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Abstract
In this paper, the asymptotic stability of linear and interval linear fractional-order
neutral systems with time delay is discussed with true initial conditions. By applying
the relation between integer system’s characteristic equation and fractional system’s
characteristic equation, some brief sufficient stability conditions are deserved. The
proposed method here is different from other ones in literature. In addition, some
simple examples also demonstrate that this method is feasible.
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1 Introduction
Recently, fractional-order systems have gained increasing interests from various areas and
have become one of the central subjects [–]. Note that a fractional-order derivative has
a nonlocal property and weakly singular kernels, fractional-order systems provide an ex-
cellent tool for the description of memory and hereditary properties of dynamical pro-
cesses. Therefore, it has many applied fields such as signal processing, physics, electrode-
electrolyte polarization; see [, ].

The stability is a very essential and crucial issue for fractional-order control systems; see
[, ]. At present, some powerful criteria have been proposed. For example, for commen-
surate fractional-order systems, the Matignon stability theorem is the most well-known
one []. It permits one to determine the stability of the system through the location in
the complex plane of the dynamic matrix eigenvalues of the state space. In addition, the
Lambert function approach [, ], Lyapunov’s second approach [], the matrix measure
approach [, ], Bellman-Gronwall’s approach [], and the LMI approach [] are also
used to investigate the stability of fractional-order linear systems. Reference [] discussed
Lyapunov theory for fractional-order system considering not only the pseudo state space
representation but also a frequency-based representation involving the true state of the
fractional-order system: ZC(ω, t).

Of course, time delay has also considerable impacts on the stability of the system. Gen-
erally speaking, the analyses of time-delay systems can be usually classified into two types:
those concerned with time dependent criteria and those concerned with delay indepen-
dent stability. As there is no upper limit to the time delay, delay independent results can

© 2015 Li et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-015-0659-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0659-4&domain=pdf
mailto:lihoubiao0189@163.com


Li et al. Advances in Difference Equations  (2015) 2015:325 Page 2 of 11

be regarded as conservative in practice. In addition, if the system contains delay both in
its states and in the derivatives of its states, then the system is usually called a neutral type
delay system.

Recently, a finite-time stability analysis of fractional time-delay systems has first been
presented and reported in []. But until now, only a few papers studied the stability of
fractional neutral systems. Though the Lyapunov approach of nonlinear fractional neutral
system was extended in [], it is difficult to use the Lyapunov method to study the stabil-
ity of fractional neutral systems due to the complicated fractional derivatives. However,
based on the algebraic approach, Zhang et al. [] obtained some sufficient conditions for
fractional neutral dynamical systems.

In this paper, by using the characteristic equation of the system, some brief sufficient
asymptotic stability conditions are obtained with true initial conditions. These stability
conditions are simpler and can be tested more easily than the conditions in []. In ad-
dition, the stability of an interval linear fractional neutral system with time delay is also
obtained.

2 Problem formulation and preliminaries
As is well known, the differ-integral operator, denoted by aDα

t , is a combined differen-
tiation and integration operator commonly used in fractional calculus, which is defined
by

aDα
t =

⎧
⎪⎨

⎪⎩

dα

dtα , α > ,
, α = ,
∫ t

a (dτ )–α , α < .

However, for fractional derivatives, there exist different definitions. The most commonly
used definitions are the Grünwald-Letnikov, the Riemann-Liouville, and the Caputo def-
initions. The Caputo definition is sometimes called a smooth fractional derivative in the
literature because it is suitable to treat by the Laplace transform technique. One can also
use a Laplace transform technique for the Riemann-Liouville operator, but potentially a
problem is the physical meaning of the initial conditions.

For convenience, in the rest of the paper, Dα is used to denote the Caputo fractional
derivative of order α,

Dαf (t) =
dαf (t)

dtα
=


�(α – m)

∫ t



f (m)(τ )
(t – τ )α+–m dτ , ()

where m is an integer satisfying (m – ) < α ≤ m.
In addition, this paper mainly focuses on the case that the fractional order is  < α < ,

since there exists an equivalent relation of fractional-order systems with order  < α ≤ 
and with order  ≤ β < ; see [].

