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1 Introduction
We are concerned with the following fractional boundary value problem (P):

cDα
+ u(t) = f

(
t, u(t)

)
,  < t < , (.)

u() = u′() = , u′′() = u(), (.)

where cDα
+ denotes the Caputo fractional derivative,  < α < . We assume that f : [, ] ×

R
+ → R

+ is continuous. The boundary value problem (P) is said to be at resonance if the
linear equation Lu = cDα

+ u(t) with the boundary value conditions (.) has a nontrivial
solution, i.e., dim ker L ≥ .

In recent years, there has been much work related to boundary value problems at res-
onance for ordinary or fractional differential equations. We refer the reader to [–] and
the references therein. In most papers mentioned above, the coincidence degree theory
was applied to establish existence theorems. In [–], the authors obtained the minimal
and maximal positive solutions by using a fixed point theorem of increasing operators.

In this paper, we use this method to solve the boundary value problem (P). For the con-
venience of the reader, we recall some notations.

Let X and Y be real Banach spaces, L : dom(L) ⊂ X → Y be a Fredholm operator of index
zero. The map N : X → Y is called L-compact on � if QN(�) and Kp(I – Q)(�) are both
compact.

Let P : X → X, Q : Y → Y be continuous projectors such that Im P = Ker L, Ker Q = Im L
and X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q. It follows that L|Ker P∩dom(L) : Ker P ∩ dom(L) →
Im(L) is invertible.
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We denote the inverse of L by KP : Im L → Ker P ∩ dom(L). Moreover, since dim Im Q =
dim Ker L < ∞, there exists an isomorphism J : Im Q → Ker L = Im P. Set H = L + J–P, then
H : dom(L) ⊂ X → Y is a linear bijection with bounded inverse and (JQ + Kp(I – Q))(L +
J–P) = (L + J–P)(JQ + Kp(I – Q)) = I . From [] we see that K = H(K ∩ dom(L)) is a cone
in Y and we have the following theorem.

Theorem . [] N(u) + J–P(u) = H(u), where u = P(u) + JQN(u) + Kp(I – Q)N(u) and u
is uniquely determined.

As a consequence of the above theorem, the author obtained the equivalence of the
following two assertions:

(i) P + JQN + Kp(I – Q)N : K ∩ dom(L) → K ∩ dom(L),
(ii) N + J–P : K ∩ dom(L) → K.
Now we introduce the notion of lower and upper solutions.

Definition . [] Let K be a normal cone in a Banach space X, u ≤ v, and u, v ∈
K ∩ dom(L) are said to be coupled lower and upper solutions of the equation Lu = Nu if

{
Lu ≤ Nu,
Lv ≥ Nv.

Theorem . [] Let L : dom(L) ⊂ X → Y be a Fredholm operator of index zero, K be a
normal cone in Banach space X, u, v ∈ K ∩ dom(L), u ≤ v, and N : [u, v] → Y be
L-compact and continuous. Suppose that the following conditions are satisfied:

(C) u and v are coupled lower and upper solutions of the equation Lu = Nu.
(C) N + J–P : K ∩ dom(L) → K is an increasing operator.

Then the equation Lu = Nu has a minimal solution u∗ and a maximal solution v∗ in
[u, v].

Moreover, u∗ = limn→∞ un, and v∗ = limn→∞ vn, where

un =
(
L + J–P

)–(N + J–P
)
un–,

vn =
(
L + J–P

)–(N + J–P
)
vn–, for n = , , , . . . ,

u ≤ u ≤ u ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v ≤ v.

2 Preliminaries
Now, we introduce some notations, definitions and preliminary facts which will be used
throughout this paper.

Definition . The Riemann-Liouville fractional integral operator of order α >  of a
function g is defined by

Iα
a+ g(t) =


�(α)

∫ t

a
(t – s)α–g(s) ds,

provided that the right side integral is pointwise defined on (, +∞).
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Definition . The Caputo fractional derivative of order α >  of a continuous function
g is given by

cDα
a+ g(t) =


�(n – α)

∫ t

a
(t – s)n–α–g(n)(s) ds,

when n is the smallest integer greater than or equal to α, provided that the right side
integral is pointwise defined on (, +∞).

Lemma . For α > , g ∈ C([, ],R), the homogeneous fractional differential equation
cDα

a+ g(t) =  has a solution g(t) = c + ct + ct + · · · + cn–tn–, where ci ∈R, i = , . . . , n – ,
here n is the smallest integer greater than or equal to α.

Let X = Y = C[, ] equipped with the norm ‖u‖ = supt∈[,] |u(t)| and K = {u ∈ X : u(t) ≥
, t ∈ [, ]}.

