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1 Introduction
About  years ago, Ulam [] raised the well-known stability problem of functional equa-
tions. In the next year, Ulam’s problem was partially answered by Hyers [] in Banach
spaces. Aoki [] generalized Hyers’ theorem for additive mappings in the year . In
the year , a generalized version of the theorem of Hyers for approximately linear
mappings was given by Rassias []. During -, Rassias [–] treated the Ulam-
Gǎvruta-Rassias stability on linear and non-linear mappings and generalized Hyers’ re-
sult. In , a further generalization of the Rassias theorem was obtained by Gǎvruta [],
who replaced the bound θ (‖x‖p + ‖y‖p) by a general control function φ(x, y). The stability
problems of several functional equations have been extensively investigated by a number
of mathematicians, posed with creative thinking and critical dissent who have arrived at
interesting results (see [–]).

In the year , Ravi and Senthil Kumar [] investigated the generalized Hyers-Ulam
stability for the reciprocal functional equation

r(x + y) =
r(x)r(y)

r(x) + r(y)
, (.)

where r : X → Y is a mapping on the spaces of non-zero real numbers. The reciprocal
function r(x) = c

x is a solution of the functional equation (.).
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Later, Ravi et al. [] introduced the reciprocal difference functional equation

r
(

x + y


)
– r(x + y) =

r(x)r(y)
r(x) + r(y)

(.)

and the reciprocal adjoint functional equation

r
(

x + y


)
+ r(x + y) =

r(x)r(y)
r(x) + r(y)

(.)

and investigated the generalized Hyers-Ulam stability for the above two functional equa-
tions (.) and (.).

Recently, Ravi et al. [] discussed the generalized Hyers-Ulam stability for the general-
ized reciprocal functional equation

r

( m∑
i=

αixi

)
=

∏m
i= r(xi)∑m

i=[αi(
m∏
j=
j �=i

r(xj))]
(.)

for arbitrary but fixed real numbers αi �= , for i = , , . . . , m, so that  < α = α + α + · · · +
αm =

∑m
i= αi �=  and r : X → Y where X and Y are the sets of non-zero real numbers.

Very recently, Ravi et al. [] obtained the general solution and investigated the gener-
alized Hyers-Ulam stability of a reciprocal type functional equation in several variables of
the form

∏m
�= r(x + x�)

∑m
�=[

m∏
k=
k �=�

r(x + xk)]
=

∏m
�= r(x�)

∑m
�= r(x)[

m∏
k=
k �=�

r(xk)] + (m – )
∏m

�= r(x�)
, (.)

where m is a positive integer with m ≥  in various normed spaces.

Remark . Ravi et al. [–] gave some counter-examples for the stability of reciprocal
functional equations in singular cases.

In this paper, we apply a direct method and a fixed point method to investigate the gen-
eralized Hyers-Ulam stability of the functional equation (.) in matrix non-Archimedean
random normed spaces.

2 Preliminaries
In this section, we recall some definitions and results which will be used later in the article.

A triangular norm (shorter t-norm) is a binary operation on the unit interval [, ], i.e.,
a function T : [, ]× [, ] → [, ] such that for all a, b, c ∈ [, ] the following four axioms
satisfied:

() T(a, b) = T(b, a) (commutativity);
() T(a, (T(b, c))) = T(T(a, b), c) (associativity);
() T(a, ) = a (boundary condition);
() T(a, b) ≤ T(a, c) whenever b ≤ c (monotonicity).

Let K be a field. A non-Archimedean absolute value on K is a function | · | from K into
[,∞) such that for any a, b ∈K we have
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() |a| ≥  and equality holds if and only if a = ;
() |ab| = |a||b|;
() |a + b| ≤ max{|a|, |b|}.

The condition () is called the strict triangle inequality. By (), we have || = |–| = . Thus,
by induction, it follows from () that |n| ≤  for each integer n. We always assume in ad-
dition that | · | is non-trivial, i.e., that there is an a ∈K such that |a| �= , .

Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valua-
tion | · |. A function ‖ · ‖ : X →R is a non-Archimedean norm (valuation) if it satisfies the
following conditions:

(NA) ‖x‖ =  if and only if x = ;
(NA) ‖rx‖ = |r|‖x‖ for all r ∈K and x ∈ X ;
(NA) ‖x + y‖ ≤ max{‖x‖,‖y‖} for all x, y ∈ X (the strong triangle inequality).

Then (X,‖ · ‖) is called a non-Archimedean space.
Thanks to the inequality

‖xm – xl‖ ≤ max
{‖xj+ – xj‖ : l ≤ j ≤ m – 

}
(m > l)

a sequence {xm} is Cauchy if and only if {xm+ – xm} converges to zero in a non-
Archimedean space. By a complete non-Archimedean space we mean one in which every
Cauchy sequence is convergent.

In , Hensel [] introduced a normed space, which does not have the Archimedean
property.

In the sequel, we adopt the usual terminology, notations, and conventions of the theory
of random normed spaces as in [–]. Throughout this paper, �+ is the space of dis-
tribution functions, that is, the space of all mappings F : R ∪ {–∞,∞} → [, ] such that
F is left-continuous and non-decreasing on R, F() = , and F(+∞) = . D+ is a subset of
�+ consisting of all functions F ∈ �+ for which l–F(+∞) = , where l–f (x) denotes the left
limit of the function f at the point x, that is, l–f (x) = limt→x– f (t) . The space �+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F(t) ≤ G(t)
for all t in R.

Definition . [] A non-Archimedean random normed space (briefly, NA-RN-space)
is a triple (X,μ, T), where X is a vector space, T is a continuous t-norm, and μ is a mapping
from X into D+ such that the following conditions hold:

(RN) μx(t) = ε(t) for all t >  if and only if x = ;
(RN) μαx(t) = μx( t

|α| ) for all x ∈ X , α �= ;
(RN) μx+y(max{t, s}) ≥ T(μx(t),μy(s)).

It is easy to see that if (RN) holds, then we have

(RN) μx+y(t + s) ≥ T(μx(t),μy(s)).

Definition . Let (X,μ, T) be an NA-RN-space.

() A sequence {xn} in X is said to be convergent to x in X if, for every ε >  and λ > , there
exists a positive integer N such that μxn–x(ε) >  – λ whenever n ≥ N .
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() A sequence {xn} in X is called a Cauchy sequence if, for every ε >  and λ > , there
exists a positive integer N such that μxn–xn+ (ε) >  – λ whenever n ≥ N .

() An NA-RN-space (X,μ, T) is said to be complete if and only if every Cauchy sequence
in X is convergent to a point in X .

We will also use the following notations. The set of all m × n-matrices in X will be de-
noted by Mm,n(X). When m = n, the matrix Mm,n(X) will be written as Mn(X). The symbols
ej ∈ M,n(C) will denote the row vector whose jth component is  and the other compo-
nents are . Similarly, Eij ∈ Mn(C) will denote the n × n matrix whose (i, j)-component is
 and the other components are . The n × n matrix whose (i, j)-component is x and the
other components are  will be denoted by Eij ⊗ x ∈ Mn(X).

Let (X,‖·‖) be a normed space. Note that (X, {‖·‖n}) is a matrix normed space if and only
if (Mn(X),‖ · ‖n) is a normed space for each positive integer n and ‖AxB‖k ≤ ‖A‖‖B‖‖x‖n

holds for A ∈ Mk,n, x = [xij] ∈ Mn(X) and B ∈ Mn,k , and that (X, {‖ · ‖n}) is a matrix Banach
space if and only if X is a Banach space and (X, {‖ · ‖n}) is a matrix normed space.

Let E, F be vector spaces. For a given mapping h : E → F and a given positive integer n,
define hn : Mn(E) → Mn(F) by

hn
(
[xij]

)
=

[
h(xij)

]

for all [xij] ∈ Mn(E).
We introduce the concept of matrix non-Archimedean random normed space.