Next, let us consider the linear fractional neutral system with time delay described by
the following form:

dα

dtα

(
x(t) – Cx(t – τ )

)
= Ax(t) + Bx(t – τ ) ()

with the initial condition x(t + t) = ψ(t) ∈ C([–τ , ],Rn). Here  ≤ α <  is the fractional
commensurate order, x(t) ∈ R

n denotes the pseudo state vector (the true initial function is
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usually denoted by ZC(ω, t), see [, ]), C, A, and B ∈ R
n×n are constant matrices, τ > 

is a pure time delay.
If the matrices A and B are uncertain, then the fractional-order neutral interval system

can be described by the state space equation of the form

dα

dtα

(
x(t) – Cx(t – τ )

)
= Ax(t) – Bx(t – τ ), ()

where

A ∈ [
A, A] =

{
[aij] : a

ij ≤ aij ≤ a
ij
}

,

B ∈ [
B, B] =

{
[bij] : b

ij ≤ bij ≤ b
ij,  ≤ i, j ≤ n

}
.

Throughout this article, the following conventions are used:
μ(A): matrix measure of the matrix A, i.e., μ(A) = 

λmax(A + A∗).
ρ(A): spectral radius of the matrix A.
|A|: modulus matrix of the matrix A.
A ⊗ B: Kronecker product of A and B.
‖A‖: spectral norm of matrix A; ‖A‖ =

√
λmax(A∗A).

λmax(A): the maximum eigenvalue of the matrix A.
A∗: the conjugate transpose of the matrix A.
A ≤ B: the element of A and B satisfy the inequality aij ≤ bij.

In addition, to prove the main results in the next section, we need also the following
lemma.

Lemma . [] Let R, T , and V ∈C
�×�. If |R| ≤ V , then

ρ(R + T) ≤ ρ
(|R + T |) ≤ ρ

(|R| + |T |) ≤ ρ
(
V + |T |);

ρ(RT) ≤ ρ
(|R||T |) ≤ ρ

(
V |T |); ρ(R) ≤ ρ

(|R|) ≤ ρ(V );

Re
(
λj(A)

) ≤ μ(A); μ(A + B) ≤ μ(A) + μ(B); μ(A) ≤ ‖A‖.

3 Main results
Throughout this paper, we define 
 =

( sin απ
 cos απ


– cos απ

 sin απ


)
, so ‖
‖ = .

3.1 Stability of linear fractional neutral systems with delay
Lemma . [] Let A, B ∈ R

n×n be Hermitian matrices, then

λmax(A + B) ≤ λmax(A) + λmax(B).

Lemma . [] Let C ∈R
n×n. If ρ(C) < , then det(I ± C) �=  and

(I – C)– = I + C + C + · · · .

Specially, if ‖C‖ < , then (I – C)– exists, and ‖(I – C)–‖ ≤ /( – ‖C‖).
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Lemma . Let B ∈ R
n×n, define Bu = 
 ⊗ B, Bl = 
 ⊗ (–iB), where i = –. If Re(s) ≥ ,

then the following inequality holds:

μ
(

 ⊗ Be–sτ ) ≤

√
μ(Bu) + μ(Bl).

Proof Let s = α + iβ , then Be–sτ = Be–ατ (cos(βτ ) – i sin(βτ )). Noticing that Re(s) = α ≥ ,
so  < e–ατ < . Using Lemma . and Lemma ., we have

μ
(

 ⊗ Be–sτ )

=


λmax

(

 ⊗ Be–sτ + 
∗ ⊗ (

Be–sτ )∗)

=


λmax

(

 ⊗ Be–ατ

(
cos(βτ ) – i sin(βτ )

)
+ 
∗ ⊗ B∗e–ατ

(
cos(βτ ) + i sin(βτ )

))

= e–ατ 

λmax

((

 ⊗ B + 
∗ ⊗ B∗) cos(βτ ) +

(

∗ ⊗ iB∗ + 
 ⊗ (–iB)

)
sin(βτ )

)

≤ e–ατ

(


λmax

(

 ⊗ B + 
∗ ⊗ B∗) cos(βτ )

+


λmax

(

∗ ⊗ iB∗ – 
 ⊗ (–iB)

)
sin(βτ )

)

= e–ατ
(
cos(βτ )μ(
 ⊗ B) + sin(βτ )μ

(

 ⊗ (–iB)

))

= e–ατ
(
cos(βτ )μ(Bu) + sin(βτ )μ(Bl)

)

= e–ατ
√

μ(Bu) + μ(Bl)
(

cos(βτ )
μ(Bu)

√
μ(Bu) + μ(Bl)

+ sin(βτ )
μ(Bl)

√
μ(Bu) + μ(Bl)

)

≤ e–ατ
√

μ(Bu) + μ(Bl)

≤
√

μ(Bu) + μ(Bl). ()

Thus, the proof is completed. �

Lemma . [] Let A ∈R
m×m, B ∈R

n×n; λr (r = , . . . , m) are eigenvalues of the matrix A
and uk (k = , . . . , n) are eigenvalues of the matrix B, then λruk (r = , . . . , m, k = , . . . , n) are
eigenvalues of the Kronecker product A ⊗ B.

