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Abstract
In this paper, a May cooperative system with feedback controls is proposed and
studied. The dynamic behaviors of the system are discussed by using the Lyapunov
function method. If bi �= 0, i = 1, 2, we show that feedback control variables have no
influence on the global stability of the unique positive equilibrium of the system,
which means that feedback control variables only change the position of the positive
equilibrium and retain its global stability property. If bi = 0, i = 1, 2, we can make the
system which has a unique globally stable equilibrium or has unboundedly large
solutions become globally stable. Some examples are given to illustrate the feasibility
of the main results.
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1 Introduction
May [] suggested the following set of equations to describe a pair of mutualists:

dN

dt
= rN

[
 –

N

K + αN

]
,

dN

dt
= rN

[
 –

N

K + βN

]
,

(.)

where N, N are the densities of the species, respectively. r, Ki, α, β , i = , , are positive
constants. He showed that if the coefficients of system (.) satisfy

αβ < , (.)

then system (.) has a global stability equilibrium point (N∗
 , N∗

 ), where

N∗
 =

K + αK

 – αβ
, N∗

 =
K + βK

 – αβ
.

If the amount of mutualistic interaction satisfies

αβ ≥ , (.)
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then system (.) will ‘run away’, with both populations growing unboundedly large. So
May brought the density restriction to the system and proposed the following system []:

ẋ = rx
[

 –
x

K + αy
– εx

]
,

ẏ = ry
[

 –
y

K + αx
– εy

]
,

(.)

where ri, Ki, αi, εi, i = ,  are positive constants. He showed that system (.) has a global
stability equilibrium point.

Since that many excellent results concerned with the dynamic behaviors of May coop-
erative system are obtained. Cui and Chen [] addressed the nonautonomous system

u̇ = r(t)u
[

 –
u

a(t) + b(t)v
– c(t)u

]
,

v̇ = r(t)v
[

 –
v

a(t) + b(t)u
– c(t)v

]
,

(.)

under the assumption that ri(t), ai(t), bi(t), ci(t), i = , , are all continuous T-periodic func-
tions, and they obtained sufficient conditions which guarantee the existence of a unique
globally asymptotically stable strictly positive periodic solution. In [], Cui further incor-
porated continuous time delays and generalized it to n species. In [, ], the authors in-
corporated discrete time delays in interspecies interaction and investigated the positive
periodic and positive almost periodic solution of system.

On the other hand, in the real world, ecosystems are continuously disturbed by the un-
predictable force. It is mostly humans’ interference. Furthermore human production ac-
tivities is an important reason of species extinction [, ]. In some situations, one may wish
to retain its stability. This is the significance in the control procedure of ecology balance.
Therefore, scholars introduced the feedback control variables to the system. The dynamic
behaviors of the Lotka-Volterra cooperative system with feedback controls have been dis-
cussed extensively; see [–]. In [], Chen et al. first proposed the nonautonomous
n-species cooperation system with continuous delays and feedback controls as follows:

dxi(t)
dt

= ri(t)xi(t)
[

 –
xi(t)

ai(t) +
∑n

j=,j �=i bij
∫ 

–Tij
Kij(s)xj(t + s) ds

– ci(t)xi(t)
]

– di(t)ui(t)xi(t) – ei(t)xi(t)
∫ 

–τi

Hi(s)ui(t + s) ds, (.)

dui(t)
dt

= –αi(t)ui(t) + βi(t)xi(t) + γi(t)
∫ 

–ηi

Gi(s)xi(t + s) ds,

where xi(t), i = , . . . , n are the densities of the cooperation species Xi. ui(t), i = , . . . , n are
the feedback control variables. They obtained a set of complicated sufficient conditions
to guarantee the permanence and global attractivity of the system. Recently, by applying a
new integral inequality, Chen and Xie [] showed that in the above system, the feedback
control variables have no influence on the persistent property of system (.). With regard
to an autonomous system, since , Gopalsamy and Weng [] introduced feedback
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control variables into a two species competition system as follows:

dx(t)
dt

= x(t)
(
b – ax(t) – ax(t) – αu(t)

)
,

dx(t)
dt

= x(t)
(
b – ax(t) – ax(t) – αu(t)

)
,

du(t)
dt

= –ηu(t) + ax(t),

du(t)
dt

= –ηu(t) + ax(t).

