz and Lyapunov function. Wu and Li [] studied the permanence and
global attractivity of the discrete predator-prey system with Hassell-Varley-Holling type
III functional response. Chen and Chen [] proposed a ratio-dependent predator-prey
model incorporating a prey refuge. They studied the global stability, limit cycle, and Hopf
bifurcation of the system.

Mutualism is one of the most important relationships in the real world, for instance,
ants prevent herbivores from feeding on plants (see []) and ants prevent predators from
feeding on aphids (see [, ]). As was pointed out by Murray []: ‘this area has not
been as widely studied as the others even though its importance is comparable to that of
predator-prey and competition interactions.’ To this end, Rai and Krawcewicz [] pro-
posed the following three species predator-prey-mutualist system:
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dz
dt

= z
(

–s +
cβx

 + my

)
,

where x(t), y(t), z(t) denote the densities of prey, mutualist and predator population at
any time t, respectively. They applied the equivariant degree method to study the Hopf
bifurcation phenomenon of the system.

In this paper, we will study the non-autonomous case of system (.), i.e.,

ẋ = x
(

a(t) – b(t)x –
c(t)z

d(t) + d(t)y

)
,

ẏ = y
(

a(t) –
y

d(t) + d(t)x

)
, (.)

ż = z
(

–a(t) +
c(t)x

d(t) + d(t)y

)
,

where x is the density of the prey at time t, y is the density of the mutualist and z is the
density of the predator at time t, respectively. ai(t) (i = , , ), dj(t) (j = , , , ), and ck(t)
(k = , ) are all continuously positive w-periodic functions. The assumption of periodicity
of the parameters is a way to incorporate the periodicity of the environment (e.g. seasonal
effects of weather condition, food supplies, temperature, mating habits, harvesting, etc.).
For this system, due to the lack of density restriction of the predator species, one could
not investigate the stability property of the system by constructing the suitable Lyapunov
function. Hence, to investigate the persistent property of the system has become one of
the most important topics, and we try to push forward this topic.

We arrange the rest of the paper as follows: In Section , we introduce one lemma and
state the main results of this paper. The results are proved in Section . In Section , a suit-
able example together with its numeric simulation is present to show the feasibility of
the main results. We end this paper by a briefly conclusion. For more works on the non-
autonomous predator-prey system, one could refer to [–] and the references cited
therein.

2 Statement of the main results
Let us first consider the logistic equation,

du(t)
dt

= u(t)
(
α(t) – β(t)u(t)

)
, (.)

where α(t) and β(t) are periodic continuous functions on R with common periodic w > .

Lemma . [] If β(t) ≥  for all t ∈ R and
∫ w

 β(t) dt > , then (.) has a unique nonneg-
ative w-periodic solution u∗(t) which is globally asymptotically stable, that is, u(t)–u∗(t) →
 as t → ∞ for any positive solution u(t) of (.). Moreover, if

∫ w
 α(t) dt > , then u∗(t) > 

for all t ∈ R and if
∫ w

 α(t) dt ≤  then u∗(t) ≡ .

Definition . System (.) is said to be permanent if there exist positive constants ηi,
Mi, i = , , , such that

η ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ M,
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η ≤ lim inf
t→∞ y(t) ≤ lim sup

t→∞
y(t) ≤ M,

η ≤ lim inf
t→∞ z(t) ≤ lim sup

t→∞
z(t) ≤ M

for any positive solution (x(t), y(t), z(t)) of system (.).

We first consider the following system:

u̇ = u
(
a(t) – b(t)u

)
, (.)

from Lemma ., (.) has a unique nonnegative w-periodic solution u(t) which is glob-
ally asymptotically stable.

Second, we consider the following system:

u̇ = u

(
a(t) –

u

d(t) + d(t)M∗

)
, (.)

where M∗ = max≤t≤w{u(t) + }, from Lemma ., (.) also has a unique nonnegative
w-periodic solution u(t) which is globally asymptotically stable.

As concerns the persistent property of the system (.), we have the following result.

Theorem . System (.) is permanent if
∫ w



(
–a(t) +

c(t)u(t)
d(t) + d(t)u(t)

)
dt >  (.)

holds, where u(t) and u(t) are the unique positive periodic solution of systems (.) and
(.), respectively.