Definition . Let (X,μ, T) be a non-Archimedean random normed space. Then:

() (X, {μ(n)}, T) is called a matrix non-Archimedean random normed space if for each
positive integer n, (Mn(X), {μ(n)}, T) is a non-Archimedean random normed space and
μ

(k)
AxB(t) ≥ μ

(n)
x ( t

‖A‖·‖B‖ ) for all t > , A ∈ Mk,n(R), x = [xij] ∈ Mn(X) and B ∈ Mn,k(R) with
‖A‖ · ‖B‖ �= .

() (X, {μ(n)}, T) is called a matrix non-Archimedean random Banach space if (X,μ, T)
is a non-Archimedean random Banach space and (X, {μ(n)}, T) is a matrix non-
Archimedean random normed space.

Definition . Let E be a set. A function d : E ×E → [,∞] is called a generalized metric
on E if d satisfies the following conditions:

() d(x, y) =  if and only if x = y;
() d(x, y) = d(y, x) for all x, y ∈ E ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E .

We note that the only one difference of the generalized metric from the usual metric is
that the range of the former is permitted to include infinity.

The following theorem is very useful for proving our main results; it is due to Diaz and
Margolis [].

Theorem . [] Let (�, d) be a complete generalized metric space and let J : � → � be
a strictly contractive mapping with Lipschitz constant L < . Then for each given element
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x ∈ �, either

d
(
J nx,J n+x

)
= ∞

for all non-negative integers n or there exists a positive integer n such that:

() d(J nx,J n+x) < ∞ for all n ≥ n;
() the sequence {J nx} is convergent to a fixed point x∗ of J ;
() x∗ is the unique fixed point of J in the set

� :=
{

y ∈ �|d(
J n x, y

)
< ∞}

;

() d(y, x∗) ≤ d(y,J y)
–L , for all y ∈ �.

Throughout this paper, we assume that X be a normed space and (Y ,μ(n), T) be a matrix
non-Archimedean random Banach space.

We note that a mapping r : X → Y satisfies the functional equation (.) if and only if
there exists a reciprocal mapping r : X → Y satisfying the reciprocal functional equation
(.) [].

For a mapping r : X → Y , define Dmr : Xm → Y and Dmrn : Mn(Xm) → Mn(Y ) by

Dmr(x, . . . , xm) :=
∏m

�= r(x + x�)
∑m

�=[
m∏
k=
k �=�

r(x + xk)]

–
∏m

�= r(x�)
∑m

�= r(x)[
m∏
k=
k �=�

r(xk)] + (m – )
∏m

�= r(x�)
,

Dmrn
(
[xij], [xij], . . . , [xmij]

)
:=

∏m
�= r([xij] + [x�ij])∑m

�=[
m∏
k=
k �=�

r([xij] + [xkij])]

–
∏m

�= r([x�ij])∑m
�= r([xij])[

m∏
k=
k �=�

r([xkij])] + (m – )
∏m

�= r([x�ij])
,

for all x, . . . , xm ∈ X and all x′
 = [xij], . . . , x′

m = [xmij] ∈ Mn(X).

3 Generalized Hyers-Ulam stability of (1.5): direct method
Theorem . Let ϕ : Xm →D+ be a function such that there exists α ∈R with  < |α| < ||
such that

ϕ x
 ,..., xm


(t) ≥ ϕx,...,xm

(
t

|α|
)

(.)

for all x, . . . , xm ∈ X and all t >  and limı→∞ T∞
κ=ı(ϕ x

κ+ ,..., x
κ+

( ||κ
|m–| t)) =  for all x ∈ X and

all t > . If a function f : X → Y satisfies the functional inequality

μ
(n)
Dmfn([xij],...,[xmij])(t) ≥

n∑
i,j=

ϕxij ,...,xmij (t) (.)
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for all x′
 = [xij], . . . , x′

m = [xmij] ∈ Mn(X) and all t > , then there exists a unique reciprocal
mapping r : X → Y which satisfies (.) and the inequality

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
T∞

ı=

(
ϕ xij

ı+ ,...,
xij

ı+

( ||ı
|m – |n t

))
: i, j = , . . . , n

)
(.)

for all x = [xij] ∈ Mn(X) and all t > .