(.)

They obtained sufficient conditions to guarantee the existence of a globally attracting pos-
itive equilibrium of the system with feedback controls. Chen and Chen [] discussed the
global stability of a unique interior equilibrium for a Leslie-Gower predator-prey model
with feedback controls:

Ṅ(t) = (r – aN – bN – cu)N,

Ṅ(t) =
(

r – a
N

N
– cu

)
N,

u̇(t) = –fu + gN,

u̇(t) = –fu + gN.

(.)

They showed that under the assumption ab ≥ ar, the unique interior equilibrium of
system (.) is globally stable. However, the authors invoked numerical calculations to
found that the unique interior equilibrium of system (.) is globally stable also under the
condition that ab < ar holds. So the condition ab ≥ ar is unnecessary for the glob-
ally stable property of system (.). This is a question to be studied in the future. Recently,
Li et al. [] proposed and studied the following competitive system with feedback controls:

ẋ(t) = x(t)
(

b – ax(t) – a

∫ +∞


K(s)x(t – s) ds – cu(t)

)
,

ẋ(t) = x(t)
(

b – a

∫ +∞


K(s)x(t – s) ds – ax(t) – cu(t)

)
,

u̇(t) = –eu(t) + dx(t),

u̇(t) = –eu(t) + dx(t),

(.)

where bi, aij, ci, ei, di, i, j = ,  are positive constants. xi(t), i = , , denote the densities of
the populations xi(t). ui(t), i = , , denote feedback control variables. They showed that if
the Lotka-Volterra competitive system is globally stable, the feedback control variables had
no influence on the global stability of the system (.). If the Lotka-Volterra competitive
system is showing extinction, they can make the extinct species become globally stable or
still keep the property of extinction. They showed that the feedback control variables play
an important role on the dynamic behavior of the system (.).

It brings to our attention that in systems (.) and (.), we may ask: how do feedback
control variables affect the global stability of the May cooperative system? To find an an-
swer to this question, we consider a May cooperative system with feedback controls as
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follows:

dx

dt
= rx

[
 – bx –

x

αx + k
– cu

]
,

dx

dt
= rx

[
 – bx –

x

βx + k
– cu

]
,

du

dt
= –ηu + ex,

du

dt
= –ηu + ex,

(.)

where ri, bi, α, β , ki, ci, ei, ηi, i = , , are positive constants. xi(t), i = , , are the densities
of the species at time t. ui(t), i = , , denote feedback control variables.

System (.) satisfies the initial values

xi() > , ui() > , i = , . (.)

Obviously, the solutions of system (.) with initial values (.) are positive for all t ≥ .
The rest of the paper is organized as follows. We will state and prove the main results

in next section. In Section , numerical simulations are presented to illustrate our results.
We end this work by a brief conclusion.

2 Main results
Lemma . System (.) admits a unique positive equilibrium P(x∗

 , x∗
, u∗

 , u∗
).

Proof Obviously, P(x∗
 , x∗

, u∗
 , u∗

) satisfies the following equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 – bx – x
αx+k

– cu = ,
 – bx – x

βx+k
– cu = ,

–ηu + ex = ,
–ηu + ex = .

(.)

By the third and the fourth equations of (.), we have ui = eixi
ηi

, i = , . Substituting them
into the first and the second equations of (.), respectively, we have

x =
k + βx

 + Ak + Aβx
(.)

and

( – Ax)(k + αx) = x, (.)

where Ai = bi + ciei
ηi

, i = , . Substituting (.) into (.), we have

Dx
 + Ex + F = , (.)

where

D = β(A + kAA + Aα), F = –(k + kkA + kα),

E = k(A – Aβ) + k(A + Aα + kAA) + ( – αβ).
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From D > , F < , we see that (.) admits a unique positive solution x∗
 . Substituting x∗



to (.), we have a unique positive solution x∗
. So system (.) admits a unique positive

equilibrium P(x∗
 , x∗

, u∗
 , u∗

), where u∗
i = eix∗

i
ηi

, i = , , which completes the proof. �

Before we state and prove the global stability of this work, we need to state a definition
and a useful lemma.