Define the operators L and N , respectively, by L : dom(L) ⊂ X → Y

Lu(t) = cDα
+ u(t),

dom(L) = {u ∈ AC[, ] : cDα
+ u(t) ∈ C[, ], u() = u′() = , u′′() = u()} and

N : X → Y

Nu(t) = f
(
t, u(t)

)
, ∀t ∈ [, ],

then the boundary value problem (P) can be written as Lu = Nu, u ∈ K ∩ dom(L).

Lemma . We have

Ker L =
{

u ∈ dom(L) : u(t) = ct, c ∈R,∀t ∈ [, ]
}

and

Im L =
{

y ∈ Y :
∫ 


( – s)α–y(s) ds = 

}
.

Proof By Lemma ., the function u(t) = c + ct + ct, c, c, c ∈ R is the solution of
Lu(t) = Dα

+ u(t) = . Taking into account the boundary conditions (.), we get

Ker L =
{

u ∈ dom(L) : u(t) = ct, c ∈R,∀t ∈ [, ]
}

.

Let us show that

Im L =
{

y ∈ Y :
∫ 


( – s)α–y(s) ds = 

}
.

For y ∈ Im L, there exists u ∈ dom(L) such that y = Lu ∈ Y . By Lemma ., it follows that

u(t) =


�(α)

∫ t


(t – s)α–y(s) ds + c + ct + ct.
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It is easy to get

u′(t) =


�(α – )

∫ t


(t – s)α–y(s) ds + c + ct,

u′′(t) =


�(α – )

∫ t


(t – s)α–y(s) ds + c,

then the boundary conditions (.) imply

∫ 


( – s)α–y(s) ds = .

On the other hand, suppose that y ∈ Y and satisfies
∫ 

 ( – s)α–y(s) ds = . Let u(t) =
Iα

+ y(t) + ct, then u ∈ dom(L) and Dα
+ u(t) = y(t). Thus, y ∈ Im L. �

Now, define the operators P : X → X by

Pu(t) =


α(α + )(α + )t

∫ 


( – s)α–u(s) ds

and Q : Y → Y by

Qy(t) = α

∫ 


( – s)α–y(s) ds, ∀t ∈ [, ].

It is easy to see that the operators P and Q are both projectors. In fact, for t ∈ [, ],

Pu(t) = P(Pu)(t)

=


α(α + )(α + )t

∫ 


( – s)α–(Pu)(s) ds

=



α(α + )(α + )t
∫ 


( – s)α–u(s) ds

∫ 


( – s)α–s ds

=


α(α + )(α + )t

∫ 


( – s)α–u(s) ds = Pu(t).

Similarly we show that Q is a projector. Obviously, Im P = Ker L and Ker Q = Im L.

Lemma . The operator L : dom(L) ⊂ X → Y is a Fredholm operator of index zero, and
its inverse Kp : Im L → dom(L) ∩ Ker P is given by

Kpy(t) =
∫ 


k(t, s)y(s) ds, ∀t ∈ [, ],

where

k(t, s) =

{
(t–s)α–

�(α) – α(α + )(α + )t �(α)
�(α) ( – s)α–,  ≤ s ≤ t ≤ ,

–α(α + )(α + )t �(α)
�(α) ( – s)α–,  ≤ t ≤ s ≤ .

(.)
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Proof From u = (u – Pu) + Pu it follows that X = Ker P + Ker L. By simple calculation, we
obtain Ker L ∩ Ker P = {}, then X = Ker L ⊕ Ker P. By the same idea we prove that Y =
Im L ⊕ Im Q. Thus

dim Ker L = dim Im Q = co dim Im L = .

This means that L is a Fredholm operator of index zero.
Let us find the expression of Kp : Im L → dom(L) ∩ Ker P. Let u ∈ dom(L) ∩ Ker P, then

y(t) = cDα
+ u(t) ∈ Im L and

KPy(t) = u(t) = Iα
+ y(t) + Ct =


�(α)

∫ t


(t – s)α–y(s) ds + Ct. (.)

Since u ∈ dom(L) ∩ Ker P,

 =
∫ 


( – t)α–u(t) dt

=


�(α)

∫ 


( – t)α–

∫ t


(t – s)α–y(s) ds dt + C

∫ 


t( – t)α– dt

=


�(α)

∫ 


y(s)

∫ 

s
( – t)α–(t – s)α– dt ds +

C
α(α + )(α + )

,

thus

C = –
α(α + )(α + )

�(α)

∫ 


y(s)

∫ 

s
( – t)α–(t – s)α– dt ds,

= –α(α + )(α + )
�(α)

�(α)

∫ 


( – s)α–y(s) ds.