Proof Let n = . Then (.) is equivalent to

μDmf (x,...,xm)(t) ≥ ϕx,...,xm (t) (.)

for all x, . . . , xm ∈ X and all t > . Replacing xi by x
 for i = , . . . , m in (.), we get

μ 
m– [f (x)– 

 f ( x
 )](t) ≥ ϕ x

 ,..., x


(t)

and so

μf (x)– 
 f ( x

 )(t) ≥ ϕ x
 ,..., x



(


|m – | t
)

(.)

for all x ∈ X and all t > . Now, replacing x by x
 in (.), we obtain

μf ( x
 )– 

 f ( x
 )(t) ≥ ϕ x

 ,..., x


(


|m – | t
)

(.)

for all x ∈ X and all t > . By (.) and (.),

μf (x)– 
 f ( x

 )(t) ≥ T
(
μf (x)– 

 f ( x
 )(t),μ 

 f ( x
 )– 

 f ( x
 )(t)

)

= T
(
μf (x)– 

 f ( x
 )(t),μf ( x

 )– 
 f ( x

 )
(||t))

≥ T
(

ϕ x
 ,..., x



(


|m – | t
)

,ϕ x
 ,..., x



( ||
|m – | t

))

for all x ∈ X and all t > . Proceeding and using induction arguments on a positive inte-
ger j , we arrive at

μf (x)– 
j f ( x

j )(t) ≥ Tj–
ı=

(
ϕ x

ı+ ,..., x
ı+

( ||ı
|m – | t

))
(.)

for all x ∈ X and all t > . For any positive integer ı , x ∈ X and t > , we have

μ 
ı+ f ( x

ı+ )– 
ı f ( x

ı )(t) = μ 
ı [f ( x

ı )– 
 f ( x

ı+ )](t) ≥ ϕ x
ı+ ,..., x

ı+

( ||ı
|m – | t

)
.

Hence,

μ 
ı f ( x

ı )– 
ı+s f ( x

ı+s )(t) ≥ T ı+s
κ=ı

(
μ 

κ f ( x
κ )– 

κ+s f ( x
κ+s )(t)

)

≥ T ı+s
κ=ı

(
ϕ x

κ+ ,..., x
κ+

( ||κ
|m – | t

))
(.)
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for all x ∈ X, all t >  and ı ≥ . Since limı→∞ T∞
κ=ı(ϕ x

κ+ ,..., x
κ+

( ||κ
|m–| t)) =  for all x ∈ X and

all t > , it follows that the sequence { 
j f ( x

j )} is a Cauchy sequence in the matrix non-
Archimedean random Banach space (Y ,μ(n), T). Hence, we can define a mapping r : X →
Y by

lim
j→∞μ 

j f ( x
j )–r(x)(t) =  (.)

for all x ∈ X and all t > .
Moreover, letting j → ∞ in (.), we get

μf (x)–r(x)(t) ≥ T∞
ı=

(
ϕ x

ı+ ,..., x
ı+

( ||ı
|m – | t

))
(.)

for all x ∈ X and all t > . To show that r satisfies (.), replacing (x, . . . , xm) by ( x
j , . . . , xm

j )
in (.) and using (.), we obtain

μ 
j Dmf ( x

j ,..., xm
j )(t) ≥ ϕ x

j ,..., xm
j

(||j t
) ≥ ϕx,...,xm

( ||j
|α|j t

)
(.)

for all x, . . . , xm ∈ X, for all positive integer j and all t > . Since limj→∞ ϕx,...,xm (( ||
|α| )

j t) = ,
we see that r satisfies (.), for all x, . . . , xm ∈ X and all t > .