Lemma . Let A ∈R
m×m, B ∈R

n×n, we have

‖A ⊗ B‖ = ‖A‖ · ‖B‖.

Proof Using Lemma ., we can obtain

‖A ⊗ B‖ =
√

λmax
(
(A ⊗ B)∗(A ⊗ B)

)
=

√

λmax
((

A∗ ⊗ B∗)(A ⊗ B)
)

=
√

λmax
(
A∗A ⊗ B∗B

)
=

√

λmax
(
A∗A

) · λmax
(
B∗B

)

=
√

λmax
(
A∗A

) ·
√

λmax
(
B∗B

)

= ‖A‖ · ‖B‖. ()

The proof is completed. �
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Lemma . Let A ∈R
n×n, det(sαI – A) �=  for ∀Re(s) ≥  if and only if det(sI – 
⊗ A) �= 

for ∀Re(s) ≥ , where  ≤ α < .

Proof According to Theorem  in [], we can easily prove this lemma. �

Next, we consider the global stability of system () in the case of the true initial state
space, according to the true initial function ZC(ω, t); see [, ].

Definition . The system () is said to be asymptotically stable if for any pseudo initial
function ψ(t),ψ ′(t) ∈ C([–τ , ],Rn), any true initial function ZC(ω, t) ∈ C([, +∞; –τ , ],
R

n) and for any time delay τ > , the analytic solution x(t) of the system () satisfies
limt→+∞ x(t) = .

Theorem . If all the roots of the characteristic equation

D(s) = det
(
sα

(
I – Ce–sτ ) –

(
A + Be–sτ )) = 

have negative real parts, then the system () with  ≤ α <  is asymptotically stable.

Proof Taking the Laplace transform of the system (), we have

(
sαI – A – Csαe–sτ – Be–sτ )X(s)

= sα–ψ() + sα–ψ ′() – Ce–sτ sα–ψ() – Ce–sτ sα–ψ ′()

+ Be–sτ
∫ 

–τ

e–sτ ZC(ω, t) dt + Ce–sτ
∫ 

–τ

e–sτ ZC(ω, t) dt

+ Ce–sτ
∫ +∞



u–n(ω)ZC(ω, )
s + ω

dω –
∫ +∞



u–n(ω)ZC(ω, )
s + ω

dω. ()

Let D(s, τ ) = sαI – A – Csαe–sτ – Be–sτ . Multiplying s on both sides of () gives

D(s, τ )sX(s)

= sαψ() + sα–ψ ′() – Ce–sτ sαψ() – Ce–sτ sα–ψ ′()

+ Bse–sτ
∫ 

–τ

e–sτ ZC(ω, t) dt + Cse–sτ
∫ 

–τ

e–sτ ZC(ω, t) dt

+ Cse–sτ
∫ +∞



u–n(ω)ZC(ω, )
s + ω

dω – s
∫ +∞



u–n(ω)ZC(ω, )
s + ω

dω. ()

Similar to [], one can easily prove the theorem. �

Theorem . The system () with  ≤ α <  is asymptotically stable, if the following in-
equalities are satisfied:

() ‖C‖ < ;

() μ(
 ⊗ A) +
√

μ(Bu) + μ(Bl) +
‖CA‖ + ‖CB‖

 – ‖C‖ < .
()
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Proof The system () is asymptotically stable if and only if the characteristic equation
D(s) �=  for ∀Re(s) ≥ . Since  < e– Re(s)τ ≤  for any Re(s) ≥ , we have from Lemma .