Substituting C by its value in (.) we get

(KPy)(t) =


�(α)

∫ t


(t – s)α–y(s) ds

– α(α + )(α + )t �(α)
�(α)

∫ 


( – s)α–y(s) ds

=
∫ 


k(t, s)y(s) ds,

where k(t, s) is given by (.). �

3 Main result
Define the isomorphism J : Im Q → Ker L by J(c) = 

 (α+)(α+)ct. We have the following
result.

Lemma . We have

(
JQN + Kp(I – Q)N

)
u(t) =

∫ 


G(t, s)f

(
s, u(s)

)
ds,
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where

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(t–s)α–

�(α) – α(α + )(α + )t �(α)
�(α) ( – s)α–

+ α(α + )(α + )t( 
 + �(α)

�(α) )( – s)α– – tα
�(α) ( – s)α–,  ≤ s ≤ t ≤ ,

–α(α + )(α + )t �(α)
�(α) ( – s)α–

+ α(α + )(α + )t( 
 + �(α)

�(α) )( – s)α– – tα
�(α) ( – s)α–,  ≤ t ≤ s ≤ .

G is continuous and nonnegative on [, ] × [, ].

Proof We have

QNu(t) = α

∫ 


( – s)α–f

(
s, u(s)

)
ds,

Kp(I – Q)Nu(t) =
∫ 


k(t, s)f

(
s, u(s)

)
ds

– α

(∫ 


( – s)α–f

(
s, u(s)

)
ds

)(∫ 


k(t, s) ds

)
.

Then

(
JQN + Kp(I – Q)N

)
u(t)

=
α(α + )(α + )t



∫ 


( – s)α–f

(
s, u(s)

)
ds

+
∫ 


k(t, s)f

(
s, u(s)

)
ds – α

(∫ 


( – s)α–f

(
s, u(s)

)
ds

)(∫ 


k(t, s) ds

)

=
α(α + )(α + )t



∫ 


( – s)α–f

(
s, u(s)

)
ds

+


�(α)

∫ t


(t – s)α–f

(
s, u(s)

)
ds

– α(α + )(α + )t �(α)
�(α)

∫ 


( – s)α–f

(
s, u(s)

)
ds

+
(

–
tα

�(α)
+ α(α + )(α + )t �(α)

�(α)

)(∫ 


( – s)α–f

(
s, u(s)

)
ds

)
.

It is easy to see that G is continuous according to both variables s, t ∈ [, ]. Let t ≤ s ≤ ,
then

G(t, s) = –α(α + )(α + )t �(α)
�(α)

( – s)α–

+ α(α + )(α + )t
(




+
�(α)

�(α)

)
( – s)α– –

tα

�(α)
( – s)α–

≥
(

–α(α + )(α + )t �(α)
�(α)

–
t

�(α)
+



α(α + )(α + )t

)
( – s)α–

≥
(

–α(α + )(α + )
�(α)

�(α)
–


�(α)

+


α(α + )(α + )

)
t( – s)α–

≥ t( – s)α– ≥ .
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Similarly we get, for  ≤ s ≤ t ≤ ,

G(t, s) ≥ (t – s)α–

�(α)
+ t( – s)α– ≥ .

The proof is complete. �

Lemma . The operator N is L-compact and continuous on �, where � is any open
bounded subset of K ∩ dom(L).

Proof We have to prove that QN(�) and Kp(I – Q)(�) are both compact. Let u ∈ � and
M = max(f (s, u(s)),  ≤ s ≤ , u ∈ �), remarking that |k(t, s)| ≤ , we easily get

∣
∣Kp(I – Q)Nu(t)

∣
∣ ≤

∫ 


f
(
s, u(s)

)∣∣k(t, s)
∣
∣ds

+ α

(∫ 


( – s)α–f

(
s, u(s)

)
ds

)(∫ 



∣∣k(t, s)
∣∣ds

)
≤ M,

thus ‖Kp(I – Q)Nu‖ ≤ M, so Kp(I – Q)N is uniformly bounded on �.
Let  ≤ t < t ≤ , then

∣∣Kp(I – Q)Nu(t) – Kp(I – Q)Nu(t)
∣∣

≤ 
�(α)

∫ t



(
(t – s)α– – (t – s)α–)f

(
s, u(s)

)
ds

+


�(α)

∫ t

t

(t – s)α–f
(
s, u(s)

)
ds

+ α(α + )(α + )
(
t
 – t


) �(α)

�(α)

∫ 


( – s)α–f

(
s, u(s)

)
ds

+
(∫ 


( – s)α–f

(
s, u(s)

)
ds

)(
(
tα
 – tα


)

+ (α + )(α + )
(
t
 – t


) �(α)

�(α)

)

≤ M
�(α)

[
α(t – t) +

�(α)
�(α)

(α + )(α + )
(
t
 – t


)

+
(
tα
 – tα


)
]

.