We note that ej ∈ M,n(R) means that jth component is  and the others are zero, Eij ∈
Mn(R) means that (i, j)-component is  and the others are zero, and Eij ⊗x ∈ Mn(X) means
that (i, j)-component is x and the others are zero. Since μ

(n)
Epq⊗x(t) = μx(t), we have

μ
(n)
[xij](t) = μ

(n)∑n
i,j= Eij⊗xij

(t) ≥ T
(
μ

(n)
Eij⊗xij

(tij) : i, j = , , . . . , n
)

= T
(
μxij (tij) : i, j = , , . . . , n

)
,

where t =
∑n

i,j= tij. So μ
(n)
[xij](t) ≥ T(μxij (

t
n ) : i, j = , , . . . , n).

By (.),

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
μf (xij)–r(xij)

(
t

n

)
: i, j = , . . . , n

)

≥ T
(

T∞
ı=

(
ϕ xij

ı+ ,...,
xij

ı+

( ||ı
|m – |n t

))
: i, j = , . . . , n

)

for all x = [xij] ∈ Mn(X) and all t > . Thus r : X → Y is a unique mapping satisfying (.),
as desired. �

Theorem . Let ϕ : Xm →D+ be a function such that there exists α ∈R with  < || < |α|
such that

ϕx,...,xm (t) ≥ ϕx,...,xm

(|α|t) (.)

for all x, . . . , xm ∈ X and all t >  and limı→∞ T∞
κ=ı(ϕκ x,...,κ x( t

|m–|||κ+ )) =  for all x ∈ X
and all t > . If a function f : X → Y satisfies the functional inequality

μ
(n)
Dmfn([xij],...,[xmij])(t) ≥

n∑
i,j=

ϕxij ,...,xmij (t) (.)
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for all x′
 = [xij], . . . , x′

m = [xmij] ∈ Mn(X) and all t > , then there exists a unique reciprocal
mapping r : X → Y which satisfies (.) and the inequality

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
T∞

ı=

(
ϕıxij ,...,ıxij

(
t

n|m – |||ı+

))
: i, j = , . . . , n

)
(.)

for all x = [xij] ∈ Mn(X) and all t > .

Proof Let n = . Then (.) is equivalent to

μDmf (x,...,xm)(t) ≥ ϕx,...,xm (t) (.)

for all x, . . . , xm ∈ X and all t > . The rest of the proof is obtained by replacing xi by x
for i = , , . . . , m in (.) and proceeding further by similar arguments as in Theorem ..

�

Corollary . Let γ ∈ {–, } be fixed. Let f : X → Y be a mapping and let there exist real
numbers q �= – and θ ≥  with –γ < qγ such that

μ
(n)
Dmfn([xij],...,[xmij])(t) ≥ t

t +
∑n

i,j= θ (‖xij‖q + · · · + ‖xmij‖q)

for all x′
 = [xij], . . . , x′

m = [xmij] ∈ Mn(X) and all t > . If

lim
ı→∞ T∞

κ=ı

(
t

t + θm|m – |‖x‖q(||κq+q+κ )
–γ –

 (||κq+κ+)
–γ +



)
= 

for all x ∈ X and all t > , then there exists a unique reciprocal mapping r : X → Y such
that

μ
(n)
fn([xij])–rn([xij])(t) ≥

⎧⎪⎨
⎪⎩

T(T∞
ı=( t

t+
θmn|m–|‖xij‖q

||ıq+q+ı

) : i, j = , , . . . , n) for γ = ,

T(T∞
ı=( t

t+θmn|m–|‖xij‖q||ıq+ı+ ) : i, j = , , . . . , n) for γ = –

for all x = [xij] ∈ Mn(X) and all t > .