Definition . [] A matrix A = ((aij)n×n) is said to be an M matrix if aij ≤ , i �= j, i, j =
, , . . . , n, and any one of the following conditions holds:

() all of the eigenvalues of the matrix A have positive real parts;
() the order principal minor of matrix A is positive;
() matrix A is nonsingular and A– ≥ ;
() there exists a vector x >  such that Ax > ;
() there exists a vector y >  such that AT y > .

Lemma . [] If A is an M matrix, then there exists a positive diagonal matrix D =
diag(d, d, . . . , dn), di > , i = , . . . , n, such that matrix B = 

 (DA + AT D) is positive definite.

Theorem . The unique positive equilibrium P(x∗
 , x∗

, u∗
 , u∗

) of system (.) is globally
stable.

Proof Now let us construct a Lyapunov function

V (t) = β

∫ x

x∗


θ – x∗


θ
dθ + β

∫ x

x∗


θ – x∗


θ
dθ + β

∫ u

u∗


(
θ – u∗


)

dθ

+ β

∫ u

u∗


(
θ – u∗


)

dθ ,

where βi, i = , . . . ,  are positively undetermined coefficients. Calculating the upper right
derivative of V (t) along the solution of system (.), we have

D+V (t) = βr
(
x – x∗


)[

–b
(
x – x∗


)

–
x

αx + k
+

x∗


αx∗
 + k

– c
(
u – u∗


)]

+ βr
(
x – x∗


)[

–b
(
x – x∗


)

–
x

βx + k
+

x∗


βx∗
 + k

– c
(
u – u∗


)]

+ β
(
u – u∗


)[

–η
(
u – u∗


)

+ e
(
x – x∗


)]

+ β
(
u – u∗


)[

–η
(
u – u∗


)

+ e
(
x – x∗


)]

,

we take βi+ = βirici
ei

, i = , , then

D+V (t) = –βr

[
b +


αx + k

](
x – x∗


) – βr

[
b +


βx + k

]

× (
x – x∗


) +

[
βrαx∗


(αx∗

 + k)(αx + k)
+

βrβx∗


(βx∗
 + k)(βx + k)

]

× (
x – x∗


)(

x – x∗

)

– βη
(
u – u∗


) – βη

(
u – u∗


)

≤ –



Y T(
DG + GT D

)
Y – βη

(
u – u∗


) – βη

(
u – u∗


),
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where Y = (|x – x∗
 |, |x – x∗

|)T , D = diag(β,β), βi > , i = , , and

G =

(
a a

a a

)
, (.)

where

a = r

(
b +


αx + k

)
,

a = –
rαx∗


(αx∗

 + k)(αx + k)
,

a = –
rβx∗


(βx∗

 + k)(βx + k)
,

a = r

(
b +


βx + k

)
.

Note first that the off-diagonal elements of the matrix G are a and a, which are nega-
tive. Furthermore, by simple algebraic computation, the two order principal minors of the
matrix G are

a = r

(
b +


αx + k

)
> ,

∣∣∣∣∣
a a

a a

∣∣∣∣∣ = rrbb +
rrb

βx + k
+

rrb

αx + k
+

rr

(βx + k)(αx + k)

–
rrβx∗

αx∗


(βx + k)(αx + k)(βx∗
 + k)(αx∗

 + k)
> .

From Definition ., it follows that G is an M matrix; according to Lemma ., there exists a
positive diagonal matrix D = diag(β,β), βi > , i = , , such that the matrix 

 (DG + GT D)
is positive definite. So dV

dt <  strictly for all x > , x > , u > , u > , except the positive
equilibrium P(x∗

 , x∗
, u∗

 , u∗
), where dV

dt = . So V (t) satisfies Lyapunov’s asymptotic stability
theorem [] and the unique interior equilibrium P(x∗

 , x∗
, u∗

 , u∗
) is globally stable, which

completes the proof. �

Next we consider the dynamic behaviors of system (.) incorporate feedback control
variables, in system (.), set bi = , i = , , and we have

dx

dt
= rx

[
 –

x

αx + k
– cu

]
,

dx

dt
= rx

[
 –

x

βx + k
– cu

]
,

du

dt
= –ηu + ex,

du

dt
= –ηu + ex.