As a direct corollary of Theorem  in [], from Theorem ., we have the following.

Corollary . Under the assumption that (.) holds, system (.) admits of at least one
positive w-periodic solution.

3 Proof of the main result
We need the following propositions to prove Theorem ..

Proposition . There exist positive constants M and M, such that

lim sup
t→∞

x(t) ≤ M, lim sup
t→∞

y(t) ≤ M (.)

for all solutions of system (.).

Proof Obviously, R
+ = {(x, y, z)|x ≥ , y ≥ , z ≥ } is a positively invariant set of system

(.). Given any solution (x(t), y(t), z(t)) of system (.), we have

ẋ ≤ x
(
a(t) – b(t)x

)
. (.)

By Lemma ., the auxiliary equation

u̇ = u
(
a(t) – b(t)u

)
(.)
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has a unique globally attractive positive w-periodic solution u(t). Let u(t) is the solution
of (.) with u() = x(), by the comparison theorem, we have

x(t) ≤ u(t), t ≥ . (.)

Moreover, from the global attractivity of u(t), for every given ε ( < ε < ), there exists a
T > , such that

∣∣u(t) – u(t)
∣∣ < ε, t ≥ T. (.)

Equation (.) combined with (.) leads to

x(t) < u(t) + ε, t > T. (.)

Let M = max≤t≤w{u(t) + ε}, we have

lim sup
t→∞

x(t) ≤ M. (.)

Since M∗ = max≤t≤w{u(t)+}, there exists a large enough T ≥ T such that for all t > T,
one has

x(t) < M∗. (.)

From (.), we have

ẏ ≤ y
(

a(t) –
y

d(t) + d(t)M∗

)
, t ≥ T. (.)

By Lemma ., the auxiliary equation

u̇ = u

(
a(t) –

u

d(t) + d(t)M∗

)
(.)

has a unique globally attractive positive w-periodic solution u(t). Similarly, we find that
there is a constant T > T such that

y(t) < u(t) + ε, t > T. (.)

Let M = max≤t≤w{u(t) + ε}, we have

lim sup
t→∞

y(t) ≤ M. (.)

This completes the proof of Proposition .. �

Proposition . There is a universal constant α >  such that

lim sup
t→∞

z(t) > α. (.)
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Proof If (.) holds, we can choose the constant ε >  such that

∫ w



(
–a(t) +

c(t)(u(t) – ε)
d(t) + d(t)(u(t) + ε)

)
dt > . (.)

For any constant α > , we consider the following equation:

dv

dt
= v(t)

(
a(t) –

c(t)α

d(t)
– b(t)v(t)

)
. (.)

Owing to
∫ w

 a(t) dt > ,
∫ w

 (a(t) – c(t)α

d(t) ) dt >  for small enough α > . By Lemma .,
(.) has a unique positive w-periodic solution v∗

α(t) which is globally asymptotically sta-
ble. Let v̄α(t) be the solution of (.) with initial condition v̄α() = u(), where u(t) is
the unique positive periodic solution of (.). Hence, for above ε, there exists a sufficiently
large T > T such that

∣∣v̄α(t) – v∗
α(t)

∣∣ <
ε


for t ≥ T.

By the continuity of the solution in the parameter, we have v̄α(t) → u(t) uniformly in
[T, T + w] as α → . Hence, for ε > , there exists a α = α(ε) >  such that

∣∣v̄α(t) – u(t)
∣∣ <

ε


for t ∈ [T, T + w],  < α < α.

So, we have

∣∣v∗
α(t) – u(t)

∣∣ <
ε


for t ∈ [T, T + w].

Note that v∗
α(t) and u(t) are all w-periodic, hence

∣∣v∗
α(t) – u(t)

∣∣ <
ε


for t ≥ ,  < α < α.

Choosing a constant α ( < α < α, α < ε), we have

v∗
α (t) ≥ u(t) –

ε


, t ≥ . (.)