Proof If we choose ϕx,...,xm (t) = t
t+θ (‖x‖q+···+‖xm‖q) , for all t >  and all x, . . . , xm ∈ X, then

by Theorem ., we arrive at

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
T∞

ı=

(
t

t + θmn|m–|‖xij‖q

||ıq+q+ı

)
: i, j = , , . . . , n

)

for all x = [xij] ∈ Mn(X), all t >  and γ = , and using Theorem ., we arrive at

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
T∞

ı=

(
t

t + θmn|m – |‖xij‖q||ıq+ı+

)
: i, j = , , . . . , n

)

for all x = [xij] ∈ Mn(X), all t >  and γ = –. �
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4 Generalized Hyers-Ulam stability of equation (1.5): fixed point method
Theorem . Suppose that the mapping f : X → Y satisfies the inequality

μ
(n)
Dmfn([xij],...,[xmij])(t) ≥

n∑
i,j=

φxij ,...,xmij (t) (.)

for all x′
 = [xij], . . . , x′

m = [xmij] ∈ Mn(X) and all t > , where φ : Xm → D+ is a given func-
tion. If there exists L <  such that

φ x
 ,..., xm


(t) ≥ φx,...,xm

(


L|| t
)

(.)

for all x, . . . , xm ∈ X and all t > , then there exists a unique reciprocal mapping r : X → Y
which satisfies (.) and the inequality

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
φxij ,...,xij

(
 – L

nL|||m – | t
)

: i, j = , . . . , n
)

(.)

for all x = [xij] ∈ Mn(X) and all t > .

Proof Let n = . Then (.) is equivalent to

μDmf (x,...,xm)(t) ≥ φx,...,xm (t) (.)

for all x, . . . , xm ∈ X and all t > .
Define a set S by

S = {h : X → Y |h is a function}

and introduce the generalized metric d on S as follows:

d(g, h) = inf
{
λ ∈ R+ : μg(x)–h(x)(λt) ≥ φx,...,x(t),∀x ∈ X,∀t > 

}
, (.)

where, as usual, inf∅ = +∞. It is easy to show that (S , d) is complete (see [], Lemma .).
Define a mapping σ : S → S by

σh(x) =



h
(

x


)
(x ∈ X) (.)

for all h ∈ S . We claim that σ is strictly contractive on S . For any given g, h ∈ S , let εgh ∈
[,∞] be an arbitrary constant with d(g, h) ≤ εgh. Hence

d(g, h) ≤ εgh ⇒ μg(x)–h(x)(εght) ≥ φx,...,x(t), ∀x ∈ X,∀t > 

⇒ μ 
 g( x

 )– 
 h( x

 )(εght) ≥ φ x
 ,..., x



(||t), ∀x ∈ X,∀t > 

⇒ μ 
 g( x

 )– 
 h( x

 )(εght) ≥ φx,...,x

(

L

t
)

, ∀x ∈ X,∀t > 

⇒ μ 
 g( x

 )– 
 h( x

 )(Lεght) ≥ φx,...,x(t), ∀x ∈ X,∀t > 

⇒ d(σ g,σh) ≤ Lεgh.
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Therefore, we see that

d(σ g,σh) ≤ Ld(g, h), for all g, h ∈ S

that is, σ is strictly contractive mapping of S , with the Lipschitz constant L < .
Now, replacing xi by x

 for i = , . . . , m in (.), we get

μf (x)– 
 f ( x

 )(t) ≥ φ x
 ,..., x



(


|m – | t
)

≥ φx,...,x

(


L|||m – | t
)

for all x ∈ X and all t > . Hence (.) implies that d(f ,σ f ) ≤ L|||m – | < ∞. Hence by ap-
plying the fixed point alternative Theorem ., there exists a function r : X → Y satisfying
the following:

() r is a fixed point of σ , that is,

r(x) =



r
(

x


)
(.)

for all x ∈ X . The mapping r is the unique fixed point of σ in the set

M =
{

g ∈ S|d(f , g) < ∞}
.

This implies that r is the unique mapping satisfying (.) such that there exists ε ∈
(,∞) satisfying

μf (x)–r(x)(εt) ≥ φx,...,x(t), ∀x ∈ X,∀t > .

() d(σ nf , r) →  as n → ∞. Thus we have

lim
n→∞μ 

n f ( x
n )–r(x)(t) =  (.)

for all x ∈ X and all t > .
() d(r, f ) ≤ 

–L d(f ,σ f ) which implies

d(r, f ) ≤ L|||m – |
 – L

. (.)