(.)

Lemma . System (.) admits a unique equilibrium P(x, x, u, u).
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Proof Obviously, P(x, x, u, u) satisfies the following equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 – x
αx+k

– cu = ,
 – x

βx+k
– cu = ,

–ηu + ex = ,
–ηu + ex = .

(.)

After simple algebraic computations, we have

Dx
 + Ex + F = , (.)

where

D = β(B + kBB + Bα), F = –(k + kkB + kα),

E = k(B – Bβ) + k(B + Bα + kBB) + ( – αβ),

and Bi = ciei
ηi

, i = , . From D > , F < , we see that (.) admits a unique positive so-
lution x. Similar to the analysis of Lemma ., system (.) admits a unique positive
equilibrium P(x, x, u, u). �

Theorem . The unique positive equilibrium P(x, x, u, u) of system (.) is glob-
ally stable.

Proof The proof of Theorem . is similar to that of Theorem ., and we omit the details
here. �

3 Examples
The following three examples show the feasibility of our main results.

Example . Consider the following equations:

ẋ = x

(
 – x –

x

x + 

)
, ẋ = x

(
 – x –

x

x + 

)
. (.)

By calculation, there exists a unique positive equilibrium of system (.), which is globally
stable. Figure  shows the dynamic behavior of system (.).

Figure 1 Dynamic behavior of the solution
(x1(t), x2(t)) to system (3.1) with the initial
conditions (x1(0), x2(0)) = (0.5, 0.2), (0.3,
0.4) and (0.6, 0.8), respectively.
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Figure 2 Dynamic behavior of the solution
(x1(t), x2(t), u1(t), u2(t)) to system (3.2) with the
initial conditions (x1(0), x2(0), u1(0), u2(0)) = (0.4,
0.2, 0.68, 0.1), (0.18, 0.02, 0.3, 0.27) and (0.55,
0.69, 0.1, 0.6), respectively.

Example . Now let us further incorporate the feedback control variables to system (.)
and consider the following system:

ẋ = x

(
 – x –

x

x + 
– .u

)
,

ẋ = x

(
 – x –

x

x + 
– .u

)
,

u̇ = –u + x,

u̇ = –u + x.

(.)

From Theorem ., the positive equilibrium of system (.) is globally stable. Figure 
shows the dynamic behavior of system (.).

Example . Consider the following equations:

ẋ = x

(
 –

x

x + 
– .u

)
,

ẋ = x

(
 –

x

x + 
– .u

)
,

u̇ = –u + x,

u̇ = –u + x.

(.)

From Theorem ., there exists a unique positive equilibrium of system (.), which is
globally stable. Figure  shows the dynamic behavior of system (.).

4 Conclusion
In this paper, we propose and study May cooperative system with feedback controls. In
Theorem ., by constructing a suitable Lyapunov function, we show that feedback control
variables have no influence on the global stability of the system. Our result improve the
corresponding result of Chen et al. []. In [], Chen and Chen have a conjecture that the
condition ab ≥ ar is not needed to ensure the global stability of the unique interior
equilibrium. In this paper, corresponding to a May cooperative system, we give a strict
proof of an affirmative answer which is without any conditions. Compared with Chen et



Han et al. Advances in Difference Equations  (2015) 2015:360 Page 9 of 10

Figure 3 Dynamic behavior of the solution
(x1(t), x2(t), u1(t), u2(t)) to system (3.3) with the
initial conditions (x1(0), x2(0), u1(0), u2(0)) = (2, 1,
4, 6), (6.4, 5.2, 7, 0.4) and (9.2, 4.1, 0.9, 3.3),
respectively.

al. [, ], the authors showed that the feedback control variables have no influence on
the permanence of the cooperation system. We have a further insight.

System (.) shows that

 ≤ αβ = ,

which implies condition (.) holds, that is, both populations are growing unboundedly
large. However, Figure  and Theorem . show that the unique positive equilibrium is
globally stable, which implies the feedback control variables which make both populations
growing unboundedly large now become globally stable.
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