As t → t, the right-hand side of the above inequality tends to , consequently Kp(I –
Q)(�) is equicontinuous. By means of the Arzela-Ascoli theorem we conclude that Kp(I –
Q)(�) is compact. Similarly we prove that QN(�) is compact. �

Theorem . Assume that:

(H) There exist u, v ∈ K ∩ dom(L) such that u ≤ v and

{
cDα

+ u(t) ≤ f (t, u(t)), ∀t ∈ [, ],
cDα

+ v(t) ≥ f (t, v(t)), ∀t ∈ [, ].

(H) For any x, y ∈ K ∩dom(L), u(t) ≤ y(t) ≤ x(t) ≤ v(t), ∀t ∈ [, ], the function f satisfies

f
(
t, x(t)

)
– f

(
t, y(t)

) ≥ –α

(∫ 


( – t)α–x(t) dt –

∫ 


( – t)α–y(t) dt

)
.
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Then the boundary value problem (P) has a minimal solution u∗ and a maximal solution
v∗ in [u, v].

Proof We will prove that all conditions of Theorem . are satisfied. From the proof of
Lemma ., we know that L is a Fredholm operator of index zero. In view of condition
(H), we get Lu ≤ Nu and Lv ≥ Nv, so condition (C) of Theorem . holds. For u ∈ K ,
we have

(
P + JQN + Kp(I – Q)N

)
u(t)

=


α(α + )(α + )t

∫ 


( – s)α–u(s) +

∫ 


G(t, s)f

(
s, u(s)

)
ds.

Since G(t, s) is continuous and nonnegative for t, s ∈ [, ], (P + JQN + Kp(I – Q)N)(K) ⊂ K .
By virtue of the equivalence assertions, we conclude that N + J–P : K ∩ dom(L) → K.
Condition (H) implies that N +J–P : K ∩dom(L) → K is a monotone increasing operator,
in fact for x, y ∈ K ∩ dom(L), y(t) ≤ x(t), ∀t ∈ [, ], we have

(
N + J–P

)
x(t) –

(
N + J–P

)
y(t)

= f
(
t, x(t)

)
– f

(
t, y(t)

)
+ α

(∫ 


( – t)α–x(t) dt –

∫ 


( – t)α–y(t) dt

)
≥ ,

so condition (C) is satisfied. Finally, we conclude by Theorem . that the equation Lu =
Nu has a minimal solution u∗ and a maximal solution v∗ in [u, v], where u∗ = limn→∞ un

and v∗ = limn→∞ vn, uniformly according to t, the sequences un and vn are defined by

un =
(
L + J–P

)–(N + J–P
)
un–

=
(
JQ + Kp(I – Q)

)(
N + J–P

)
un–

=
(
JQ + Kp(I – Q)

)
(

f
(
s, un–(s)

)
+ α

∫ 


( – s)α–un–(s) ds

)

=


�(α)

∫ t


(t – s)α–f

(
s, un–(s)

)
ds

+ α(α + )(α + )t �(α)
�(α)

∫ 


( – s)α–f

(
s, un–(s)

)
ds

–
tα

�(α)

∫ 


( – s)α–f

(
s, un–(s)

)
ds

– α(α + )(α + )
t�(α)
�(α)

∫ 


( – s)α–f

(
s, un–(s)

)
ds

+


α(α + )(α + )t

∫ 


( – s)α–un–(s) ds,

similarly we get the expression of vn, moreover, we have

u ≤ u ≤ u ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v ≤ v. �
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Example . Let us consider the following fractional boundary value problem:

{
cD



+ u(t) = t + u

u+ ,  < t < ,
u() = u′() = , u′′() = u().

(.)

We can choose

u(t) =


�( 
 )

∫ t


(t – s)


 s ds ≤ 

�( 
 )

∫ t


(t – s)


 (s + ) ds = v(t),

then

cD


+ u(t) = t ≤ (t + ) = cD



+ v(t),

cD


+ u(t) ≤ f

(
t, u(t)

)
, cD



+ v(t) ≥ f

(
t, v(t)

)
, ∀t ∈ [, ].

For any x, y ∈ K ∩ dom(L), we have

(
t +

x
x + 

)
–

(
t +

y
y + 

)
≥ –




(∫ 


( – t)α–x(t) dt –

∫ 


( – t)α–y(t) dt

)
,

where u(t) ≤ y(t) ≤ x(t) ≤ v(t), ∀t ∈ [, ]. Then, by Theorem ., the boundary value
problem (.) has a minimal solution u∗ and a maximal solution v∗ in [u, v].
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