If lim supt→∞ z(t) ≤ α, then there exists φ ∈ R
+ such that

lim sup
t→∞

z(t,φ) < α,

where (x(t,φ), y(t,φ), z(t,φ)) is the solution of system (.) with φ() = (φ(),φ(),
φ()) > . So, there exists T > T such that

z(t) < α < ε, t ≥ T. (.)

We have

ẋ ≥ x
(

a(t) –
c(t)α

d(t)
– b(t)x

)
for t ≥ T. (.)
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Let v(t) be the solution of (.) with α = α and v(T) = x(T), then

x(t) ≥ v(t), t ≥ T.

By the global asymptotic stability of v∗
α (t), for the given ε = ε

 , there exists T ≥ T, such
that

∣∣v(t) – v∗
α (t)

∣∣ <
ε


, t ≥ T.

So,

x(t) ≥ v(t) > v∗
α (t) –

ε


, t ≥ T,

and hence, by using (.), it follows that

x(t) > u(t) – ε, t ≥ T. (.)

From (.), there exists T ≥ T such that y(t) < u(t) + ε. Therefore, by using (.) and
(.), for t ≥ T it follows that

ż ≥ z(t)
(

–a(t) +
c(t)(u(t) – ε)

d(t) + d(t)(u(t) + ε)

)
.

Integrating the above inequality from T to t yields

z(t) ≥ z(T) exp
∫ t

T

(
–a(s) +

c(s)(u(s) – ε)
d(s) + d(s)(u(s) + ε)

)
ds.

Thus, from (.) it follows that z(t) → ∞ as t → ∞. This is a contradiction. This com-
pletes the proof of Proposition .. �

Proposition . There is a universal constant η >  such that

lim inf
t→∞ y(t) ≥ η. (.)

Proof From the second equation of system (.) it follows that

ẏ ≥ y
(

a(t) –
y

d(t)

)
, (.)

and we consider the following equation:

u̇ = u

(
a(t) –

u

d(t)

)
. (.)

By Lemma ., (.) has a unique positive w-periodic solution u(t). Similar to the anal-
ysis of (.)-(.), for ε enough small, without loss of generality, ε < min≤t≤w u(t), we
find that there is a constant T > T such that

y(t) ≥ u(t) – ε > , t > T. (.)
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Letting η = min≤t≤w{u(t) – ε}, we have

lim inf
t→∞ y(t) ≥ η. (.)

This completes the proof of Proposition .. �

Proposition . There is a universal constant η >  such that

lim inf
t→∞ z(t) ≥ η. (.)

Proof Suppose that (.) is not true, then there is a sequence {φm} ∈ R
+, such that

lim inf
t→∞ z(t,φm) <

α

m + 
, m = , , . . . . (.)

On the other hand, by Proposition ., we have

lim sup
t→∞

z(t,φm) > α, m = , , . . . . (.)

Hence, there are time sequences {sm
q } and {tm

q } satisfying

 < sm
 < tm

 < sm
 < tm

 < · · · < sm
q < tm

q < · · · ,

sm
q → +∞, tm

q → +∞ as q → +∞

and

z
(
sm

q ,φm
)

= α, z
(
tm
q ,φm

)
=

α

m + 
,

α

m + 
< z(t,φm) < α, t ∈ (

sm
q , tm

q
)
.

From the third equation of system (.) it follows that

ż ≥ –a(t)z. (.)

Obviously, by integrating (.) from sm
q to tm

q ,

z
(
tm
q ,φm

) ≥ z
(
sm

q ,φm
)

exp
∫ t(m)

q

s(m)
q

(
–a(t)

)
dt

or

∫ t(m)
q

s(m)
q

(
a(t)

)
dt ≥ ln(m + ).

Thus, from the boundedness of a(t), we have

t(m)
q – s(m)

q → +∞ as m → +∞. (.)
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By (.), there are constants P >  and γ > , such that, for any t ≥ P and a ≥ ,

∫ a+t

a

(
–a(s) +

c(s)(u(s) – ε)
d(s) + d(s)(u(s) + ε)

)
ds > γ . (.)

For any m, q, and t ∈ [s(m)
q , t(m)

q ], we have

ẋ(t,φm) ≥ x(t,φm)
(

a(t) –
c(t)α
d(t)

– b(t)x(t,φm)
)

. (.)