ρ
(
Ce–sτ ) ≤ ρ

(∣
∣Ce–sτ ∣∣

) ≤ ρ
(|C|) ≤ ‖C‖ < . ()

By Lemma ., we further know that (I – Ce–sτ )– exists for ∀Re(s) ≥ . Thus D(s) �= 
for ∀Re(s) ≥ , i.e.,

det
(
sαI –

(
I – Ce–sτ )–(A + Be–sτ )) �= , ∀Re(s) ≥ . ()

In addition, from Lemma ., () is equivalent to the following inequality:

det
(
sI – 
 ⊗ (

I – Ce–sτ )–(A + Be–sτ )) �= , ∀Re(s) ≥ , ()

which is equivalent to

s �= λj
(

 ⊗ (

I – Ce–sτ )–(A + Be–sτ )), ∀Re(s) ≥ , j ∈ , , . . . , n. ()

Thus, if we have Reλj (
 ⊗ (I – Ce–sτ )–(A + Be–sτ )) < , then we can prove the stability of
the system ().

In fact, employing the well-known relation

(
I – Ce–sτ )– = I +

(
I – Ce–sτ )–Ce–sτ

and using Lemmas ., ., and ., we can obtain

Reλj

(

 ⊗ (

I – Ce–sτ )–(A + Be–sτ ))

= Reλj

(

 ⊗ (

I +
(
I – Ce–sτ )–Ce–sτ )(A + Be–sτ ))

= Reλj

(

 ⊗ (

A + Be–sτ +
(
I – Ce–sτ )–(CAe–sτ + CBe–sτ )))

= Reλj

(

 ⊗ A + 
 ⊗ Be–sτ + 
 ⊗ (

I – Ce–sτ )–(CAe–sτ + CBe–sτ ))

≤ μ
(

 ⊗ A + 
 ⊗ Be–sτ + 
 ⊗ (

I – Ce–sτ )–(CAe–sτ + CBe–sτ ))

≤ μ(
 ⊗ A) + μ
(

 ⊗ Be–sτ ) + μ

(

 ⊗ (

I – Ce–sτ )–(CAe–sτ + CBe–sτ ))

≤ μ(
 ⊗ A) +
√

μ(Bu) + μ(Bl) +
∥
∥
 ⊗ (

I – Ce–sτ )–(CAe–sτ + CBe–sτ )∥∥

≤ μ(
 ⊗ A) +
√

μ(Bu) + μ(Bl) + ‖
‖ · ∥∥(
I – Ce–sτ )–(CAe–sτ + CBe–sτ )∥∥

≤ μ(
 ⊗ A) +
√

μ(Bu) + μ(Bl) +
‖CA‖ + ‖CB‖

 – ‖C‖
< . ()

This completes the proof. �

Corollary . The system () with  ≤ α <  is asymptotically stable, if there exists an
invertible matrix P ∈R

n×n, such that the following inequalities are satisfied:

() ‖C‖ < ;
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() μ
(
P–(
 ⊗ A)P

)
+

√

μ
(
P–BuP

)
+ μ

(
P–BlP

)
()

+
‖P–‖‖CA‖‖P‖ + ‖P–‖‖CB‖‖P‖

 – ‖C‖ < .

Proof According to Theorem ., we see that the system () is stable if and only if Reλj (
⊗
(I – Ce–sτ )–(A + Be–sτ )) < , ∀Re(s) ≥ , which is equivalent to

Reλj

(
P–(
 ⊗ (

I – Ce–sτ )–(A + Be–sτ ))P
)

< , ∀Re(s) ≥ .

So, we can prove this corollary easily. �

3.2 Stability of interval linear fractional neutral systems with delay
Now, we consider the interval neutral fractional linear system ().

Let

Ā =


(
A + A), �A = A – Ā, AM = A – Ā;

B̄ =


(
B + B), �B = B – B̄, BM = B – B̄,

()

then |�A| ≤ AM , |�B| ≤ BM .
We have the following lemmas and theorems as regards the interval system ().

Lemma . Let B ∈R
n×n, if Re(s) ≥ , then the following inequality holds:

μ
(

 ⊗ Be–sτ ) ≤ √

‖B‖.

Proof Using Lemma ., we have

μ
(

 ⊗ Be–sτ ) = e–ατ

(
cos(βτ )μ(
 ⊗ B) + sin(βτ )μ

(

 ⊗ (–iB)

))
. ()

Noticing that Re(s) = α ≥ , we have  < e–ατ < . According to Lemma ., we can obtain

e–ατ
(
cos(βτ )μ(
 ⊗ B) + sin(βτ )μ

(

 ⊗ (–iB)

))

≤ e–ατ
(∣
∣cos(βτ )

∣
∣ · ‖
 ⊗ B‖ +

∣
∣sin(βτ )

∣
∣ · ∥∥
 ⊗ (–iB)

∥
∥
)