From (.), (.), and (.), we have

μ 
n Dmf ( x

n ,..., xm
n )(t) ≥ φ x

n ,..., xm
n

(||nt
) ≥ φx,...,xm

((

L

)n

t
)

for all x, . . . , xm ∈ X and all t > . Since limn→∞ φx,...,xm (( 
L )nt) = , r satisfies (.).

We note that ej ∈ M,n(R) means that the jth component is  and the others are zero, Eij ∈
Mn(R) means that the (i, j)-component is  and the others are zero, and Eij ⊗ x ∈ Mn(X)
means that the (i, j)-component is x and the others are zero. Since μ

(n)
Epq⊗x(t) = μx(t), we

have

μ
(n)
[xij](t) = μ

(n)∑n
i,j= Eij⊗xij

(t) ≥ T
(
μ

(n)
Eij⊗xij

(tij) : i, j = , , . . . , n
)

= T
(
μxij (tij) : i, j = , , . . . , n

)
,

where t =
∑n

i,j= tij. So μ
(n)
[xij](t) ≥ T(μxij (

t
n ) : i, j = , , . . . , n).
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By (.),

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
μf (xij)–r(xij)

(
t

n

)
: i, j = , . . . , n

)

≥ T
(

φxij ,...,xij

(
 – L

nL|||m – | t
)

: i, j = , . . . , n
)

for all x = [xij] ∈ Mn(X) and all t > . Thus r : X → Y is a unique reciprocal mapping satis-
fying (.). �

Theorem . Suppose that the mapping f : X → Y satisfies the inequality

μ
(n)
Dmfn([xij],...,[xmij])(t) ≥

n∑
i,j=

φxij ,...,xmij (t) (.)

for all x′
 = [xij], . . . , x′

m = [xmij] ∈ Mn(X) and all t > , where φ : Xm → D+ is a given func-
tion. If there exists L <  such that

φx,...,xm (t) ≥ φx,...,xm

( ||
L

t
)

(.)

for all x, . . . , xm ∈ X and all t > , then there exists a unique reciprocal mapping r : X → Y
which satisfies (.) and the inequality

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
φxij ,...,xij

(
 – L

n|||m – | t
)

: i, j = , . . . , n
)

(.)

for all x = [xij] ∈ Mn(X) and all t > .

Proof The proof is similar to the proof of Theorem .. �

Corollary . Let γ ∈ {–, } be fixed. Let f : X → Y be a mapping and let there exist real
numbers q �= – and θ ≥  with –γ < qγ such that

μ
(n)
Dmfn([xij],...,[xmij])(t) ≥ t

t +
∑n

i,j= θ (‖xij‖q + · · · + ‖xmij‖q)

for all x′
 = [xij], . . . , x′

m = [xmij] ∈ Mn(X) and all t > . Then there exists a unique reciprocal
mapping r : X → Y such that

μ
(n)
fn([xij])–rn([xij])(t) ≥

⎧⎨
⎩

T( (||q+–)t
(||q+–)t+θmn|||m–|‖xij‖q : i, j = , , . . . , n) for γ = ,

T( (–||q+)t
(–||q+)t+θmn|||m–|‖xij‖q : i, j = , , . . . , n) for γ = –

for all x = [xij] ∈ Mn(X) and all t > .

Proof If we choose φx,...,xm (t) = t
t+θ (‖x‖q+···+‖xm‖q) , for all t >  and all x, . . . , xm ∈ X, then

by Theorem ., we arrive at

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
(||q+ – )t

(||q+ – )t + θmn|||m – |‖xij‖q : i, j = , , . . . , n
)
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for all x = [xij] ∈ Mn(X), all t > , γ = , L = ||–q–, and using Theorem ., we arrive at

μ
(n)
fn([xij])–rn([xij])(t) ≥ T

(
( – ||q+)t

( – ||q+)t + θmn|||m – |‖xij‖q : i, j = , , . . . , n
)

for all x = [xij] ∈ Mn(X), all t > , γ = – and L = ||q+. �
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