Let v(t) be the solution of (.) with the initial condition v(s(m)
q ) = α, then by (.), we

have x(t,φm) ≥ v(t) for all t ∈ [s(m)
q , t(m)

q ]. By the periodicity of (.), it follows that the
periodic solution v∗

α(t) is globally uniformly asymptotically stable. Hence, from (.), we
find that there is a constant T > P, and T is independent on any q and m, such that

v(t) ≥ u(t) – ε for all t ≥ T + s(m)
q .

By (.), there is a N >  such that t(m)
q > s(m)

q + T for all m ≥ N. Hence,

x(t,φm)u(t) – ε,

y(t,φm) < u(t) + ε for all t ∈ [
s(m)

q + T, t(m)
q

]
, m ≥ N.

Since

ż(t,φm) ≥ z(t,φm)
(

–a(t) +
c(t)(u(t) – ε)

d(t) + d(t)(u(t) + ε)

)

for all t ∈ [s(m)
q + T, t(m)

q ] and m ≥ N, by integrating from s(m)
q + T to t(m)

q , we obtain

z
(
t(m)
q ,φm

) ≥ z
(
s(m)

q + T,φm
)

× exp
∫ t(m)

q

s(m)
q +T

(
–a(t) +

c(t)(u(t) – ε)
d(t) + d(t)(u(t) + ε)

)
dt.

By (.), we have

α

m + 
≥ α

m + 
exp

∫ t(m)
q

s(m)
q +T

(
–a(t) +

c(t)(u(t) – ε)
d(t) + d(t)(u(t) + ε)

)
dt

>
α

m + 
,

which is a contradiction. This completes the proof of Proposition .. �

Proposition . There is a universal constant M >  such that

lim sup
t→∞

z(t) ≤ M. (.)
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Proof Choose the constant M >  and small enough ε such that

∫ w



(
a(t) –

c(t)M
d(t) + d(t)(M + ε)

)
dt < . (.)

We first prove that

lim inf
t→∞ z(t) ≤ M. (.)

If (.) is not true, then there is a T ≥ T such that z(t) > M and y(t) ≤ M + ε (ε is small
enough) for all t ≥ T. Since

ẋ ≤ x
(

a(t) –
c(t)M

d(t) + d(t)(M + ε)
– b(t)x

)
for all t ≥ T.

By Lemma . we easily obtain x(t) →  as t → ∞. Choose a constant  < ε < η such
that

∫ w



(
–a(t) +

c(t)ε

d(t) + d(t)(η – ε)

)
dt < . (.)

Then there is a T > T >  such that x(t) ≤ ε and y(t) > η – ε for all t ≥ T, and so

ż ≤ z
(

–a(t) +
c(t)ε

d(t) + d(t)(η – ε)

)
. (.)

Integrating the above inequality from T to t leads to

z(t) ≤ z(T) exp
∫ t

T

(
–a(s) +

c(s)ε

d(s) + d(s)(η – ε)

)
ds.

Hence, we have z(t) →  as t → ∞ which is a contradiction. Now, if (.) is not true, then
there is a sequence {φm} ⊂ R

+ such that lim supt→∞ z(t,φm) > (M + )m for all m = , , . . . .
By (.), there are time sequences {sm

q } and {tm
q } satisfying

 < sm
 < tm

 < sm
 < tm

 < · · · < sm
q < tm

q < · · · ,

sm
q → +∞, tm

q → +∞ as q → +∞

and

z
(
sm

q ,φm
)

= M, z
(
tm
q ,φm

)
= (M + )m,

M < z(t,φm) < (M + )m for all t ∈ (
sm

q , tm
q
)
.

Since there is a T (m)
 >  such that x(t,φm) < M for all t ≥ T (m)

 , we have

ż(t,φm) ≤ z(t,φm)
(

–a(t) +
c(t)M

d(t)

)
for all t ≥ T (m)

 .
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Obviously, there is a K(m) >  such that sm
q > T (m)

 for all q ≥ K(m). Hence, we obtain

z
(
tm
q ,φm

) ≤ z
(
sm

q ,φm
)

exp
∫ t(m)

q

s(m)
q

(
–a(t) +

c(t)M

d(t)

)
dt for all q ≥ K(m).