= e–ατ
(∣
∣cos(βτ )

∣
∣ · ‖
‖‖B‖ +

∣
∣sin(βτ )

∣
∣ · ‖
‖‖ – iB‖)

= e–ατ‖
‖‖B‖(∣∣cos(βτ )
∣
∣ +

∣
∣sin(βτ )

∣
∣
)

= e–ατ‖
‖‖B‖√
(

√


∣
∣cos(βτ )

∣
∣ +

√


∣
∣sin(βτ )

∣
∣

)

≤ √
‖
‖‖B‖

=
√

‖B‖. ()

Thus, the proof is completed. �

Theorem . The system () with  ≤ α <  is asymptotically stable, if the following in-
equalities are satisfied:

() ‖C‖ < ;
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() μ(
 ⊗ Ā) +
√

μ(B̄u) + μ(B̄l) + ‖AM‖ +
√

‖BM‖ ()

+
‖CĀ‖ + ‖CB̄‖ + ‖C‖(‖AM‖ + ‖BM‖)

 – ‖C‖ < .

Proof According to Theorem ., we see that the interval system () is asymptotically
stable if and only if

Reλj

(

 ⊗ (

I +
(
I – Ce–sτ )–Ce–sτ )(A + Be–sτ )) < , ∀Re(s) ≥ .

Using Lemma ., we can obtain

Reλj

(

 ⊗ (

I +
(
I – Ce–sτ )–Ce–sτ )(A + Be–sτ ))

= Reλj

(

 ⊗ (

I +
(
I – Ce–sτ )–Ce–sτ )(Ā + �A + (B̄ + �B)e–sτ ))

= Reλj

(

 ⊗ (

Ā + B̄e–sτ + �A + �B

+
(
I – Ce–sτ )–(CĀe–sτ + CB̄e–sτ + C�Ae–sτ + C�Be–sτ )))

= Reλj

(

 ⊗ Ā + 
 ⊗ B̄e–sτ + 
 ⊗ �A + 
 ⊗ �Be–sτ

+ 
 ⊗ (
I – Ce–sτ )–(CĀe–sτ + CB̄e–sτ + C�Ae–sτ + C�Be–sτ ))

≤ μ
(

 ⊗ Ā + 
 ⊗ B̄e–sτ + 
 ⊗ �A + 
 ⊗ �Be–sτ

+ 
 ⊗ (
I – Ce–sτ )–(CĀe–sτ + CB̄e–sτ + C�Ae–sτ + C�Be–sτ ))

≤ μ(
 ⊗ Ā) + μ
(

 ⊗ B̄e–sτ ) + μ(
 ⊗ �A) + μ

(

 ⊗ �Be–sτ )

+ μ
(

 ⊗ (

I – Ce–sτ )–(CĀe–sτ + CB̄e–sτ + C�Ae–sτ + C�Be–sτ )). ()

In addition, according to Lemma . and Lemma ., we can further obtain

μ(
 ⊗ Ā) + μ
(

 ⊗ B̄e–sτ ) + μ(
 ⊗ �A) + μ

(

 ⊗ �Be–sτ )

+ μ
(

 ⊗ (

I – Ce–sτ )–(CĀe–sτ + CB̄e–sτ + C�Ae–sτ + C�Be–sτ ))

≤ μ(
 ⊗ Ā) +
√

μ(B̄u) + μ(B̄l) + ‖
 ⊗ �A‖ +
∥
∥
 ⊗ �Be–sτ∥∥

+
∥
∥
 ⊗ (

I – Ce–sτ )–(CĀe–sτ + CB̄e–sτ + C�Ae–sτ + C�Be–sτ )∥∥

≤ μ(
 ⊗ A) +
√

μ(B̄u) + μ(B̄l) + ‖
‖‖�A‖ +
√

‖�B‖
+ ‖
‖ · ∥∥(

I – Ce–sτ )–(CĀe–sτ + CB̄e–sτ + C�Ae–sτ + C�Be–sτ )∥∥

≤ μ(
 ⊗ Ā) +
√

μ(B̄u) + μ(B̄l) + ‖AM‖ +
√

‖BM‖

+
‖CĀ‖ + ‖CB̄‖ + ‖C‖(‖AM‖ + ‖BM‖)

 – ‖C‖
< . ()