Consequently,

t(m)
q – s(m)

q → ∞ as m → ∞, q ≥ K(m). (.)

By (.), there is a p >  such that for any t ≥ p and a ≥ ,

∫ a+t

a

(
–a(s) +

c(s)ε

d(s) + d(s)(η – ε)

)
ds < .

By (.), there is a p >  such that for all t ≥ p and b ≥ ,

∫ b+t

b

(
a(s) –

c(s)M
d(s) + d(s)(M + ε)

)
ds < ln

ε

M
.

By (.), there is a L >  such that t(m)
q – s(m)

q > p + p for all m ≥ L, q ≥ K(m). For any
m ≥ L, q ≥ K(m) and t ∈ [s(m)

q + p + p, t(m)
q ], we have

ẋ(t,φm) ≤ x(t,φm)
(

a(t) –
c(t)M

d(t) + d(t)(M + ε)

)

≤ x(t,φm)
(

a(t) –
c(t)M

d(t) + d(t)(M + ε)

)
.

Hence,

x(t,φm) ≤ x
(
s(m)

q ,φm
)

exp
∫ t

s(m)
q

(
a(s) –

c(s)M
d(s) + d(s)(M + ε)

)
ds < ε.

Since

ż(t,φm) ≤ z(t,φm)
(

–a(t) +
c(t)ε

d(t) + d(t)(η – ε)

)
, t ∈ [

s(m)
q + p + p, t(m)

q
]
.

we obtain

z
(
t(m)
q ,φm

) ≤ z
(
s(m)

q + p + p,φm
)

× exp
∫ t(m)

q

s(m)
q +p+p

(
–a(t) +

c(t)ε

d(t) + d(t)(η – ε)

)
dt

< (M + )m,

which is contradictory with z(t(m)
q ,φm) = (M + )m. Therefore, there is a constant M > 

such that (.) holds. �
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Proposition . There is a universal constant  < η < η such that

lim sup
t→∞

x(t) > η (.)

and
∫ t



(
–a(s) +

c(s)η

d(s) + d(s)η

)
ds < 

hold, where η is obtained in Proposition ..

Proof If lim supt→∞ x(t) ≤ η, then by Proposition ., there is a T > T such that x(t) < η

and y(t) ≥ η – ε (ε is small enough) for all t ≥ T. Since

ż(t) ≤ z(t)
(

–a(t) +
c(t)η

d(t) + d(t)(η – ε)

)
for all t ≥ T,

and since
∫ t



(
–a(s) +

c(s)η

d(s) + d(s)η

)
ds < ,

and for a small enough ε,

∫ t



(
–a(s) +

c(s)η

d(s) + d(s)(η – ε)

)
ds < ,

by integrating from T to t, we can obtain

z(t) ≤ z(T) exp
∫ t

T

(
–a(s) +

c(s)η

d(s) + d(s)(η – ε)

)
ds.

Hence, inequality (.) implies z(t) →  as t → ∞, which is a contradiction and Propo-
sition . is proved. �

Proposition . There is a universal constant η >  such that

lim inf
t→∞ x(t) > η. (.)

Proof We first choose the constant  < ε < η such that

∫ w



(
–a(t) +

c(t)ε

d(t) + d(t)η

)
dt < . (.)

Here the constants η >  and η >  are obtained in Propositions . and .. Suppose
that (.) is not true. Then there is a sequence {φm} ⊂ R

+ such that lim inft→∞ x(t,φm) <
ε

m+ for all m = , , . . . . By Proposition ., there are two time sequences {s(m)
q } and {t(m)

q }
satisfying the following conditions:

 < sm
 < tm

 < sm
 < tm

 < · · · < sm
q < tm

q < · · · ,

sm
q → +∞, tm

q → +∞ as q → +∞, m = , , . . .
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and

x
(
sm

q ,φm
)

= ε, x
(
tm
q ,φm

)
=

ε

m + 
,

ε

m + 
< x(t,φm) < ε for all t ∈ (

sm
q , tm

q
)
.

By Propositions . and ., there is a T (m) >  such that z(t,φm) ≤ M and x(t,φm) ≤ M

for all t ≥ T (m), and further there is a K (m) >  such that sm
q ≥ T (m) for all q ≥ K (m). Hence,

for any t ∈ [sm
q , tm

q ] and q ≥ K (m), we have

ẋ(t,φm) ≥ x(t,φm)
(

a(t) – b(t)M –
c(t)M

d(t)

)
.

By integrating from sm
q to tm

q , we obtain

x
(
tm
q ,φm

) ≥ x
(
sm

q ,φm
)

exp
∫ t(m)

q

s(m)
q

(
a(t) – b(t)M –

c(t)M

d(t)

)
dt.

Consequently,

ln(m + ) ≤
∫ t(m)

q

s(m)
q

(
–a(t) + b(t)M +

c(t)M

d(t)

)
dt for all q ≥ K (m).

Hence, we obtain

t(m)
q – s(m)

q → ∞ as m → ∞, q ≥ K (m). (.)

By (.), there is a constant T > , and T is independent on any m and q, such that

M exp
∫ t(m)

q

s(m)
q

(
–a(t) +

c(t)ε

d(t) + d(t)(η – ε)

)
dt < η.

By (.), there is a M >  such that t(m)
q > s(m)

q + M for all m ≥ M and q ≥ K (m). Hence,
for any t ∈ [sm

q , tm
q ], m ≥ M, and q ≥ K (m), we have y(t) ≥ η – ε and

ż(t,φm) ≤ z(t,φm)
(

–a(t) +
c(t)ε

d(t) + d(t)(η – ε)

)
.

By integrating from s(m)
q to s(m)

q + M, we obtain

η < z
(
s(m)

q + M,φm
)

≤ z
(
s(m)

q ,φm
)

exp
∫ s(m)

q +M

s(m)
q

(
–a(t) +

c(t)ε

d(t) + d(t)(η – ε)

)
dt < η,

which is a contradiction, and Proposition . is proved. �
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3.1 Proof of Theorem 2.3
The results of Theorem . now follow from Propositions .-..

4 Example
In this section, we shall give an example to illustrate the feasibility of the main results.

Example Consider the following predator-prey-mutualist system (see Figure ):

ẋ = x
(

. – .x –
.z

. + .y

)
,

ẏ = y
(

. –
y

. + .x

)
, (.)

ż = z
(

–(. – . sin t) +
.x

. + .y

)
.

Corresponding to system (.), one has

a(t) = ., b(t) = ., c(t) = ., d(t) = .,

d(t) = ., a(t) = ., d(t) = ., d(t) = .,

a(t) = . – . sin t, c(t) = ..

One easily sees that

u̇(t) = u(t)
(
. – .u(t)

)

has a unique positive periodic solution u(t) ≈ .. So M∗ = .,

u̇(t) = u(t)
(

. –
u(t)

. + . × .

)

has a unique positive periodic solution u(t) ≈ ..
By simple computation, one has

∫ w



(
–a(t) +

c(t)u(t)
d(t) + d(t)u(t)

)
dt

=
∫ π



(
–(. – . sin t) +

. × .
. + . × .

)
dt ≈ . > .

Figure 1 Dynamic behaviors of the solution (x(t),
y(t), z(t)) system (4.1) with initial conditions (x(0),
y(0), z(0)) = (10, 13, 15), (12, 10, 13) and (2, 4, 6),
respectively.
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Condition (.) is satisfied. Thus, corresponding to Theorem . and Corollary ., we
know that system (.) is permanent and admits at least one positive π-periodic solu-
tion.

5 Conclusion
In this paper, we studied a periodic predator-prey-mutualist system. From system (.),
we see the mutualist species y can reduce the capture rate of the predator species z to the
prey species x. By further developing the analysis technique of Teng [], we obtain a set
of conditions which ensure the permanence of system (.). Note that u(t) and u(t) are
the globally attractive periodic solution of (.) and (.), respectively, which, as shown by
Lemma ., always exists. Hence, the left side of condition (.) implies that if the death
rate of the predator species is enough small and the cooperation effect between species x
and y is not very strong, the system is permanent.
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