This completes the proof. �



Li et al. Advances in Difference Equations  (2015) 2015:325 Page 9 of 11

Remark . If we use 
 =
( – sin απ

 + cos απ


– cos απ
 – sin απ



)
to replace 
 in Theorems ., . and Corol-

lary ., we obtain the following conclusions:
. The system () with  < α <  is unstable, if the following inequalities are satisfied:

() ‖C‖ < ;

() μ(
 ⊗ A) +
√

μ
(
B′

u
)

+ μ
(
B′

l
)

+
‖CA‖ + ‖CB‖

 – ‖C‖ < .
()

. The system () with  < α <  is unstable, if there exists an invertible matrix P ∈R
n×n,

such that the following inequalities are satisfied:

() ‖C‖ < ;

() μ
(
P–(
 ⊗ A)P

)
+

√

μ
(
P–B′

uP
)

+ μ
(
P–B′

lP
)

()

+
‖P–CAP‖ + ‖P–CBP‖

 – ‖C‖ < ,

where B′
u = 
 ⊗ B, B′

l = 
 ⊗ (–iB).
. The system () with  < α <  is unstable, if the following inequalities are satisfied:

() ‖C‖ < ;

() μ(
 ⊗ Ā) +
√

μ
(
B̄′

u
)

+ μ
(
B̄′

l
)

+ ‖AM‖ +
√

‖BM‖ ()

+
‖CĀ‖ + ‖CB̄‖ + ‖C‖(‖AM‖ + ‖BM‖)

 – ‖C‖ < ,

where B̄′
u = 
 ⊗ B̄, B̄′

l = 
 ⊗ (–iB̄).

Remark . As stated in [, ], fractional differentiation usually needs an initialization
to avoid long range memory phenomenon, so one should use ZC(ω, ) to initialize Caputo
derivative. In Theorem ., we give a simple proof for this case. In fact, for the case of
the pseudo state model, one can also prove this theorem according to [] by taking the
Laplace transform.

4 Numerical examples
Next, we apply Matlab to help us demonstrate our results.

Example . Consider the stability of the following fractional-order neutral system with
delay:

dα

dtα

(
x(t) – Cx(t – τ )

)
= Ax(t) – Bx(t – τ ), ()

where α = /, and

A =

(
– – 



 –

)

, B =

(
– 


.


.
 – 



)

, C =

(
. 
 .

)

.
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Since α = /, we can obtain θ =
(

√


 –
√


√




√




)
. By computation, we have

μ(θ ⊗ A) = –.,
√

μ(Bu) + μ(Bl) = .,
‖CA‖ + ‖CB‖

 – ‖C‖ = ..

So ‖C‖ = . <  and

μ(
 ⊗ A) +
√

μ(Bu) + μ(Bl) +
‖CA‖ + ‖CB‖

 – ‖C‖
= –. + . + . = –. < .

Therefore, from Theorem ., we know that the fractional system () is asymptotically
stable.

Example . Consider the stability of the following fractional-order neutral system with
delay:

dα

dtα

(
x(t) – Cx(t – τ )

)
= Ax(t) – Bx(t – τ ), ()

where α = /, and

A =

(
–. .
. –.

)

, A =

(
–. 


. –.

)

,

B =

(
. .


.
 –.

)

, B =

(
. .


.
 –.

)

, C =

(
. 
 .

)

.

First, note that

θ =

(√


 –
√


√




√




)

, Ā =

(
– 



 –

)

, AM =

(
. .
 .

)

,

B̄ =

(
–. .


.
 –.

)

, BM =

(
. 

 .

)

.

By computation, we have

μ(θ ⊗ A) = –.,
√

μ(Bu) + μ(Bl) = ., ‖AM‖ = .,

‖BM‖ = .,
‖CA‖ + ‖CB‖

 – ‖C‖ = .,
‖C‖(‖AM‖ + ‖BM‖)

 – ‖C‖ = ..

So ‖C‖ = . <  and

μ(
 ⊗ Ā) +
√

μ(B̄u) + μ(B̄l) + ‖AM‖ +
√

‖BM‖

+
‖CĀ‖ + ‖CB̄‖ + ‖C‖(‖AM‖ + ‖BM‖)

 – ‖C‖
= –. + . + . + . + . + . = –. < .
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Therefore, from Theorem ., we know that the fractional system () is asymptotically
stable.

5 Conclusions
In summary, this paper mainly presents some brief sufficient conditions for the stability
of a class of fractional-order neutral systems with uncertain parameters. The proposed
method here is quite different from other ones in the literature. Two simple examples also
demonstrate that this method is feasible.
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